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ABSTRACT 

Multiprocessor arrays have the property of regularity, enabling 
a low-cost VL81 implementation. However, multiprocessor 
systems with a fixed structure tend to be error prone and 
restricted to specialized applications, which makes them less 
attractive to the semiconductor industry. Consequently, 
reconfigurability and fault-tolerance are desirable features of a 
multiprocessor array. A multiprocessor array with a flexible 
structure can be adapted to many applications and may 
restructure itself upon failure of a processor, to avoid using 
faulty processors. 

The objective of this work is to demonstrate the feasibility of a 
multiprocessor array having these properties. An example of 
such an array is introduced, and distributed structuring 
algorithms for it are presented. A novel strategy for internal 
testing and for identification of faulty processors is developed, 
and the structuring algorithms are modified to accommodate 
faulty processors. 

INTRODUCTION 

The current trends in the integrated circuit technology 
wil l  have a considerable impact on the way 
multiprocessor systems are designed and implemented. 
First, the decreasing cost of hardware components will 
enhance the design of special-purpose multiprocessor 
systems. 1.2 Second, the exponential increase in the gate 
count per chip, which is expected to keep its current 
pace for at least 5 to 10 years, wil l  enable packaging an 
increasing number of processors into a single VLSI chip. 
Clearly, such packaging is preferred over using several 
LSI chips when power consumption, speed, and 
reliability are considered. 

The new VLSI technology does have limitations that 
should not be overlooked. The man-year effort when 
designing a high-density VLSI chip is expected to rise 
significantly, resulting in a substantial increase in 
manufacturing cost. One way to reduce the expected 
increase in manufacturing effort and cost is to design 
regular multiprocessor arrays. Regular structures take 
considerably less time to design and to manufacture. 1-3 

Yet, even regular multiprocessor arrays may still be 
unattractive to the semiconductor industry because of 
their tendency to have restricted uses. A VLSI 
multiprocessor array with a flexible structure is desirable 
because it can be configured in several ways, which 
increases the number of possible applications. Clearly, 
some processors will not be used in several applications, 
but this should not be considered a serious drawback; 
on cost alone, processors will be the expendable 
components in VLSI technology. 3 

Another desirable feature of a VLSI chip is 
fault-tolerance. Future improvements in the solid-state 
technology and the maturity of the fabrication process 
are projected to reduce the failure rate of a single 
component. The failure rate predicted for high-density 
VLSI chips however, is still larger that that of present 
LSI chips because of the complexity of the VLSI chips. 
Hence, the multiprocessor's proper operation must be 
verified frequently. Unfortunately, this verification cannot 
be achieved by external testing of the VLSI chip 
because of the inability to access internal points; internal 
testing (processors testing one another) for error 
detection is therefore necessary. Moreover, 
identification of faulty processors provides the ability to 
tolerate certain faults and remain operational in the 
presence of one or more faulty processors even with 
some degradation in performance. When a fault occurs 
in one of the processors, the faulty processor should be 
identified and the array possibly restructured to avoid 
the faulty processor being used. 

The multiprocessor array, therefore, should be capable 
of dynamic restructuring that takes place whenever a 
faulty processor is identified. An array with such a 
property is superior over a fixed-structure 
multiprocessor, such as a binary tree, which is sensitive 
to errors and in which a loss of a single processor 
usually results in a system failure. The restructuring 
capacity may also enhance larger chip areas 
(wafer-scale integration 1) now prohibitive because of 
impurities that exist in large wafer areas. 
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The main objective of this paper is to demonstrate the 
feasibility of a multiprocessor array with the properties 
mentioned previously. As an example, we consider a 
rectangular m x n grid (Figure 1). This grid may be 
structured as a linear array, a square array, or a binary 
tree. Not all processors will necessarily be used in each 
of these configurations; however, in VLSl technology, 
processors are the expendable components. The 
transistor count of each processor in a special-purpose 
VLSI chip is predicted to be approximately 1K to 10K, 
and the projected complexity of VLSl chips is 1,000K 
and over. Consequently, a grid consisting of 1,000 or 
more processors will be feasible. In Figure 1, there are 
mn cells in the grid; each cell is connected to its 
immediate neighbors (N-neighbor, E-neighbor, 
S-neighbor, and W-neighbor). The basic cell consists of 
an application processor and a communication ~processor 
(Figure 2). The application processor may be a 
microprogrammable processor that can be programmed 
by the customer and tailored to his or her special needs. 
This paper focuses in what fol lows on the 
communication processor, which is responsible for the 
structuring of the multiprocessor array. 

Four registers are defined within the communication 
processor: 

ID Register: Contains the row and column indices. 

Mode Register: Indicates the cell's mode of operation. 
Each cell can be either a processing element (PE) 
participating in the processing in a given configuration or 
a connecting element (CE) transferring data when 
needed from N to S and E to W (and vice versa) 
without performing any kind of processing. 

Status Register: Stores the status of the immediate 
neighbors. If the d-neighbor (the immediate neighbor in 
the d-direction in which d is an element of {N,E,S,W}) 
either is faulty or does not exist, the cell is d-terminal. 
In this case, no attempt to communicate with the 
d-neighbor will be made. 

Configuration Register ( CR): Contains information about 
the present structure, the level number of the cell within 
the array (such as linear array or binary tree), and the 
directions of the predecessor (D t) and sucessor (D o) 
cells. 

BASIC STRUCTURING ALGORITHMS 

Since the multiprocessor system has no fixed structure, 
structuring algorithms for the various configurations are 
needed. First, structuring algorithms are presented that 
are based upon the assumption that all processors are 
operating correctly. 

To achieve optimal use of a multiprocessor system, 
most processing should be distributed rather than 
centralized. Similarly, structuring algorithms should be 
distributed. Such a property is essential if the system is 
to operate in the presence of faulty processors. 
Obviously, simplicity of the structuring algorithms is 
desirable to reduce the chip area used for them and, 
thus, increase the size of the array. 

Structuring within the grid is done by distributing the 
fol lowing type of messages: 

M(structure code, level within structure, direction) 

The header of the message M is the code of the desired 
structure, such as LA for linear array, SA for square 
array, and BT for binary tree. The level number within 
the array indicates the position of the processor 
receiving the message M in the array. The direction d (d 
is an element of {N,E,S,W}) indicates the neighbor to 
which the next structuring message should be 
transmitted. Since changes in the direction of 
transmission are necessary, the functions opposite (op), 
clockwise (cw), and counterclockwise (ccw) are defined 
a s :  

1. 

2. 

op(d) equals S if d equals N; W if d equals E; 
N if d equals S; E if d equals W 

cw(d) equals E if d equals N; S if d equals E; 
W if d equals S; N if d equals W 

3. ccw(d) equals W if d equals N; N if d equals E; 
E if d equals S; S if d equals W 

Although packet transmission is used in structuring, 
continuous connections are used in normal operation 
because the predecessor and successor cells are 
known. 4 

Linear Array 

To structure a linear array of size k on an m x n grid 
(k <_ mn) the strategy depicted in Figure 3(a) is used. A 
processor receiving a structuring message will transmit 
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either another structuring message or an 
acknowledgment:  a posit ive acknowledgment  (ACK) if 
the construct ion is complete and no more processors 
are needed, or a negative acknowledgment  (NACK) if it 
is impossible to complete the construction. The 
structuring process is initialized by transmit t ing a 
message 

M(LA, k, E) 

to processor (0, 0), and its propagation t ime is of the 
order O(k). If an acknowledgment  message 

M(ACK or NACK, LA, j)  

is received from the Do-neighbor ,  the message 

M(ACK or NACK, LA, j + 1) 

is transmitted to the Dr-ne ighbor .  When the negative 
acknowledgment  reaches the origin cell, the maximum 
size of a linear array in the given grid is known. 

Square Array 

A structuring algorithm for a square array of size u x v 
on an m x n grid (u _< m;  v < n) is shown in Figure 4. 
Each processor transmits the structuring message to 
both its S(outh) and E(ast) neighbors. The distr ibuted 
algorithm is initialized by a message 

M(SA, u, v) 

transmitted to processor (0, 0), and the propagation t ime 
of the algorithm is of the order O(u ..I- v). Note that the 
statement 

if CR = SA, k, 1 then stop 

prevents zetransmission of the same structuring 
message, wh ich may otherwise occur because the 
processors are not necessarily synchronized and the 
message from the N(orth)-neighbor may be received 
before or after the message from the W(est)-neighbor.  

The idea of t ransmit t ing a message simultaneously in 
two directions may also be used whenever  a message is 
to be broadcast among all processors, regardless of the 
current configuration. A standard message 

M(BRCT, command or data) 

(BRCT stands for  broadcast; the command can be clear, 
test, etc.) can be used w i th  a shorter propagation t ime 
of the order O(m + n). 

Binary Tree 

A binary tree can be placed on a given m x n grid in 
several ways. The ways dif fer in the number of levels in 
the resulting binary tree, in the t ime needed for 
propagation through the tree, and in the complexi ty of 
the structuring algorithm. Two of them yield relatively 
simple algorithms. The binary tree shown in Figure 5, a 
type 1 tree, has been used extensively, 2,5 and a 
(centralized) placement algorithm for it has been 
described. 5 The type 2 tree, il lustrated in Figure 6, has 
not been studied before. 

Minimum Grid Size 

The minimum size of the grid needed to place a k- level  
binary tree (with 2L1  PEs) has been calculated for both 
type 1 and type 2 schemes, wi th  the fo l lowing results: 

1. Size of grid for type 1 tree equals 

(a) (2(k+1)/2-1) x (2 (k+1)/2 - 1) if k is odd; 

(b) (2(k+2)/2-1) x (2 k/2 - 1) if k is even. 

2. Size of grid for type 2 tree equals 

(a) (3 x 2(k-1)/2-1) x (3 x 2 (~-3)/2 - 1) if k is odd 

and greater than or equal to 3; 

(b) (3 x 2(k-2)/2-1) x (3 x 2 (~-2)/2 - 1) if k is even. 

Largest Tree for a Given Grid 

In practice we are interested in the largest tree 
(maximum k) that can be placed on a given m x n grid. 
To simpl i fy the expressions, we assume m _> n: 

1. For type 1 tree, maximum k (1) equals 

(a) 2[ log2(m + 1)] - 1 if 

[ Iog2(m + 1 ) ] = [ Iog2(n + 1 ) ] ; 

(b) 2[ log2(n + 1)] otherwise. 
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2. For type 2 tree, maximum k (2) equals Structuring Algorithms 

(a) 2 [ , o g 2 ( - ~ - ! )  ] + 2 if 

j = 

(b) 2 [ I o g 2 ( . E _ ~ ) ]  + 3 otherwise. 

These results are illustrated in Figure 7 for a square 
m x m grid and may be used to determine the best way 
to place a tree on a given grid. 

Propagation Time 

Since cells serving as connecting elements (CEs) are 
needed in any binary tree placed on a grid, it is 
necessary to calculate and compare the propagation 
t ime (number of cells traversed) from root to leaves in 
the two schemes: 

1. Total propagation t ime for type 1 trees, Dk(1), 

equals 

(a) 2 Ik.21/2 - 3 if k is even; 

(b) 3 x 2 (k-1)/2 - 3 if k is odd. 

2. Total propagation t ime for type 2 trees, Dk(2), 
equals 
(a) 9 x 2 (k-4)/2 - 4 if k is even and greater than or 

equal to 4; 

(b) 3 x 2 (k-1)/2 - 4 if k is odd and greater than or 
equal to 3. 

3. To compare the two,  we form the difference, 

Dk(~) - Dk(2), which equals 

(a) 1 - 2 (k-4)/2 if k is even; 

(b) 1 if k is odd. 

Thus, type 1 trees have a substantially lower 
propagation t ime if the number of levels (k) is even, and 
a slightly higher propagation t ime if k is odd. 

Figure 8 shows a structuring algorithm for a type 1 tree. 
Here, c is the number of CEs needed between PE at 
level l and PE at level ( / -  1). The processing element at 
level k (the root) may be conveniently positioned in the 
middle row. The algorithm is initialized by transmitt ing 
the message 

M(BT, k, c = 2[ (k-11/2] - 1, E) 

to cell ( [ m / 2 ]  - 1, 0). 

Figure 9 shows a structuring algorithm for a type 2 tree; 
it is initialized by the message 

M(BT, k, c = 3 x 2[ (k-4)/2] - 1, E) 

transmitted to cell ( [ m / 2 ]  - 1, 0). 

If the distributed structuring algorithms in Figures 3, 4, 
8, and 9 are reexamined, it is seen that whenever a 
structuring message is received, several conditions are 
checked, and as a result, an outgoing message and its 
destination are determined. A straightforward 
implementation of these algorithms in PLA or ROM is 
therefore feasible and results in a simple and economical 
implementation of the communication processor in each 
cell. 

DISTRIBUTED TESTING OF THE A R R A Y  

A multiprocessor array can be tested either externally or 
internally. As a result of the hardware complexity of the 
array and the pin limitation of a single VLSI chip, 
external testing is t ime-consuming and incomplete, 
because no access to internal logic signals may be 
provided. Accurate identif ication of a single faulty 
processor within the array is often impossible; 
consequently, internal testing in which each processor is 
tested by one or more of its neighbors is preferred. 6 If a 
faulty processor exists, all processors that are not faulty 
should be aware of the failure and refuse to interact 
with it. Because all interactions with the faulty 
processor must be through its immediate neighbors, it is 
suff icient that only these neighbors know the exact 
status of the faulty processor. This avoids excessive 
bookkeeping (each processor keeping track of the status 
of all other processors) and complex status broadcasting 
algorithms, which must ensure that the vital status 
information is transmitted only through processors 
known to be functioning properly. 
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We suggest fully distributed testing of processors: each 
processor is tested locally by one or more of its 
immediate neighbors, and the information about its 
status is kept locally in its immediate neighbors. Each 
one of the immediate neighbors of a given processor 
must know the status of this processor and should not 
rely on indirect information passed to it from other 
processors. Therefore, each processor must test, and be 
tested by, all its immediate neighbors. No voting 
mechanism to determine the status of a processor is 
required. Every immediate neighbor of a faulty cell will 
be aware of the failure and refuse to interact with it, 
and the faulty cell will be isolated from the rest of the 
system. 

To achieve a high level of fault coverage when a 
complex processing element is tested by its immediate 
neighbors, a large number of test patterns should be 
applied. Furthermore, such a test may require access to 
points that cannot be accessed through the ordinary 
communications links. To avoid excessive use of chip 
area that is required to store the test patterns and 
resulting responses in each processor, and addition of 
extra communication links, other fault-tolerance 
techniques can be added to the architecture of the 
processor. First, a processor can be made to tolerate 
certain faults. 6 Second, other faults that cannot be 
tolerated by the processor will at least be detected by 
self-checking techniques. 7 Not only is the testing of one 
processor by its neighbor simplified but also immediate 
detection of certain faults is provided, s In summary, 
well-known design techniques can be used at relatively 
low cost 7 to reduce the complexity of testing one PE by 
its neighbor to testing of the hardcore (checking circuits) 
and the communication links. 

While processor A is being tested, the testing of another 
processor, say B, can take place simultaneously; hence, 
the testing of the entire array can be organized to 
minimize the testing time. If N equals the total number 
of test applications (one processor being tested by its 
neighbor), and if T equals the number of testing periods 
to be minimized, then for a rectangular m x n array: 

N = 4 x 2 +  [ 2 ( re+n ) -8 ]  x 3 +  
[ ran-2  (m + n) + 4 ]  x 4  

= 4ran - 2 ( m  + n) 

If a processor tests only one neighbor at a time, there 
are no more than (ran~2) pairs; that is, no more than 
(ran~2) processors are testing their neighbors. Hence, 

T> N/(mn/2) =8-(4(m+n)/mn) 

The number of testing periods can be reduced if each 
processor tests two of its neighbors simultaneously: 

T_> N l ( 2 m n / 3 )  = 6 - (3 (m + n ) l m n )  

If a processor tests all its neighbors (four at most) 
simultaneously, the number of testing periods is further 
reduced: 

T_> N/(4mn/5) = 5 - (5(m + n)/2mn) 

For m, n >_ 6, we obtain the lower bound T > 5. An 
algorithm (preferrably, a f ive-step one) is now needed to 
indicate when each processor must test all its neighbors. 
In each step of the algorithm, a message 

M(TS, c, testdata) 

is broadcast (TS stands for test; c equals 0, 1, 2, 3, or 4 
and is the step number). Each processor must 
implement a function for which 

1. f(c, i, j~ equals 

(a) 1 if cell (i, j)  is to test its neighbors in step c; 

(b) 0 otherwise. 

Such an algorithm is illustrated in Figure 10, and the 
appropriate function is 

1. f(c, i, j) equals 

(a) 1 if I/Is= Ic+2jls,(c=O, 1, 2, 3, o r4 ;  

l i l 5  is the residue of i modulo 5); 

(b) 0 otherwise. 

STRUCTURING IN THE PRESENCE OF FAULTY 
PROCESSORS 

The structuring algorithms presented in the previous 
section were developed under the assumption that there 
were no faulty processors; hence, certain modifications 
must be made to handle faulty processors. A faulty 
processor may be known by its neighbors prior to the 
structuring or found to be faulty during the structuring 
process. The following strategy is suggested for each 
processor during structuring: 

1. Receive incoming message. 

2. Determine outgoing message, its destination, and 
the internal setting; transmit message. 
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3. If there is no response or a faulty one, update 
status and repeat (step) 2. 

If this strategy is adopted, we only have to incorporate 
into the structuring algorithms all the possibilities of 
faulty neighbors. When this modification is introduced in 
an algorithm, there are two opposing objectives: 

1. To maximize the number of processors still 
available (which is at most m n  - 1) 

2. To minimize the additional complexity introduced 
into the structuring algorithm (additional area 
occupied by the communication processor in each 
cell) 

A complex algorithm that may maximize the number of 
processors still usable after a fault occurrence may be 
wasteful when the array is fault-free, because a smaller 
number of processors would initially f i t  into the same 
chip area. We believe that it is beneficial to have a 
relatively simple algorithm because of the low failure 
rate projected for a single processor in a VLSI chip. 

Linear Array 

The strategy shown in Figure 11(a) and (b) can be used 
to obtain a relatively simple algorithm for structuring a 
linear array on a grid with faulty processors. The 
strategy does not require any previous knowledge about 
the position of the faulty processor and leaves the last 
available processor in the array unchanged, simplifying 
expansions of the linear array to a second IC chip. The 
number of unused processors varies with the position of 
the faulty processor, and its expected value approaches 
n -  ] f o rn ,  m >> 2. Fora 1,000 processor array, this 
means that a tolerable percentage of 3.1% of the 
processors is not used. In the special case in Figure 
1 l(b) (or whenever a processor is terminal in both d and 
S directions), backtracking is necessary. The algorithm 
in Figure 11(c) provides one-step backtracking; if it is 
unsuccessful (as a result of an additional faulty 
processor), a negative acknowledgment is transmitted. 
A slightly more complex algorithm may provide 
two-step (or more) backtracking. 

The situation is more complicated for the other two 
structures, especially binary trees. Because structuring 
messages are transmitted simultaneously by all 
processors at the same level, local modifications in 

/ 

strategy by one of the processors are not allowed. 
Consequently, whenever the preassigned processor does 
not respond or has a faulty response, a negative 

acknowledgment is transmitted. This, however, does not 
imply that the structuring of a binary tree is impossible, 
because there are always processors in the grid that are 
not used in a binary tree structure. 

A possible way to avoid using a faulty processor is 
shown in Figure 12. A message is broadcast (preceded 
if necessary by a testing period to ensure proper 
identification of faulty processors), which wil l  cause each 
processor whose d-neighbor is faulty to declare itself a 
connecting element (CE) and to transmit a message to 
its op(d)-neighbor, until all processors in the row and 
the column of the faulty processor are declared CEs. 
The ordinary structuring algorithm may then be used 
(note that when a CE receives a message, it is 
transmitted unchanged to the opposite direction) to get 
the binary tree shown in Figure 12. For a 
1,000-processor grid, 6.1% of the processors wil l  not 
be used. In most cases, the maximum size of the binary 
tree that can be placed on the grid wil l  not change 
(Figure 7). 

CONCLUSIONS 

An example of a fault-tolerant VLSI multiprocessor array 
that can be reconfigured has been presented. An array 
with these desirable properties is possible, but it is 
neither a unique array nor an optimal one in any sense. 
Further research is needed to consider other 
fault-tolerant systems that can be reconfigured (for 
example, one based on the hexagonal array 2) and to 
devise ways to compare them in regard to possible 
structures and the corresponding classes of 
computational algorithms, complexity of structuring 
algorithms, fault-tolerance capacity, and other reliability 
measures. 
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Ca) 

r e c e i v e  a message  M(LA,£,d) from f - n e i g h b o r  

( £ = k , k - 1 , . . . , 1  ; d ~ {E,W}) 

CR:=LA,£ 

if £=I then transmit M(ACK,LA,I) to 6-neighbor 

else if d-terminal then begin 

endif 

if S-terminal M(NACK,LA,I)to 6-neighbor 

else transmit M(LA,£-l,op(d)) to s-neighbor 

endbegin 

else transmit M(LA,£-i,d) to d-neighbor 

endif 

(b) 

Figure 3. Structuring Algorithm for Linear Array on Grid 
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r e c e i v e  a message  M(SA,k , t )  from 6 - n e i g h b o r  
) 

( k=u ,u -1  . . . .  ,1 ; ~ = v , v - 1 , . . . , 1 )  

i f  CR=SA,k,~ t h e n  s t o p  e l s e  b e g i n  

CR:=SA,k,~ 

i f  k~2 t h e n  b e g i n  

i f  S - t e r m i n a l  t h e n  t r a n s m i t  M(NACK,SA,i,~) t o  N - n e i g h b o r  

e l s e  t r a n s m i t  M ( S A , k - i , ~ )  t o  S - n e i g h b o r  

end 

e n d i f  

i f  ~ 2  t h e n  b e g i n  

i f  E - t e r m i n a l  t h e n  t r a n s m i t  H(NACK,SA,k,1) t o  W-ne ighbor  

e l s e  t r a n s m i t  M(SA,k ,£ - I )  t o  E - n e i g h b o r  

end 

e l s e  i f  k=l  t h e n  t r a n s m i t  M(ACK,SA,I,1) t o  N - n e i g h b o r  and W-ne ighbor  

e n d i f  

Figure 4. Structuring Algorithm for Square Array 
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r e c e i v e  a message  

(£=k,k-l,...,l ; 

if c~l then begin 

set CE 

if d-terminal 

M(BT,£,c,d) from 6-neighbor 

c = 2 -i,...,I,O ; d e {N,E,S,W}) 
I 

then transmit M(NACK,BT,i) to 6-neighbor 

else transmit M(BT,£,c-i,d) to d-neighbor 

end 

e l s e  i f  £=1 t h e n  

e l s e  b e g i n  

i f  c w ( d ) - t e r m i n a l  o r  c c w ( d ) - t e r m i n a l  

e l s e  b e g i n  

CR:=BT,£ 

c:=2[~]_I 

transmit M(BT,£-l,c,cw(d)) to cw(d)-neighbor 

transmit M(BT,£-i,c,ccw(d)) to ccw(d)-neighbor 

end 

end 

Figure 8. Stru~uring Algorithm for Type 1 Binaw Tree on Grid 

transmit M(ACK,BT,i) to 6-neighbor 

then transmit M(NACK,BT,I) to 6-neighbor 
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r e c e i v e  a message  H ( B T , £ , c , d )  f rom f - n e i g h b o r  

( £ = k , k - 1 , . . . , 1  ; c = 3-2 

i f  c~l  t h e n  b e g i n  

s e t  CE 

- 1 , . . . , 1 , 0  ; d e {N,E,S,W}) 

i f  d - t e r m i n a l  t h e n  t r a n s m i t  M(NACK,BT,1) t o  6 - n e i g h b o r  

e l s e  t r a n s m i t  M ( B T , £ , c - I , d )  t o  d - n e i g h b o r  

end 

e l s e  b e g i n  

CR:=BT,£ 

i f  £=1 t h e n  t r a n s m i t  M(ACK,BT,1) to  f - n e i g h b o r  

e l s e  b e g i n  [~_5] 

c := i f  £~5 t h e n  (3-2 -1) e l s e  O 

a :=  i f  £~3 t h e n  d e l s e  cw(d) 

B: = if £=2 then cw(d) else ccw(d) 

y:= if £=2 then d else cw(d) 

if B-terminal or y-terminal then transmit H(NACK,BT,I) to f-neighbor 

else begin 

transmit H(BT,£-i,c,a) to y-neighbor 

transmit H(BT,£-i,c,B) to B-neighbor 

end 

end 

end 

Figure 9. Structuring Algorithm for Type 2 Binaw Tree on Grid 
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Figure 10. InWrnal Testing ~rategy 
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.D D D DF.D-- E  

(a) (b) 

r e c e i v e  a message M(LA,£,d) from 6 - n e i g h b o r  
(£=k,k-l,...,l ; d e {E,W}) 

if CR=LA,£ t hen  beg in  

if ~=S or S-terminal then transmit M(NACK,LA,2) to  D i - n e i g h b o r  

e l s e  t r a n s m i t  M(LA,£ - l , op (d ) )  to  S - n e i g h b o r  

end 

else begin 

CR:=LA,£ 

Di:=~ 

if £=i then transmit M(ACK,LA,i) to 6-neighbor 

e l s e  beg in  

if d-terminal then 

if S-terminal then transmit M(LA,£+i,d) 

end 

end 

to S-neighbor 

else transmit M(LA,£-l,op(d)) to S-neighbor 

end if 

else transmit M(LA,£-I,d) to d-neighbor 

Figure 11. Structuring Algorithm for Linear Array 
(Faulty processors are present.) 

(c) 
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Figure 12. Five-Level Binary Tree on Grid 

(A faulty processor is present.) 
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