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Abstract

Color digital imagers contain Red, Green and Blue subpizels within each color pizel. Defects that
develop either at fabrication time or due to environmentally induced errors over time can cause a
single color subpizel (e.g., R) to fail, while leaving the remaining colors intact. This paper investi-
gates seven software correction algorithms that interpolate the color of a pizel based on its nearest
neighbors. Using several measurements of color error, all seven methods were investigated for a large
number of digital images. Interpolations using only information from the single failed color (e.g.,
R) in the neighbors gave the poorest results. Those using all color measurements and a quadratic
interpolation formula, combined with the remaining subpizel colors (e.g., G and B) produced sig-
nificantly better results. A formula developed using the CIE color coordinates of Tristimulus values
(X,Y, Z) yielded the best results.

1: Introduction

Digital cameras on-a-chip are becoming more common (e.g., [6, 7]) and are expected to be used
in many industrial and consumer products. Many systems are shifting to the Active Pixel Sensor
CMOS detectors, which have the advantage of lower cost, single voltage, lower power consumption,
higher level of device integration, and last but not least, the possibility of defect repairs.

In [5], we evaluated the benefits of adding redundant rows and columns to the pixel array. Since
a spare row (column) of pixels can only replace a boundary row (column) rather than any faulty row
(column), this technique has limited capabilities and is satisfactory only for long duration missions
and high image quality requirements. In [4] we suggested two other fault-tolerance techniques, HC
- Hardware Correction, and SC - Software Correction. HC' is based on splitting the photodiode
in each pixel into two half-size photodiodes and duplicating the readout transistors so that one
photodiode can be used even if the second one is defective. After testing the entire pixel array
under full dark and full light images, the pixels with half intensity can be identified and their value
can then be multiplied by two. Relying on the fact that in digital images a pixel value is correlated to
that of its immediate neighbors, SC' uses several weighted averages of the faulty pixel’s neighbors to
estimate its value. In [4] we analyzed the effects of both methods on pixel errors for grayscale images,
in which each pixel is represented by one 8-bit integer between 0 and 255. We demonstrated that in
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most cases the combination of the hardware and software based methods results in a considerably
higher image quality than that of the software based technique alone.

In this paper, we focus on fault-tolerance methods for color images using the RGB system in
which each pixel is represented by three 8-bit integers, describing the intensities of the Red, Green,
and Blue components of the color pixel. The failure of a single color within any color pixel will
cause a significant color shift in the image which can be very noticeable (for example, shifting from
a color with mixed R and B to one with only B values). This paper describes methods whereby if
only one color of a pixel is faulty, the remaining components can be used to improve the estimate.

2: The model

2.1: Fault model and fault-tolerance methods

The hardware correction for the color camera would be a modification of that proposed previously
in [2, 4]. In the case of color cameras, typically each pixel consists of Red (R), Green (G) and Blue
(B) subpixels. Note that in many digital cameras, often two Green subpixels are used to form a
square of RGBG and thus keep the color pixel uniform in size. For HC we again assume a CMOS
Active Pixel Sensor for each color subpixel, and split diodes and readout transistors [4]. Each half
of the APS diode generates current that charges the gate of the readout transistors. When the row
select transistor is activated, current flows through the readouts to the column output in proportion
to the charge gathered on the gate. The diodes are then reset to a precharged level after each image.

Our fault model assumes that the pixel array consists of N x N pixels, and each pixel consists of
three subpixels (representing the R, G, B colors) which are statistically independent with regard to
faults. Faults occur at each subpixel according to a Poisson process with a rate of A faults per unit
time. Hence, the probability of a given pixel to be fault-free at time ¢ is e 3** and the probability of
the whole array to be fault-free at time ¢ is e=3V"**. As shown in [4], this probability deteriorates
very fast, even for very small failure rates A, due to the large value of N2.

Since the probability of both halves of a subpixel being faulty at the same time is very small,
most faults will be corrected using HC'. If any subpixel remains faulty after applying HC', we can
assume that all 26 subpixels surrounding it are defect-free and can be used for software correction.
The statistical analysis of the HC for color images is very similar to that appearing in [4] for
grayscale images and will not be repeated here. The next subsection deals with the analysis of SC,
which is different for color cameras due to the existence of three subpixels, not all of which fail
simultaneously.

2.2: The software Correction Methods

In black and white cameras, the only choice for software correction is to do interpolations based
on the luminosity (or light intensity) of the nearest pixels. In color images, on the other hand, each
pixel carries both the luminosity (L=R+G+B) and the color information, i.e., the relative ratio
between the colors. It is clear that in most real life scenes the luminosity of an image changes much
faster from pixel to pixel than does the color itself. For example, a typical image will have objects
which have a slowly changing or near uniform color, but the luminosity or light level across the
object may very quite quickly. Certainly there will be boundaries between objects, and thus sharp
color boundaries, but these will be much less common than the luminosity changes. This is the
principal that a color TV works on: most of the broadcast signal is related to the luminosity (i.e.,
the B&W image) while the color signal takes up a much smaller portion of the TV spectrum.

Consider the case of a single failed color (Red in what follows) of an RGB pixel. The important
point is that for almost all cameras the RG B optical filters (integrated into the detectors) are such
that any color that generates a strong signal of one value (e.g., R) will also generate some additional
values of the other colors (G and B) for even pure “Red” values. Indeed, many colors have significant



mixtures of all three values. Hence, if the color value (such as the ratio R to G to B), and the signal
from the remaining colors (G and B in this case) are known then the R value can be calculated
with high accuracy. What is important is to use a method that separates out the luminosity from
the color.

We consider seven forms of software correction (although many more are possible) and denote
them by SC* (k = 1,2,...,7). To define those we make the following notations. We denote the
coordinates of the faulty pixel by (0,0), and those of its eight neighbors by (0,1), (1,1), (1,0), (1,-1),
(0,-1), (-1,-1), (-1,0), (-1,1). We also denote by R; ;, G;,; and B, ; the values (each between 0 and
255) of the red, green, and blue subpixels, respectively, of the pixel whose coordinates are (i, j)
(i, = —1,0,1). We assume that Rpg is the only faulty subpixel among all 27 subpixels in the
neighborhood. We then denote by R(’)“O the estimated value of the faulty subpixel as obtained by
SC* (k=1,2,...,7).

The first three methods use only the R values of the neighbors. These are similar to the best
interpolations that we could use in the case of B&W images. In the first method, SC!, the value
of the faulty R is estimated by the average of the R values of its eight immediate neighbors, i.e.,

N 1
Ry, = 3 (Roi+Riy+Rio+Ry,—-1+Ro1+R_1, 1 +R_10+R_1,) (1)

The second method assumes that the faulty R and the R values of its eight neighbors obey a
quadratic function

Ry y = oo + 010% + 601y + G112y + a202” + ao2y” + a21 2%y + arazy’ (2)

Substituting the given R;;’s for (i,j) # (0,0) we have eight linear equations in the eight unknown
coefficients ay;. Since Rgg = agg, we need to solve only for agg, which results in

A 1 1
Ry = 3 (Ro1 + Rio+ Ro,-1 + R_1,0) — 1 (Ri1+Ri,—1+R_1_1+R_11) (3)

The third method attempts to use more information than is included in the eight immediate
neighbors, and calculates the average of the R values of the 24 neighbors surrounding the faulty
pixel:

A 1
Ry = 21 2; R (4)
:,7;!&%2
The first three methods did not make any use of the relationships between R and the other two
colors. Now consider the interpolation methods that use all the available color information. The next
two methods look at the ratio between the missing R value and the pixel luminosity L = R+ G + B,
assuming that the ratio C; ; = R; j/L;; changes very little over small distances.
The fourth method calculates Cyq as the average of the C; ;’s of its eight neighbors, and then

estimates Rgo by

J- Coo(Goo:i-Boo) (5)
00 1 — Cog

The fifth method estimates Cy assuming a quadratic relationship among the nine Cj ;’s in the
neighborhood, and thus, similarly to (3),

N 1 1
Coo = 3 (Co1 + Cio+ Co,—1+C_19) — 1 (Cii+Ci-1+C_121+C-11) (6)

and R, is obtained from Cyo using (5).



Rather than using the ratio C, a better method is to make use of actual color measurements
which will be employed in the last two methods. To this end, a color coordinate system is required
where a color can be specified by some numerical parameters. Many such systems exist, but for
the purposes of this work we will use the CIE (Commission Internationale de 1’ Eclairage) color
standard system which has the important characteristic of giving the color in an z,y system, and
the luminosity separate from the color [1, 3]. The CIE 1931 system starts by taking the RGB
from the camera and relating these to Tristimulus values X, Y and Z which contain both color
and luminosity information. The transformation from (R,G,B) to (X,Y, Z) is done through a
conversion matrix 7,

X R
y |=7| G (7)
VA B

The entries in the matrix T are set by the optical characteristics of the color filters in the particular
camera being used. For the following examples we will use the standard case which sets Red at
700nm filter, Green at 546.1nm and Blue at 435.8nm [3], resulting in

Tre Ty Tho 0.7347 0.2653 0.0000
T=| Ty, T, Ty | = | 02738 0.7174 0.0088 8)
T,. T,. T 0.1666 0.0089 0.8245

In the true CIE color coordinates, these Tristimulus values are further reduced to a dimensionless
Chromaticity coordinate system z,y and z that does not include the luminosity. However, our tests
showed that better interpolations were obtained with the Tristimulus values X, Y and Z, so they
were used in this work.

Assume that for the (0,0) pixel, G and B are available while X, Y and Z can be obtained by
interpolating the X, Y and Z values of the neighbors. Dividing each line in (7) by its respective
interpolated Tristimulus value creates a linear transformation for X and Y based on (8) and (7)
which yields

TreR+TyeG +Tye B TryR+T,G + Tty B

and thus,

Rij _ i] I’ .. : - .. (9)

In the sixth method, Xgp and Yo are estimated as simple averages of X;; and Y;;, respectively,
of the eight immediate neighbors, and then substituted in (9) to obtain RS,.

In the seventh and last method, we assume that X, Y and Z are quadratic functions of the pixel
coordinates ¢ and j, and thus, similarly to (3),

- 1 1
Xoo = 2 (Xo1 + X0+ Xo,—1 + X_1) — 1 Xu+X,10+X 0,1 +X200) (10)

Yoo is obtained similarly, and then substituted in (9) to get RJ.

Clearly, similar equations to (9) can be obtained for the B and G colors. One important point
to note is that for cameras with the RGBG arrangement, the Green color has redundancy within
a color pixel. Thus, for the raw data, a software correction of G similar to that discussed in [4] for
the split pixel hardware correction is probably a better solution.



2.3: Performance measures

We used five different measures to compare the goodness of fit of the seven SC methods Rl, e R
described above to a given color image. In each case, we analyzed the whole image and calculated
the absolute errors incurred when using the estimate rather than the actual value of R. Denoting
by 7, j the pixel coordinates, 1 < i,j < N (where N x N is the size of the pixel array), we denote,
for a specific SC method R*,

E}; = |Ri; — Rjj|

The first measure, M7, calculates the average of E,’“J over the whole image:
My = — Ef
1™ N2 Z i
1<ij<N
The second measure, M,, calculates the average relative error:

1 EF
M2 = —2 4

1<iyen T
M3 calculates the average error, relative not to the R value but to the total luminosity of the pixel:

1 E};

N2 15;151\7 Rij + G,’j + Bij

M; =

M, and My are based on our observation that the same absolute difference in the value of R is more
noticeable to the eye for lighter pixels than for darker pixels, and the measure should reflect this.
Since lighter pixels are characterized by higher values, we divide the error by the complement of the
pixel value or the luminosity value, i.e.,

1 EE

My = — 9

e Z 255 — Ry;

1<i,j<N
and i
1 B,
My = — y
N2 IS;J'SN 765 — (Ri; + Gij + Bij)

Clearly, if all faulty pixels are corrected perfectly, each M; will be equal to zero.

We analyzed many digital color images in which we calculated the five measures for the seven
SC methods. In almost all cases, My, My and M5 were consistent in the way the methods were
ordered from best to worst. As demonstrated in the next section, using My and M3 resulted in a
different ordering among the methods, sometimes almost reversed to that generated by the other
three. This leads us to believe that either of the three measures - My, M, or M5 can be used when
selecting an SC' method. Some of our numerical results are presented in the next section.

3: Numerical Results

To demonstrate the differences among the different correction methods we experimented with a
large number of digital color images, including landscapes, groups of people, and pictures of earth
taken from space by NASA.

We based the ordering of the methods on the measure M; - the average absolute error over the
whole image, although M4 and Mj5 resulted in the same ordering.



Some general statements which apply to almost all the images we have analyzed are:
(a) Methods which include all three colors’ information are better than those that use only the red
subpixels.
(b) Using X, Y and Z is better than using the ratios R/L, G/L and B/L.
(¢) Using only eight immediate neighbors is better than using 24 neighbors, which may be too far
away from the faulty pixel to provide any useful information.
(d) Using interpolations which assume quadratic functions are better than simple averages.

Figure 1 shows the analysis results of an image of the Golden Gate bridge. Method R7 which
fits a quadratic function to X, Y and Z is the best with regard to the measures M;, My and M;,
while B3 is the worst. Figure 2 shows the frequency distribution of the error size for three out of

e L M | M | M | My | Ms |
R" || 0.8795 | 0.7677 | 0.1078 | 0.0050 | 0.0021
R5 || 0.9835 | 0.6684 | 0.0914 | 0.0056 | 0.0023
R? || 1.2177 | 0.2460 | 0.0344 | 0.0073 | 0.0030
RS || 1.4789 | 0.7310 | 0.1015 | 0.0085 | 0.0035
R* || 1.7026 | 0.6342 | 0.0851 | 0.0100 | 0.0041
R || 3.0886 | 0.1944 | 0.0256 | 0.0198 | 0.0078
R? || 4.6422 | 0.5744 | 0.0753 | 0.0300 | 0.0119

Figure 1. Golden Gate Bridg e - Analysis results.

the seven methods, and its conclusions are similar to those obtained from Figure 1.
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As a comparison, similar results are presented in Figures 3 and 4 for the shown picture of flowers.
Although the order of methods is not exactly the same as for the first picture, the best two and the
worst two are the same.

To demonstrate the visual effects of subpixel errors and of the different SC' methods we used
an image of horizontal bars in which we inserted 10% random defects in the red subpixel and then
corrected them using either B! or R7. The four different images appear in Figure 5 (in grayscale).
As can be seen, R! which uses only the red subpixels of the neighbors does not get rid of all the
errors, while R which uses all three colors results in an image which is visually identically to the
original.



| [ [ M | My | My | M

R7 || 1.0923 | 0.4090 | 0.1706 | 0.0303 | 0.0046
R5 || 1.8076 | 0.3711 | 0.1535 | 0.0376 | 0.0063
RS || 2.0570 | 0.3965 | 0.1649 | 0.0415 | 0.0074
R* || 3.2570 | 0.3505 | 0.1442 | 0.0515 | 0.0107
R? || 4.4379 | 0.1479 | 0.0600 | 0.0929 | 0.0178
R || 10.5967 | 0.1033 | 0.0419 | 0.3265 | 0.0502
R3 || 16.8580 | 0.3186 | 0.1298 | 0.6140 | 0.0883

Figure 4. Flowers - Analysis results.

Original image 10% errors in R Corrected with R'  Corrected with &7
Figure 5. Horizontal bars.

In addition to the analysis of real pictures, simulations with common pixel color and intensity
distributions have been done to study what are the hard to fit type patterns. Figure 6 shows plots
of the R values in a 3x3 color pixel set for a very difficult to interpolate condition. In this figure,
a color step crosses the z=1 edge, going from an R:G:B ratio of (0.4,1.0,0.9) for X=0,-1 to a ratio
of (1.0,1.0,0.5). The luminosity also changes, with R = 102 (z=1), R=25 (x=0,-1) but with a
sudden spike of R=255 at the center (0,0) point where the R subpixel is dead. The R! interpolation
(traditional averaging) gives a very poor result (R=54) while the CIE-based R® yields R=171 and
R returns the true value of 255.

Hence, even with very sudden changes in both color and luminosity, R returns exactly the correct

—~

value. The only places where R appears to give significant deviations are when the color shifts
rapidly or randomly across all the 3x3 pixels, combined with sudden luminosity changes. That is
probably a very rare condition in actual images.

4: Conclusion

We have investigated in this paper seven software correction algorithms that interpolate a faulty
color subpixel based on its nearest neighbors. We concluded that correction schemes which use
a quadratic interpolation formula based on the CIE color coordinates of the Tristimulus values
(X,Y, Z) yielded the best results. These fault correction schemes, based on using the color informa-
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Figure 6. Correcting the R value in a 3x3 pixel set.

tion, provided significantly better correction than those based on just the interpolating the missing
simgle color data.
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