
A RECONFIGURABLE AND FAULT-TOLERANT
VLSI MULTIPROCESSOR ARRAY

ISRAEL KOREN

Department of Electrical Engineering
Technion-lsrael Institute of Technology

Haifa 32000, Israel

ABSTRACT

Multiprocessor arrays have the property of regularity, enabling
a low-cost VL81 implementation. However, multiprocessor
systems with a fixed structure tend to be error prone and
restricted to specialized applications, which makes them less
attractive to the semiconductor industry. Consequently,
reconfigurability and fault-tolerance are desirable features of a
multiprocessor array. A multiprocessor array with a flexible
structure can be adapted to many applications and may
restructure itself upon failure of a processor, to avoid using
faulty processors.

The objective of this work is to demonstrate the feasibility of a
multiprocessor array having these properties. An example of
such an array is introduced, and distributed structuring
algorithms for it are presented. A novel strategy for internal
testing and for identification of faulty processors is developed,
and the structuring algorithms are modified to accommodate
faulty processors.

INTRODUCTION

The current trends in the integrated circuit technology
wil l have a considerable impact on the way
multiprocessor systems are designed and implemented.
First, the decreasing cost of hardware components will
enhance the design of special-purpose multiprocessor
systems. 1.2 Second, the exponential increase in the gate
count per chip, which is expected to keep its current
pace for at least 5 to 10 years, wil l enable packaging an
increasing number of processors into a single VLSI chip.
Clearly, such packaging is preferred over using several
LSI chips when power consumption, speed, and
reliability are considered.

The new VLSI technology does have limitations that
should not be overlooked. The man-year effort when
designing a high-density VLSI chip is expected to rise
significantly, resulting in a substantial increase in
manufacturing cost. One way to reduce the expected
increase in manufacturing effort and cost is to design
regular multiprocessor arrays. Regular structures take
considerably less time to design and to manufacture. 1-3

Yet, even regular multiprocessor arrays may still be
unattractive to the semiconductor industry because of
their tendency to have restricted uses. A VLSI
multiprocessor array with a flexible structure is desirable
because it can be configured in several ways, which
increases the number of possible applications. Clearly,
some processors will not be used in several applications,
but this should not be considered a serious drawback;
on cost alone, processors will be the expendable
components in VLSI technology. 3

Another desirable feature of a VLSI chip is
fault-tolerance. Future improvements in the solid-state
technology and the maturity of the fabrication process
are projected to reduce the failure rate of a single
component. The failure rate predicted for high-density
VLSI chips however, is still larger that that of present
LSI chips because of the complexity of the VLSI chips.
Hence, the multiprocessor's proper operation must be
verified frequently. Unfortunately, this verification cannot
be achieved by external testing of the VLSI chip
because of the inability to access internal points; internal
testing (processors testing one another) for error
detection is therefore necessary. Moreover,
identification of faulty processors provides the ability to
tolerate certain faults and remain operational in the
presence of one or more faulty processors even with
some degradation in performance. When a fault occurs
in one of the processors, the faulty processor should be
identified and the array possibly restructured to avoid
the faulty processor being used.

The multiprocessor array, therefore, should be capable
of dynamic restructuring that takes place whenever a
faulty processor is identified. An array with such a
property is superior over a fixed-structure
multiprocessor, such as a binary tree, which is sensitive
to errors and in which a loss of a single processor
usually results in a system failure. The restructuring
capacity may also enhance larger chip areas
(wafer-scale integration 1) now prohibitive because of
impurities that exist in large wafer areas.

425 0149-7111/81/0000/0425500.75 © 1981 IEEE

The main objective of this paper is to demonstrate the
feasibility of a multiprocessor array with the properties
mentioned previously. As an example, we consider a
rectangular m x n grid (Figure 1). This grid may be
structured as a linear array, a square array, or a binary
tree. Not all processors will necessarily be used in each
of these configurations; however, in VLSl technology,
processors are the expendable components. The
transistor count of each processor in a special-purpose
VLSI chip is predicted to be approximately 1K to 10K,
and the projected complexity of VLSl chips is 1,000K
and over. Consequently, a grid consisting of 1,000 or
more processors will be feasible. In Figure 1, there are
mn cells in the grid; each cell is connected to its
immediate neighbors (N-neighbor, E-neighbor,
S-neighbor, and W-neighbor). The basic cell consists of
an application processor and a communication ~processor
(Figure 2). The application processor may be a
microprogrammable processor that can be programmed
by the customer and tailored to his or her special needs.
This paper focuses in what fol lows on the
communication processor, which is responsible for the
structuring of the multiprocessor array.

Four registers are defined within the communication
processor:

ID Register: Contains the row and column indices.

Mode Register: Indicates the cell's mode of operation.
Each cell can be either a processing element (PE)
participating in the processing in a given configuration or
a connecting element (CE) transferring data when
needed from N to S and E to W (and vice versa)
without performing any kind of processing.

Status Register: Stores the status of the immediate
neighbors. If the d-neighbor (the immediate neighbor in
the d-direction in which d is an element of {N,E,S,W})
either is faulty or does not exist, the cell is d-terminal.
In this case, no attempt to communicate with the
d-neighbor will be made.

Configuration Register (CR): Contains information about
the present structure, the level number of the cell within
the array (such as linear array or binary tree), and the
directions of the predecessor (D t) and sucessor (D o)
cells.

BASIC STRUCTURING ALGORITHMS

Since the multiprocessor system has no fixed structure,
structuring algorithms for the various configurations are
needed. First, structuring algorithms are presented that
are based upon the assumption that all processors are
operating correctly.

To achieve optimal use of a multiprocessor system,
most processing should be distributed rather than
centralized. Similarly, structuring algorithms should be
distributed. Such a property is essential if the system is
to operate in the presence of faulty processors.
Obviously, simplicity of the structuring algorithms is
desirable to reduce the chip area used for them and,
thus, increase the size of the array.

Structuring within the grid is done by distributing the
fol lowing type of messages:

M(structure code, level within structure, direction)

The header of the message M is the code of the desired
structure, such as LA for linear array, SA for square
array, and BT for binary tree. The level number within
the array indicates the position of the processor
receiving the message M in the array. The direction d (d
is an element of {N,E,S,W}) indicates the neighbor to
which the next structuring message should be
transmitted. Since changes in the direction of
transmission are necessary, the functions opposite (op),
clockwise (cw), and counterclockwise (ccw) are defined
a s :

1.

2.

op(d) equals S if d equals N; W if d equals E;
N if d equals S; E if d equals W

cw(d) equals E if d equals N; S if d equals E;
W if d equals S; N if d equals W

3. ccw(d) equals W if d equals N; N if d equals E;
E if d equals S; S if d equals W

Although packet transmission is used in structuring,
continuous connections are used in normal operation
because the predecessor and successor cells are
known. 4

Linear Array

To structure a linear array of size k on an m x n grid
(k <_ mn) the strategy depicted in Figure 3(a) is used. A
processor receiving a structuring message will transmit

426

either another structuring message or an
acknowledgment: a posit ive acknowledgment (ACK) if
the construct ion is complete and no more processors
are needed, or a negative acknowledgment (NACK) if it
is impossible to complete the construction. The
structuring process is initialized by transmit t ing a
message

M(LA, k, E)

to processor (0, 0), and its propagation t ime is of the
order O(k). If an acknowledgment message

M(ACK or NACK, LA, j)

is received from the Do-neighbor , the message

M(ACK or NACK, LA, j + 1)

is transmitted to the Dr-ne ighbor . When the negative
acknowledgment reaches the origin cell, the maximum
size of a linear array in the given grid is known.

Square Array

A structuring algorithm for a square array of size u x v
on an m x n grid (u _< m; v < n) is shown in Figure 4.
Each processor transmits the structuring message to
both its S(outh) and E(ast) neighbors. The distr ibuted
algorithm is initialized by a message

M(SA, u, v)

transmitted to processor (0, 0), and the propagation t ime
of the algorithm is of the order O(u ..I- v). Note that the
statement

if CR = SA, k, 1 then stop

prevents zetransmission of the same structuring
message, wh ich may otherwise occur because the
processors are not necessarily synchronized and the
message from the N(orth)-neighbor may be received
before or after the message from the W(est)-neighbor.

The idea of t ransmit t ing a message simultaneously in
two directions may also be used whenever a message is
to be broadcast among all processors, regardless of the
current configuration. A standard message

M(BRCT, command or data)

(BRCT stands for broadcast; the command can be clear,
test, etc.) can be used w i th a shorter propagation t ime
of the order O(m + n).

Binary Tree

A binary tree can be placed on a given m x n grid in
several ways. The ways dif fer in the number of levels in
the resulting binary tree, in the t ime needed for
propagation through the tree, and in the complexi ty of
the structuring algorithm. Two of them yield relatively
simple algorithms. The binary tree shown in Figure 5, a
type 1 tree, has been used extensively, 2,5 and a
(centralized) placement algorithm for it has been
described. 5 The type 2 tree, il lustrated in Figure 6, has
not been studied before.

Minimum Grid Size

The minimum size of the grid needed to place a k- level
binary tree (with 2L1 PEs) has been calculated for both
type 1 and type 2 schemes, wi th the fo l lowing results:

1. Size of grid for type 1 tree equals

(a) (2(k+1)/2-1) x (2 (k+1)/2 - 1) if k is odd;

(b) (2(k+2)/2-1) x (2 k/2 - 1) if k is even.

2. Size of grid for type 2 tree equals

(a) (3 x 2(k-1)/2-1) x (3 x 2 (~-3)/2 - 1) if k is odd

and greater than or equal to 3;

(b) (3 x 2(k-2)/2-1) x (3 x 2 (~-2)/2 - 1) if k is even.

Largest Tree for a Given Grid

In practice we are interested in the largest tree
(maximum k) that can be placed on a given m x n grid.
To simpl i fy the expressions, we assume m _> n:

1. For type 1 tree, maximum k (1) equals

(a) 2[log2(m + 1)] - 1 if

[Iog2(m + 1)] = [Iog2(n + 1)] ;

(b) 2[log2(n + 1)] otherwise.

427

2. For type 2 tree, maximum k (2) equals Structuring Algorithms

(a) 2 [, o g 2 (- ~ - !)] + 2 if

j =

(b) 2 [I o g 2 (. E _ ~)] + 3 otherwise.

These results are illustrated in Figure 7 for a square
m x m grid and may be used to determine the best way
to place a tree on a given grid.

Propagation Time

Since cells serving as connecting elements (CEs) are
needed in any binary tree placed on a grid, it is
necessary to calculate and compare the propagation
t ime (number of cells traversed) from root to leaves in
the two schemes:

1. Total propagation t ime for type 1 trees, Dk(1),

equals

(a) 2 Ik.21/2 - 3 if k is even;

(b) 3 x 2 (k-1)/2 - 3 if k is odd.

2. Total propagation t ime for type 2 trees, Dk(2),
equals
(a) 9 x 2 (k-4)/2 - 4 if k is even and greater than or

equal to 4;

(b) 3 x 2 (k-1)/2 - 4 if k is odd and greater than or
equal to 3.

3. To compare the two, we form the difference,

Dk(~) - Dk(2), which equals

(a) 1 - 2 (k-4)/2 if k is even;

(b) 1 if k is odd.

Thus, type 1 trees have a substantially lower
propagation t ime if the number of levels (k) is even, and
a slightly higher propagation t ime if k is odd.

Figure 8 shows a structuring algorithm for a type 1 tree.
Here, c is the number of CEs needed between PE at
level l and PE at level (/ - 1). The processing element at
level k (the root) may be conveniently positioned in the
middle row. The algorithm is initialized by transmitt ing
the message

M(BT, k, c = 2[(k-11/2] - 1, E)

to cell ([m / 2] - 1, 0).

Figure 9 shows a structuring algorithm for a type 2 tree;
it is initialized by the message

M(BT, k, c = 3 x 2[(k-4)/2] - 1, E)

transmitted to cell ([m / 2] - 1, 0).

If the distributed structuring algorithms in Figures 3, 4,
8, and 9 are reexamined, it is seen that whenever a
structuring message is received, several conditions are
checked, and as a result, an outgoing message and its
destination are determined. A straightforward
implementation of these algorithms in PLA or ROM is
therefore feasible and results in a simple and economical
implementation of the communication processor in each
cell.

DISTRIBUTED TESTING OF THE A R R A Y

A multiprocessor array can be tested either externally or
internally. As a result of the hardware complexity of the
array and the pin limitation of a single VLSI chip,
external testing is t ime-consuming and incomplete,
because no access to internal logic signals may be
provided. Accurate identif ication of a single faulty
processor within the array is often impossible;
consequently, internal testing in which each processor is
tested by one or more of its neighbors is preferred. 6 If a
faulty processor exists, all processors that are not faulty
should be aware of the failure and refuse to interact
with it. Because all interactions with the faulty
processor must be through its immediate neighbors, it is
suff icient that only these neighbors know the exact
status of the faulty processor. This avoids excessive
bookkeeping (each processor keeping track of the status
of all other processors) and complex status broadcasting
algorithms, which must ensure that the vital status
information is transmitted only through processors
known to be functioning properly.

428

We suggest fully distributed testing of processors: each
processor is tested locally by one or more of its
immediate neighbors, and the information about its
status is kept locally in its immediate neighbors. Each
one of the immediate neighbors of a given processor
must know the status of this processor and should not
rely on indirect information passed to it from other
processors. Therefore, each processor must test, and be
tested by, all its immediate neighbors. No voting
mechanism to determine the status of a processor is
required. Every immediate neighbor of a faulty cell will
be aware of the failure and refuse to interact with it,
and the faulty cell will be isolated from the rest of the
system.

To achieve a high level of fault coverage when a
complex processing element is tested by its immediate
neighbors, a large number of test patterns should be
applied. Furthermore, such a test may require access to
points that cannot be accessed through the ordinary
communications links. To avoid excessive use of chip
area that is required to store the test patterns and
resulting responses in each processor, and addition of
extra communication links, other fault-tolerance
techniques can be added to the architecture of the
processor. First, a processor can be made to tolerate
certain faults. 6 Second, other faults that cannot be
tolerated by the processor will at least be detected by
self-checking techniques. 7 Not only is the testing of one
processor by its neighbor simplified but also immediate
detection of certain faults is provided, s In summary,
well-known design techniques can be used at relatively
low cost 7 to reduce the complexity of testing one PE by
its neighbor to testing of the hardcore (checking circuits)
and the communication links.

While processor A is being tested, the testing of another
processor, say B, can take place simultaneously; hence,
the testing of the entire array can be organized to
minimize the testing time. If N equals the total number
of test applications (one processor being tested by its
neighbor), and if T equals the number of testing periods
to be minimized, then for a rectangular m x n array:

N = 4 x 2 + [2 (re+n) -8] x 3 +
[ran-2 (m + n) + 4] x 4

= 4ran - 2 (m + n)

If a processor tests only one neighbor at a time, there
are no more than (ran~2) pairs; that is, no more than
(ran~2) processors are testing their neighbors. Hence,

T> N/(mn/2) =8-(4(m+n)/mn)

The number of testing periods can be reduced if each
processor tests two of its neighbors simultaneously:

T_> N l (2 m n / 3) = 6 - (3 (m + n) l m n)

If a processor tests all its neighbors (four at most)
simultaneously, the number of testing periods is further
reduced:

T_> N/(4mn/5) = 5 - (5(m + n)/2mn)

For m, n >_ 6, we obtain the lower bound T > 5. An
algorithm (preferrably, a f ive-step one) is now needed to
indicate when each processor must test all its neighbors.
In each step of the algorithm, a message

M(TS, c, testdata)

is broadcast (TS stands for test; c equals 0, 1, 2, 3, or 4
and is the step number). Each processor must
implement a function for which

1. f(c, i, j~ equals

(a) 1 if cell (i, j) is to test its neighbors in step c;

(b) 0 otherwise.

Such an algorithm is illustrated in Figure 10, and the
appropriate function is

1. f(c, i, j) equals

(a) 1 if I/Is= Ic+2jls,(c=O, 1, 2, 3, o r4 ;

l i l 5 is the residue of i modulo 5);

(b) 0 otherwise.

STRUCTURING IN THE PRESENCE OF FAULTY
PROCESSORS

The structuring algorithms presented in the previous
section were developed under the assumption that there
were no faulty processors; hence, certain modifications
must be made to handle faulty processors. A faulty
processor may be known by its neighbors prior to the
structuring or found to be faulty during the structuring
process. The following strategy is suggested for each
processor during structuring:

1. Receive incoming message.

2. Determine outgoing message, its destination, and
the internal setting; transmit message.

429

3. If there is no response or a faulty one, update
status and repeat (step) 2.

If this strategy is adopted, we only have to incorporate
into the structuring algorithms all the possibilities of
faulty neighbors. When this modification is introduced in
an algorithm, there are two opposing objectives:

1. To maximize the number of processors still
available (which is at most m n - 1)

2. To minimize the additional complexity introduced
into the structuring algorithm (additional area
occupied by the communication processor in each
cell)

A complex algorithm that may maximize the number of
processors still usable after a fault occurrence may be
wasteful when the array is fault-free, because a smaller
number of processors would initially f i t into the same
chip area. We believe that it is beneficial to have a
relatively simple algorithm because of the low failure
rate projected for a single processor in a VLSI chip.

Linear Array

The strategy shown in Figure 11(a) and (b) can be used
to obtain a relatively simple algorithm for structuring a
linear array on a grid with faulty processors. The
strategy does not require any previous knowledge about
the position of the faulty processor and leaves the last
available processor in the array unchanged, simplifying
expansions of the linear array to a second IC chip. The
number of unused processors varies with the position of
the faulty processor, and its expected value approaches
n -] f o rn , m >> 2. Fora 1,000 processor array, this
means that a tolerable percentage of 3.1% of the
processors is not used. In the special case in Figure
1 l(b) (or whenever a processor is terminal in both d and
S directions), backtracking is necessary. The algorithm
in Figure 11(c) provides one-step backtracking; if it is
unsuccessful (as a result of an additional faulty
processor), a negative acknowledgment is transmitted.
A slightly more complex algorithm may provide
two-step (or more) backtracking.

The situation is more complicated for the other two
structures, especially binary trees. Because structuring
messages are transmitted simultaneously by all
processors at the same level, local modifications in

/

strategy by one of the processors are not allowed.
Consequently, whenever the preassigned processor does
not respond or has a faulty response, a negative

acknowledgment is transmitted. This, however, does not
imply that the structuring of a binary tree is impossible,
because there are always processors in the grid that are
not used in a binary tree structure.

A possible way to avoid using a faulty processor is
shown in Figure 12. A message is broadcast (preceded
if necessary by a testing period to ensure proper
identification of faulty processors), which wil l cause each
processor whose d-neighbor is faulty to declare itself a
connecting element (CE) and to transmit a message to
its op(d)-neighbor, until all processors in the row and
the column of the faulty processor are declared CEs.
The ordinary structuring algorithm may then be used
(note that when a CE receives a message, it is
transmitted unchanged to the opposite direction) to get
the binary tree shown in Figure 12. For a
1,000-processor grid, 6.1% of the processors wil l not
be used. In most cases, the maximum size of the binary
tree that can be placed on the grid wil l not change
(Figure 7).

CONCLUSIONS

An example of a fault-tolerant VLSI multiprocessor array
that can be reconfigured has been presented. An array
with these desirable properties is possible, but it is
neither a unique array nor an optimal one in any sense.
Further research is needed to consider other
fault-tolerant systems that can be reconfigured (for
example, one based on the hexagonal array 2) and to
devise ways to compare them in regard to possible
structures and the corresponding classes of
computational algorithms, complexity of structuring
algorithms, fault-tolerance capacity, and other reliability
measures.

ACKNOWLEDGMENT

This work was supported by the Department of the Navy, Navy
Electronic Systems Command, under contract
N00039-80-C-0641, and was done while visiting the
Department of Electrical Engineering-Systems at the University
of Southern California (Los Angeles).

REFERENCES

1M. J. Foster and H. T. Kung. The design of special-purpose
VLSl chips, Computer, 13 (Jan. 1980), 26-40.

2C. A. Mead and L. A. Conway. In t roduct ion to VLSI Systems

(Reading, Mass: Addison-Wesley, 1980), sec. 8.3.

430

3D. P. Siewiorek, D. E. Thomas, and D. L. Scharfetter. The use
of LSI modules in computer structures: Trends and limitations,
Computer, 11 (July 1978), 16-25.

4H. Sullivan and T. R. Bashkow. A large scale, homogeneous,
fully distributed parallel machine, I, Proceedings of the 4th
Symposium on Computer Architecture (March 1977),
105-117.

5E. Horowitz and A. Zorat. The binary tree as an
interconnection network. Proceedings of the 1980 Conference
on Networks (April 1980).

6j. G. Kuhl and S. M. Reddy. Distributed fault-tolerance for
large multiprocessor systems, Proceedings of the 7th
Symposium on Computer Architecture (May 1980), 23-30.

7W. C. Carter et al. Cost effectiveness of self-checking
computer design, Proceedings of the 7th Symposium on
Fault-Tolerant Computing (June 1977), 117-123.

8R. M. Sedmak and H. L. Liebergot. Fault tolerance of a
general purpose computer implemented by very large scale
integration, IEEE Transactions on Computers, 29 (June 1980),
492-500.

431

0 0

I
• W-neighbor

N-neighbor

~ E-ne or

S-neighbor

Figure 1. Rectangular m x n Grid

Appl i ca t ion p rocessor

l;oroo
ont ro l Memory

Processing
Unit

Local Memory [

l ,

Communication p rocesso r

Confi ration I I Modo I

status i I i0=~iJ~ !

Figure 2. Basic Processing Element

432

Ca)

r e c e i v e a message M(LA,£,d) from f - n e i g h b o r

(£ = k , k - 1 , . . . , 1 ; d ~ {E,W})

CR:=LA,£

if £=I then transmit M(ACK,LA,I) to 6-neighbor

else if d-terminal then begin

endif

if S-terminal M(NACK,LA,I)to 6-neighbor

else transmit M(LA,£-l,op(d)) to s-neighbor

endbegin

else transmit M(LA,£-i,d) to d-neighbor

endif

(b)

Figure 3. Structuring Algorithm for Linear Array on Grid

433

r e c e i v e a message M(SA,k , t) from 6 - n e i g h b o r
)

(k=u ,u -1 ,1 ; ~ = v , v - 1 , . . . , 1)

i f CR=SA,k,~ t h e n s t o p e l s e b e g i n

CR:=SA,k,~

i f k~2 t h e n b e g i n

i f S - t e r m i n a l t h e n t r a n s m i t M(NACK,SA,i,~) t o N - n e i g h b o r

e l s e t r a n s m i t M (S A , k - i , ~) t o S - n e i g h b o r

end

e n d i f

i f ~ 2 t h e n b e g i n

i f E - t e r m i n a l t h e n t r a n s m i t H(NACK,SA,k,1) t o W-ne ighbor

e l s e t r a n s m i t M(SA,k ,£ - I) t o E - n e i g h b o r

end

e l s e i f k=l t h e n t r a n s m i t M(ACK,SA,I,1) t o N - n e i g h b o r and W-ne ighbor

e n d i f

Figure 4. Structuring Algorithm for Square Array

434

0 1

I

2

30

s[
q

~[3 E3 Q
7

9 [

Ioi [
110 I ~ m / I TM I I L

~[

2 3

0

0

4 S

]o[

DO[

6 7 8 9 10 11

O O O D D

00000
00000
00000
00000

~00000
~00000

, 3 O O O O O O O O

2 13~,.{~_,ti O E313 O D
3 ~ U O D D I 3
3 0 O 0 0 [3
.] F I ~ 1 3 0 0 1 3 0 1 3

~E~p~ 3 ElI 113 Eli ElI Ell
~ ISi [313 [3 ISl

flDt JODGDD
Figure 5. Type 1, Six-Level Binary Tree

435

0

9

10

0

4 S

6

7

8

3 10 11

D

D
D
D

] 1 3 1 3 0 [3 0 [3
0
0
0
0
0

~0 0 O 0 0 0 0 0 0 0 0 0
Figure 6. Type 2, Six-Level Binary Tree

436

l n = n

max. k

12

10.

o

6,

4.

.

3 5 7

!

I r J

J

l

11 15 23

k (1)

k(1)>k (2)

r '-

k (1)<k(2)

31 4~ ~0 63

k(1)>k (2)

k (2)

I
!

.J

9g lbff ~

Figure 7. M a x i m u m N u m b e r o f Leve ls in B inary T ree t h a t Can Be P laced on m x m Gr id ; m = n

437

r e c e i v e a message

(£=k,k-l,...,l ;

if c~l then begin

set CE

if d-terminal

M(BT,£,c,d) from 6-neighbor

c = 2 -i,...,I,O ; d e {N,E,S,W})
I

then transmit M(NACK,BT,i) to 6-neighbor

else transmit M(BT,£,c-i,d) to d-neighbor

end

e l s e i f £=1 t h e n

e l s e b e g i n

i f c w (d) - t e r m i n a l o r c c w (d) - t e r m i n a l

e l s e b e g i n

CR:=BT,£

c:=2[~]_I

transmit M(BT,£-l,c,cw(d)) to cw(d)-neighbor

transmit M(BT,£-i,c,ccw(d)) to ccw(d)-neighbor

end

end

Figure 8. Stru~uring Algorithm for Type 1 Binaw Tree on Grid

transmit M(ACK,BT,i) to 6-neighbor

then transmit M(NACK,BT,I) to 6-neighbor

438

r e c e i v e a message H (B T , £ , c , d) f rom f - n e i g h b o r

(£ = k , k - 1 , . . . , 1 ; c = 3-2

i f c~l t h e n b e g i n

s e t CE

- 1 , . . . , 1 , 0 ; d e {N,E,S,W})

i f d - t e r m i n a l t h e n t r a n s m i t M(NACK,BT,1) t o 6 - n e i g h b o r

e l s e t r a n s m i t M (B T , £ , c - I , d) t o d - n e i g h b o r

end

e l s e b e g i n

CR:=BT,£

i f £=1 t h e n t r a n s m i t M(ACK,BT,1) to f - n e i g h b o r

e l s e b e g i n [~_5]

c := i f £~5 t h e n (3-2 -1) e l s e O

a := i f £~3 t h e n d e l s e cw(d)

B: = if £=2 then cw(d) else ccw(d)

y:= if £=2 then d else cw(d)

if B-terminal or y-terminal then transmit H(NACK,BT,I) to f-neighbor

else begin

transmit H(BT,£-i,c,a) to y-neighbor

transmit H(BT,£-i,c,B) to B-neighbor

end

end

end

Figure 9. Structuring Algorithm for Type 2 Binaw Tree on Grid

439

0 1 2 3 4 5 6

o ~ ~ ~ ~ ~ ~ ~

Figure 10. InWrnal Testing ~rategy

440

.D D D DF.D-- E

(a) (b)

r e c e i v e a message M(LA,£,d) from 6 - n e i g h b o r
(£=k,k-l,...,l ; d e {E,W})

if CR=LA,£ t hen beg in

if ~=S or S-terminal then transmit M(NACK,LA,2) to D i - n e i g h b o r

e l s e t r a n s m i t M(LA,£ - l , op (d)) to S - n e i g h b o r

end

else begin

CR:=LA,£

Di:=~

if £=i then transmit M(ACK,LA,i) to 6-neighbor

e l s e beg in

if d-terminal then

if S-terminal then transmit M(LA,£+i,d)

end

end

to S-neighbor

else transmit M(LA,£-l,op(d)) to S-neighbor

end if

else transmit M(LA,£-I,d) to d-neighbor

Figure 11. Structuring Algorithm for Linear Array
(Faulty processors are present.)

(c)

441

o E
;~-',IZI D ~ EZF-E
b J

. . r l i I I - L
b

J-~53 ~ O
b

3 IZl IZl ICl
p

I__.,I I J l J

IZ}.-fTMZI ~ E J IZF-E
~J r-Id

L._.J rl

] I~I IZl IZY-I

J D IZl. E] IZ113

1131313

. --,IZ113 EZI
Figure 12. Five-Level Binary Tree on Grid

(A faulty processor is present.)

442

