*

A Self-Correcting Active Pixel Camera

Israel Koren, Glenn Chapman! and Zahava Koren

Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003
E-mail: koren@ecs.umass.edu
 School of Engineering Science
Simon Fraser University, Burnaby BC, Canada V5A 156
E-mail: glennc@cs.sfu.ca

Abstract

Digital cameras on-a-chip are becoming more common (e.g., [4, 5]) and are expected to be used in
many industrial and consumer products. With the size of the CMOS active pizel-array implemented
in such chips increasing to 512 x 512 and beyond [5], the possibility of degradation in the reliability
of the chip over time must be a factor in the chip design.

In digital circuits, a commonly used technique for reliability or yield enhancement is the incorpo-
ration of redundancy (e.g., adding redundant rows and columns in large memory ICs). Very limited
attempts have been directed towards fault-tolerance in analog circuits, mainly due to the very high
level of irregularity in their design. Since active pizel arrays have o regular structure, they are
amenable to reliability enhancement through a limited amount of added redundancy. The purpose of
this paper is to investigate the advantages of incorporating some fault-tolerance methods, including
redundancy, into the design of an active pizel sensor array.

1: Introduction

In remote, hard to reach and dangerous environments like outer space, high radiation areas, mine
and military action fields, digital cameras offer an important ability to image the scene at low cost
and risk. However, these same locations put much more stress on the camera system (through
radiation, heat, pressure) possibly leading to partial failures. At the same time, the location makes
it difficult or impossible to replace failed imagers. Hence there is considerable advantage to creating
fault-tolerant, self-correcting imagers.

Traditional CCD image chips are very susceptible to failures. Since pixel data is passed down
columns through other pixels, this means that single pixel failures can lead to loss of whole columns
above some point. As was noted in [1], Active Pixel Sensors (APS) are CMOS type imagers that
involve row and column addressed pixels and thus offer more flexibility to apply redundancy. The
size of APS is increasing to 512x512 pixels and beyond [4]. Moreover, their area is increasing as
several commercial APS are approaching standard 35mm film sizes (35x23.3mm) [2, 6]. Indeed
it is notable that all these larger designs are APS rather than CCD devices, showing their better
scalability in area. Such large areas and high pixel count devices make the possible degradation of
their reliability over time a factor that must be taken into account in the chip design.

* This work was supported in part by JPL, under contract 961294, and by NSF, under contract MIP-
9710130.

This paper explores various ways of creating self-correcting imagers, first with a software tech-
nique, then with a hardware modification of the APS design and finally with a combination of the
two. The APS described in [1] used a pixel split in half with the addition of laser links/cuts to
design a large area 40x30 mm device with good yield. The current paper demonstrates that a
modification of that design, combined with some off chip signal processing, can make for a robust
self-healing imaging chip.

1]]]]
3] 08 |
2 2
z Pixel Array 3
Jo)
x X 06} |
Modified design with HC and SC —=—
Column Amplifiers 04 f Original design with SC ——
MUX + A/D Converters 0 1 2 3 4 5
Time

Figure 1. The digital camera-on-a-c hip. Figure 2. Reliability of a512x 512 array as
afunction of time (A = 2-107%).

The block diagram of a digital camera-on-a-chip including an M x M pixel array is shown in
Figure 1. As the APS area and number of pixels increase, the area of the pixel array becomes
large relative to other chip sections (i.e., the Amps, Mux, ADC and row select - see Figure 1).
In the 35mm film example [1], the pixels constitute over 90% of the chip area. Hence, as a first
approximation the reliability analysis in this paper will concentrate on the pixel array.

Due to the large number of pixels, the device reliability is expected to deteriorate rapidly, and
incorporating some fault-tolerance into it is therefore justified. Two fault-tolerance methods, one
software based and the other hardware based, are described in Section 2. Sections 3 and 4 provide
further details on the hardware and software correction methods, respectively. A detailed analysis
of the two methods and some of our numerical results are presented in Section 5, and Section 6
concludes the paper.

2: Fault model and fault-tolerance methods

The fault model we are using here assumes that each pixel has faults arriving according to a
Poisson process with a rate of A faults per unit time, and that the pixels are statistically independent
with regard to faults. Hence, the probability of a given pixel to be fault-free at time ¢ is e~** and the
probability of the whole array to be fault-free at time ¢ is e =™ *Xt This last expression represents the
array reliability when no fault-tolerance exists, and it deteriorates very fast, even for small failure
rates \, due to the large value of M?2.

A preliminary study was reported in [3], evaluating the benefits of adding redundant rows and
columns to the pixel array. Unlike in memory arrays, a spare row (column) of pixels can only
replace a boundary row (column) rather than any faulty row (column). Consequently, this technique
has limited capabilities and is satisfactory only for long duration missions and high image quality
requirements. We suggest here, therefore, two other fault-tolerance techniques. In [3] we called an
M x M array “acceptable” if every one of its m xm sub-arrays had at most one faulty pixel, where m
is a parameter determined by the image quality requirements. The larger the value of m, the smaller
the number of faulty pixels allowed, and the higher the quality of the digital image. In this paper,
we require that m be equal to 2, which is equivalent to saying that all eight immediate neighbors
of a faulty pixel are fault-free. If this is the case, the value of a faulty pixel can be replaced
by some combination of the values of the eight pixels surrounding it. This method is especially
suitable for digital images, since clearly a pixel value is correlated to that of its immediate neighbors
(although the exact nature of the correlation depends on the type of images being photographed).
This method is software based and does not require any hardware support. We denote it by SC
(Software Correction). The reliability of an M x M pixel array at time ¢ is, therefore, defined now
as the probability that every 2 x 2 sub-array has at most one faulty pixel, and the whole array can
thus be corrected using SC. This probability is unfortunately, very difficult to calculate analytically,
and we calculate it therefore, using Monte-Carlo simulation.

The lower curve in Figure 2 shows the reliability of a 512 x 512 pixel array employing the software-
based scheme as a function of time for a failure rate of A = 2 - 10~%. This curve shows that even
with the use of the SC scheme, the reliability still deteriorates quite rapidly. We therefore suggest
in what follows, an additional, hardware based, fault-tolerance technique.

A recent implementation of a novel defect-tolerance technique which was intended for yield im-
provement [1] can be adapted to provide fault-tolerance for reliability enhancement. The basic
approach splits the photodiode in each pixel into two half-size photodiodes (explained in the next
section) and duplicates the readout transistors so that one photodiode can be used even if the second
one is defective. After testing the entire pixel array under full dark and full light images, the pixels
with half intensity can be identified and their value can then be multiplied by two. We denote this
method by HC (Hardware Correction,).

A pixel in this new design is considered faulty if both its halves are faulty, and non-faulty if at least
one half of it is operational. A faulty pixel can still be software-corrected by using a combination
of its eight non-faulty neighbors. The combination of both fault-tolerance methods (SC and HC)
increases the reliability of the array significantly, as can be seen in the upper curve of Figure 2.
In this and the remaining figures, “original design” refers to the design in which the pixel is not
divided into two, and thus, only SC'is possible. The “modified design” refers to the design in which
every pixel is divided into two, and both HC (if only one half of the pixel is faulty) and SC (if both
halves are faulty) are used. The reliability values in the upper curve in Figure 2 were calculated
using A = 2-10~* for a half-pixel (i.e., assuming, conservatively, that the failure rate for a half-pixel
is the same as the failure rate for a whole pixel in the original design). The reliability of the new
design decreases only when the mission time is extremely long (compared to the original design).
The next two sections provide further details regarding the HC' and the SC' techniques.

3: The hardware correction method

Figure 3 shows the schematic of the a single APS cell, with the split diodes, while Figure 4
shows the resulting layout. In the APS, the photodiodes charge the gates of the readout transistors
(M2.1, M2.2). When the row select transistor (M3) is activated, current flows through the readout
transistors to the column output. The diodes are then reset to a precharged level. Since both
readout transistors (M2.1, M2.2) are in parallel on the same column output line, this redundancy

Vdd Col In Vvdd

Photodiode P1 Photodiode P2
Reset Transistor M1
Readout Transistor M2.1 Readout Transistor M2.2
Pix_Res
Row_Sel
Row Select Transistor M3
\ 4
V Pix Reset

Col Output
Figure 3. The modified design of the pixel cell.

requires no additional circuitry at the output and less area compared to making two photodiodes
that are read separately.

By splitting the photodiodes and readout transistors in an APS cell in half, the cell becomes much
more reliable. Yet the cost in devices behavior is small - only a 6% reduction in cell photodiode
area which results in a correspondingly lower sensitivity to light.

Since most of the cell area is taken up in the diodes and readout transistors let us examine the
most probable failures in these components. Generally there are three possible failure modes for a
photodiode/readout: (1) Low sensitivity (something covering part of the photodiode, leakage in the
photodiode, poor transfer characteristics of the transistor etc). (2) Stuck low: the readout transistor
passes no current (photodiode shorted, gate to photodiode path cut, transistor stuck off). (3) Stuck
high: the readout transistor is always on (photodiode always charged, transistor stuck on).

Case (1) (low sensitivity) is actually just a variation on the general problem of pixel sensitivity
variation across the device. In a single APS, the stuck cases (2,3) become dead pixels. However, in
the split pixel design there is an important advantage. If only one half pixel is faulty, good data
can still be extracted from the pixel. There are then five possible cases:

(1) Both pixels active: full pixel sensitivity (0.0-1.0 output range) (2) one half stuck low: half
pixel sensitivity (0.0-0.5 output range) (3) one half stuck high: half pixel sensitivity (0.5-1.0 output
range) (4) both halves stuck low: dead pixel (output constantly near zero) (5) both halves stuck
high: dead pixel (output constantly near 1).

It is important to recognize that all these faults can be identified with the previously mentioned
two simple and common tests done to calibrate the sensor. It is standard practice to take a dark
field image (imager without light) to identify base noise levels for subtraction and a light field (fully
illuminated) image to calibrate sensor sensitivity. The light field image will identify low sensitivity
pixels (1), half stuck low (2) and fully dead pixels (5). While the dead pixel data cannot be recovered,
the other two would be taken care of in the sensitivity adjustment calculations. Indeed the half
stuck is just a simple case of multiplying by 2.

The half stuck high (3) and fully stuck high (4) pixels are identified from the dark field. In
the full stuck case the dark field subtraction sets the pixel to 0. In the half stuck case the dark
field subtraction reduces the pixel to the half sensitivity case. These really are calibration related
corrections that are best done by the post image processing, as with the software correction.

This design results in a cell where with no additional active circuitry but yet fails only under the
following conditions. In the cases where both photodiodes or both readout transistors are faulty

Col_in Col_out Double Exposure Ring V Pix Reset

7
[] e B ey 2 v

1
D N4 . Contact D Meall B8 Metal2

Figure 4. The layout of the modified pixel cell.

then the cell is unreadable as noted. The later is a rare event since on the basis of area, 79% of
the device is the photodiode and only 4% is used by the readout transistors. The other 17% of the
cell is the remaining circuitry almost all of that is the control lines, which are less likely to fail after
production. Only 4% of the cell area can be considered common active control circuitry (the row
select and reset transistors) which are thus likely to cause a common failure of the cell (affecting
the output of both halves).

In harsh environments it may be desired to remove even this small area of single failure point in
the split cell. This can be done by making both reset and row select transistors separate devices for
both halves, as shown in Figure 5. For the reset, each diode has a separate transistor (M2.1 and
M2.2). The two row select transistors in parallel now form separate current feeds to the col_output
line. This takes another 4% of the pixel cell area, and thus reduces the light sensitivity accordingly.
This would result in a cell that is very robust against failures.

The modified pixel cell has thus a very small probability of a total failure during operation, and
even those failures are easily detectable and correctable with the SC scheme.

4: The software correction method

We consider in this paper three forms of software corrections. In the first, SC!, the value of the
missing pixel is replaced by the arithmetic mean of its eight neighbors. In the second, SC?, it is
replaced by the arithmetic mean of its four immediate neighbors only. The third approximation,
SC?3, is based on fitting a quadratic function to the nine pixels in question.

To be more specific, we use the following notations. We denote the coordinates of the faulty pixel
by (0,0), and those of its eight neighbors by (0,1), (1,1), (1,0), (1,-1), (0,-1), (-1,-1), (-1,0), (-1,1).
We denote by f; ; the value of the pixel whose coordinates are (i,j) (i, = —1,0,1). We then
denote by f¥ the estimated value of the faulty pixel as obtained by SC* (k = 1,2,3).

Vdd Col In Vdd

Readout Transistor M2.2 Photodiode 1 Photodiode 2

J_J_ Readout Transistor M2.2
Readout Transistor M2.1

Pix_Res O—

Reset Transistor M1
Row_Sel
Row Select Transistor M3.1

v Row Select Transistor M3.2
V Pix Reset

Col Output

Figure 5. The further modified pixel cell.

Thus,
1
foo = 3 (for + fi1 + fio + fi,—1 + fo,-1 + f-1,-1 + fo10+ f-1,1)

and .
fgo =1 (for + fio + fo,—1 + f-1,0)

To obtain f3,, we assume that the faulty pixel and its eight neighbors obey a quadratic function
fzg,y = ago + a10% + ao1y + a1y + azr’ + aeey” + anz’y + arazy’

Substituting the given f;;’s for (i,j) # (0,0) we have eight linear equations in the eight unknown
coefficients ay;. Since f3; = ago, we need to solve only for agg, which results in

foo= % (for + fio+ fo,—1 + f-1,0) — i (fu+fi—1+foa,-1+Ff-11)

Note that all three estimates are linear combinations of the eight neighbors of the faulty pixel.
In SC? and SC3, the four immediate neighbors get higher weights than the other four. The effects
of HC and SC' on the image quality are analyzed in the next section.

5: Image quality analysis and numerical results

Both self-correction methods decrease to some extent the quality of the image obtained by the
camera. The SC technique replaces the exact value by a linear combination of the neighboring
pixels (which may or may not be close to the correct value). The HC method which multiplies
the reading of half the pixel by 2 reduces the signal resolution by one bit. We next compare the
image quality reduction in the original design (which enables only software correction) to that of
the modified design (which attempts hardware correction first and software correction second).

We denote by Nge and Ngg, the number of pixels that are corrected by SC and HC, respec-
tively, and by Egc and Egc, the average errors caused by these two methods, per image.

Denoting by QR the quality reduction of a corrected image, we define QR as the overall average
error in pixel value. Clearly, the lower the value of QR, the better the design. QR can be obtained

by
1 — —
QR = e (Nsc Esc + Nuc Enc) (1)
where M? is the number of pixels per image.
Since the original design (O.D.) has only SCs and the modified design (M.D.) has mostly HC's

and very few SCs, (1) becomes

QR(O.D.) = % Nsc(0.D.) Esc)
and .
QR(M.D.) = o (Nsc(M.D.) Esc + Nuc(M.D.) Enc) (3)

We now need to obtain estimates for the parameters Nsc, Ngc, Esc, and Egc for both designs.
(Note that while Nsc and Ny depend on the design, Esc and Egc do not.)

Denoting by p = e *! the probability of a pixel in the original design (or a half-pixel in the new
design) to be fault-free at time ¢ and by ¢ = 1 —p the probability of a pixel (or a half-pixel) failing
by time ¢, Ngc and Npgc can be closely approximated (for small values of ¢) by

Nso(0.D.) = p*qM?
Nso(M.D.) = (1 - ¢*)*¢° M?
Nyc(M.D.) = 2pgM?
and thus .
QR(0.D.) = p°q Esc (4)
and _ _
QR(M.D.) = (1-¢*)%* Esc + 2pq Enc ()

For small values of ¢, ¢? is close to 0 and p is close to 1, and thus QR(M.D.) < QR(0.D.) if
and only if 2Egc < Esc. Denoting by « the ratio Esc/Enc, the modified design has a better
image quality than the original design if and only if a@ > 2, or the average error due to software
correction is at least twice that incurred by hardware correction.

The average error due to HC' can be easily quantified. The estimate, denoted fZ&¢, is obtained
by multiplying the value of half the pixel by two, and thus, its last bit may be incorrect. Therefore,

HC _ foo if the last bit of foo is 0
0 =\ foo—1 if the last bit of foo is 1

Denoting by Egc the error caused by HC when correcting a single pixel, we have

B — 0 if the last bit of foo is O
HC =\ 1 if the last bit of foo is 1

Assuming that the last bit of the pixel’s value is equally likely to be a 0 or a 1
Epc =05

It is more difficult to calculate the errors caused by SC, since they depend on the correlations
among neighboring pixels. We denote the error incurred in a single pixel due to using SC* (k =
1,2,3) by

E&c = |foo — fo0l

Quality Reduction

00012 T T T T T
Original design with SC ——
0.001 | Modified design with HC —=—]
0.0008 | .
g 01
0.0006 | 1 35
g
1%
0.0004 D S T S S
005
0.0002 | .
0 1 1 1 1 1
0o 1 2 3 4 5 6 0
Ratio of errors(alpha) Error size

Figure 6. Quality reduction of the two Figure 7. The distrib ution of the error
designs as a function of the weight size.
coefficient o« (A = 2-107%, ¢t = 2).

and the average error over the whole picture is denoted by Ego. Esc can, at this point, only
be calculated using simulation or by analyzing actual digital images. However, as our numerical
experiments (reported next) show, it is very likely that Esc > 1. Thus, in most cases, @ > 2 and
the modified design has a lower image quality reduction and should be preferred over the original
design.

Figure 6 illustrates the calculation of QR for the two designs, as a function of the ratio a. As
can be seen, the new design has a better image quality when a > 2.

Since Eg¢ is very difficult to calculate analytically, we performed several experiments in which
the average SC error was calculated for different pictures (all in gray scale) and the three SC
methods. The pictures analyzed were divided into two main categories: portraits of people, and
images of earth from space as taken by JPL (www.jpl.nasa.gov/radar /sircxsar).

The portraits had relatively low average SC errors, which varied between 2 and 6 (for a maximum

pixel value of 255). The order of the errors was: Eaq < Eve < Ege which indicates that the four
immediate neighbors should have a higher weight when determining the value of the center pixel.
A similar conclusion is reached when observing the error size frequency distributions. One such
distribution for a portrait, is depicted in Figure 7.

The results for images of landscapes were slightly different. The average SC' errors tended to
be much larger (between 10 and 20), and although in some cases SC® was better, there were some
images for which SC? was best.

To illustrate the difference in image quality between the HC' and SC methods we show in Figure
8 a small checkerboard with simulated faulty pixels (see part (a)). Figure 8(b) shows the image after
HC, while Figures 8(c) and 8(d) show the same image after SC! and SC?, respectively. Clearly,
HC results in a much better corrected image than both SC methods. If SC' is applied in addition
to HC, an almost perfect image is obtained.

(d)

Figure 8. Comparing the HC to two SC schemes: (a) Uncorrected image, (b) Cor-
rected with HC, (c) Corrected with SC*, (d) Corrected with SC3.

6: Conclusions

Hardware and software based fault tolerance techniques for an active pixel array have been
presented in this paper. The hardware based method involved a redesign of the pixel cell so that
the probability of a total pixel fault is greatly reduced. The hardware and software based methods
have been analyzed, demonstrating that in most cases the combination of the hardware and software
based methods results in a higher image quality than that of the software based technique alone.

References

[1] G. Chapman and Y. Audet, “Creating 35 mm Camera Active Pixel Sensors,” Proc. of the 1999
IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 22-30,
November 1999.

[2] EOS-30 review, sensor page, at www.dpreview.com, July 2000.

[3] I. Koren and Z. Koren, “Incorporating Fault-Tolerance into a Digital Camera-On-A-Chip,”
Proc. of the 1999 Microelectronics Reliability and Qualification Workshop, pp. 1-3, Pasadena,
Oct. 1999.

[4] S-Y. Ma and L-G. Chen, “A single-Chip CMOS APS Camera with Direct Frame Difference
Output,” IEEE Journal of Solid-state Circuits, Vol. 34, Oct. 1999, pp. 1415-1418.

[5] B. Pain et al., “A Low-Power Digital Camera-on-a-Chip Implemented in CMOS Active Pixel
Approach,” Proc. of the 12th VLSI Design Conference, pp. 1-6, January 1999.

[6] Siliconfilm at www .siliconfilm.com, July 2000.

