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INTRODUCTION

As IC technology advances, the minimum feature size of VLSI circuitry continues to
decrease. The smaller feature size of transistors has the potential of speeding up the
circuits and increasing the yield of the manufactured chips. The latter is due to the
smaller silicon area of the chip resulting in a lower average number of defects per chip.
Manufacturers of existing VLSI chips also attempt to take advantage of the possible
reduction in feature size by scaling (shrinking) the existing designs of their VLSI chips.

The effect of scaling the physical dimensions of VLS circuits on their electrical
characteristics (and consequently on their speed of operation) has already been studied
(e.g., Saraswat and Mohammadi 1982). The effect of scaling on the yield has been
studied until now only for special cases like interconnection buses (Stapper 1984, Koren
et al 1987). The subject of this paper is the effect of scaling on the yield of more general
VLSI circuits.

The analysis of the effect of scaling on yield is complicated by the variety of types
of manufacturing defects that can occur in VLSI circuits. These include dielectric
pinhole defects, photolithographic defects, junction leakage defects etc. The number
of these defects clearly depends on the physical dimensions of the chip. However, the
dependence of one type of defects on the physical dimensions does not necessarily
equal that of another type. Thus, the various types of manufacturing defects have to
be considered and the effect of scaling on each of them has to be analyzed separately.
Only then can the total effect of scaling on yield be determined.

In this paper we consider several types of manufacturing defects and analyze the
possible changes in their effect on the yield, when scaling of a VLSI circuit is performed.

YIELD ANALYSIS

Defects may occur in the different steps of the manufacturing process. Some of these
defects may result in missing patterns or open circuits while other defects may result in
extra patterns or short circuits. Since these defects happen in separate manufacturing
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steps, they may have different statistical characteristics and can usually be considered
statistically independent (Stapper et af 1983). This leads to the following general
\

expression for yield,
m

Y =]]v

is a Poisson distribution whose parameter 1 is not a constant but a random variable.
This allows the modeling of defect clustering, a phenomenon that has been observed
in practice. A convenient choice for the distribution function of X is the Gamma
function resulting in a Negative Binomial distribution (for the defects) for which the

yield Y; is given by, .

4_\“ —ay

Y= (1 + )

a;
where 1 is the average number of circuit faults occurring in step 1, and ¢, is the
corresponding clustering parameter.

Note that }; is defined as the average number of circuit faults rather than manu-
facturing defects. The reason for this is that not all manufacturing defects result in
faulty circuits which affect the yield of the chip. For example, a open-circuit type pho-
tolithographic defect occurring in a conductor can be harmless if its size is smaller than

The average number of manufacturing defects is usually defined as d; A4 where d;
denotes the average number of defects per unit of area and A is the chip area. To
calculate the average number of circuit faults we define a probability 6; that a defect
in step 1 will result in 2 faulty circuit and thus, X; = 8;d; A. The product Ab; is also
called the critical area for delects occurring in step 1 (Stapper 1984, Ferris-Prabhu
1985) and we denote it by A). The yield is therefore given by,

i)y e
Y; = (l + dig))
o

The probability that a defect will cause a circuit failure may be constant for one
type of defects and may depend on the relative size of the defects (compared to the
physical dimensions of VLS] patterns) for a different type of defects. Hence, to study
the effect of scaling on the yield we analyze in what follows each of these two cases
separately. We consider first dielectric pinhole defects for which the above probability

is constant and then photolithographic defects for which this probability is a random
variable.



Catastrophic Yield Loss Models 93

Dielectric Pinhole Defects

The size of a dielectric pinhole defect is usually very small (compared to the size of
VLSI patterns) and the probability that it will cause a circuit failure is simply the
ratio between the area of the overlapping region to the total area A. If the physical
dimensions of all patterns within the chip are scaled by the same factor a, i.e, ideal
scaling, then the above probability remains unchanged.

Consequently, the effect of scaling on the critical area A{) = A + §; for pinhole
defects is determined only by the change in the area A. Note that this simple depen-
dence holds for any other manufacturing defects for which the probability that they
will result in circuit faults is constant and does not change with scaling. For ideal
scaling with @ < 1, the area of the chip reduces to a?A resulting in a similar reduction
in the critical area As") which in turn may result in a higher yield ¥;.

The final effect of scaling on the yield Y; depends also on any possible change
in the clustering parameter «,. The dependence of a; on the area has been studied
by Stapper (1986) and experimental data have shown that the clustering parameter
can either decrease or increase when the chip area decreases. Any increase in the
clustering parameter will increase the yield of the chip and vice versa. Combining this
with the expected reduction in the critical area, we may conclude that if &, increases
with scaling (a < 1) or remains unchanged, the yield Y; due to dielectric pinhole
defects will increase. However, if o; decreases with scaling, then the final effect of
scaling on Y; can be in either direction.

There is a different type of dielectric pinhole defects whose average number is
proportional to the length of one conductor crossing over a second conductor. In this

case,
Y, = (1 + M)
a;

where d; is the average number of defects per unit of length (instead of unit of area)
and ! is the length of the overlapping region. Again, the probability that such a defect
will cause a circuit failure is constant and the final effect of scaling on the yield due to
this type of defects is similar to the effect of scaling on the yield due to the previous
type of "area” pinhole defects. The only difference is that ! is reduced by the scaling
factor a rather than by a?.

Photolithographic Defects

The situation is different when photolithographic defects are considered. Here, the
defects have a randomly distributed size which is comparable to that of VLSI patterns.
Therefore, the probability that such a defect will cause a circuit failure depends on
the exact shape of the pattern and its dimensions relatively to the size of the defect.
Hence, when scaling a given pattern (with a < 1), less photolithographic defects can
occur in the smaller area on one hand, but smaller defects may now cause a circuit
failure on the other hand. The area A decreases to a?A but the probability &; may
increase. The final change in their product (i.e, the critical area) depends both on the
specific given pattern and on the distribution of the defect size.
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For convenience, we adopt the assumption made by Ferris-Prabhu (1985) and Stap-
per (1984) that a defect is circle shaped and we denote its diameter by z. Experimental
data on defects in many wafers lead to the conclusion that the diameter = of a defect
has a density function f(z) which increases as z? up to the mode z, of the distribution
(i.e., the value of z for which the density function is maximal) and then decreases as
1/zP up to a maximum value of z,y, i.e.,

cx?/zit! if0<z<z,
[(z) = cxP~1/zP ifz, <z<zpm
0 if > xpr

where ¢ and p are not necessarily integers but can be real numbers and the constant
¢ for p# 1is given by (Ferris-Prabhu 1985),

¢=(g+1)(p—1)/[(¢+p) — (¢+ 1)(zo/z0)""|

Data gathered through many experiments showed that ¢ ~ 1 and p =~ 3 with "typical”
values for the latter between 2.85 and 3.1 (Stapper 1984).

With defects of size comparable to that of many VLSI patterns, the probability
that a defect will result in a circuit failure is a random variable rather than a constant.
We define therefore, the critical area for defects of diameter z, as the area in which
the center of a defect (of diameter z) must fall in order to cause a circuit failure. We
denote this critical area by A(z) and compute its expected value A, using,

o]

A, = / A(z) f(z) dz

[

Note that we omitted the subscript ¢ to simplify the derived expressions.

Expressions for the critical area A(z) have been derived by Stapper (1984) and
Ferris-Prabhu (1985) for a number of long conducting lines on a chip. For these long
lines the width w of a conductor and the spacing s between two adjacent conductors
are very small compared to the length L of these conductors; a fact that simplifies the
derivation of an expression for A(z). In what follows we analyze two basic geometrical
patterns that can be found in ordinary VLSI designs and derive expressions for their
critical area. Most VLSI layouts contain these basic patterns and analysis of these
allows us to estimate the effect of scaling on their critical area.

Consider first a conductor of length L and width w as shown in Figure 1. Assume
that an open-circuit defect will cause the conductor to fail if at any point along the
conductor, a width of § (or less) of material is left. To simplify the expressions to
be derived for A(z) we set this minimum allowable conductor width & to be zero.
This simplification does not change the functional dependence of A(z) on the physical
dimensions of the conductor.

To derive an expression for the critical area A(z) for open-circuit defects (in the
conductor shown in Figure 1) note that this area consists of a rectangular part and
four circular-shaped parts. The rectangular part was shown (Stapper 1984 and Ferris-
Prabhu 1985) to have an area of size (z — w)L. The area of each of the four circular
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Figure 1: The critical area of a conductor of length L and width w.

parts is approximately equal to that of a triangle having a height of (z — w)/2 and a
base of b = {v/z2 — w? (see Figure 1). The area of the triangle is,

1
s (r— w)Vzr - w?
Finally, we obtain,

fz<w

0
LR AT

Notice that the critical area is a quadratic function of the defect size. Also note that for
L > w, the quadratic term in A(z) becomes negligible. Thus, for very long conductors
we may use the linear term only. An analogous expression for A(z) for short-circuit
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Figure 2: The critical area of an [ shaped conductor.

defects in a rectangular area of width s (between two adjacent conductors) can be
obtained by replacing w by s in the above equation.

Another very common pattern in VLS] layouts is an L shaped pattern, depicted
in Figure 2. As is evident from this figure the shapes and sizes of most parts of the
critical area are identical to those of the previous simpler pattern in Figure 1, except
that the critical area at the corner of the L has the shape of a quarter of a circle of
diameter x. The resulting approximation for the critical area is,

Atz = {

ifr<w

0
(z—w)(Ll+Lz)+-1’-(::—w)\/z’—w’+%m:’-—(§ -w)}?  ifr>w

The expression for the critical area in this case is very similar to the one for the
conductor in Figure 1 and again, if (Ly + L2) » w, the linear term in A(z) is the
dominant one.

Common VLSI layouts consist of several patterns of the shapes shown in Figures
1 and 2, in different sizes and orientations. Consequently, the exact expression for
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the critical area of one layout will be different from that of another layout. However,
we may still analyze the possible effects of scaling on the critical area of an arbitrary
layout by studying the effect of scaling on certain terms which may appear in the
expression for the critical area.

Generalizing the results presented by Stapper (1984) we can conclude that the
expression for the critical area of a layout will be a linear combination of the expressions
{or the critical areas of its components (i.e., the basic geometric patterns). Hence, we
may expect to find in the critical area expression for any general VLSI layout, a linear
term which will usually be the most dominant one. Analysis of this term can indicate
the nature of changes in the critical area that will occur when scaling is performed.

Even the analysis of the linear term only is not trivial since the exact form of the
corresponding expression for A, depends on the relative size of the width w of the
conductors (or the spacing s between two adjacent conductors if short-circuit defects
are considered) and the mode z, of the defect size distribution.

Let L denote some "equivalent length” of the general pattern (e.g-y Ly + L; for the
pattern in Figure 2). The precise value of L is immaterial; as will be shown next we
only have to know that it reduces to aL when ideal scaling is performed. The average
value of the critical area due to a linear term of the form (z — w)L is given by

A. =]°(z—w)L f(z) dx

Because of the special form of the defect-size density function f(x) we have theoreti-
cally, to analyze two separate cases, namely, z, < w and z, > w. In practice however,
it has been observed (Maly 1985) that z, is close to the maximal resolution of the
lithography process and therefore, only the case z, < w is of interest. For this case we
obtain

M p—1
[r—w)L o 4z

and for p > 2,

r—1
cL zP

A= oD (,,_1),, z)z”-z ["’

—(p- 2)—]

When scaling is performed, the resulting average critical area A: is calculated from
the above expression by substituting L and w by aL and aw, respectively, yielding

5 [6-10- -9

‘ cL LD B cla
T-Ne-w e poD(p- 2)1"

We may now compute the ratio A./A.,

Ao - (2P a(p-1) - (p-2) 24

[

A = (@2r -1 - (-2 '

I

For zp > w and p > 3 the ratio A./A, increases approximately as 1/a*~3. The exact
value of this ratio for three values of p, i.e., p = 2.8,3 and 3.2, is depicted in Figure 3
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Figure 3: The critical area ratio in the case of z, < w for different values of p.

for w/zp = : Very similar curves were obtained for many other values of the ratio
w/zp. We may therefore conclude that scaling (with a < 1) results in an increase in
the expected value of the critical area which in turn reduces the yield.

To finally determine the effect of scaling on the yield due to photolithographic
defects, any possible changes in the clustering parameter a must be taken into account.
For large area VLSI chips the clustering parameter will in most cases decrease when
the area of the chip is being reduced. This will tend to lower the yield of the scaled
chip. The expected increase in the average critical area A, combined with the smaller

clustering parameter, will result in a lower yield (due to photolithographic defects) for
the scaled chip.

CONCLUSIONS

The exact effect of scaling on the yield of an arbitrary VLSI chip consisting of a variety
of different geometrical patterns can not be predicted. However, we may still draw
some important conclusions out of the analysis done in the previous sections. If the
number of photolithographic defects is larger than the number of pinhole defects, the
final effect of scaling on yield will mainly depend on the ratio A;/Ac for photolitho-
graphic defects. Consequently, as long as the scaled feature size is still larger than the
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mode r, we may expect a reduction in yield. Note that this analysis does not take
into account other factors, mostly fabrication related ones, which may influence the
final yield of the scaled VLSI design.
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