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Abstract{ Phantom redundancy, an area-e�cient

technique for fabrication-time recon�gurability is pre-

sented. Phantom redundancy adds extra interconnect

so as to render the resulting microarchitecture recon-

�gurable in the presence of any (single) functional unit

failure. The proposed technique yields partially good

chips in addition to perfect chips. A genetic algo-

rithm is used to incorporate phantom redundancy con-

straints into microarchitecture synthesis. The algorithm

minimizes the performance degradation due to any faulty

functional unit of the resulting microarchitecture. The

e�ectiveness of the technique is illustrated on benchmark

examples.

1 INTRODUCTION

A number of researchers have examined fabrication-

time recon�guration approaches to enhance the yield of

ICs. Built-In-Self-Repair (BISR) is one approach to fab-

rication time recon�guration. In BISR fault tolerance is

realized by providing a set of spare modules in addition

to the core operational modules[1]. BISR approaches

have been applied mostly to regular architectures such

as memory and processors[1]. BISR techniques in the

context of non-regular architectures have been recently

developed by[2]. However, since BISR approaches are

expensive in terms of silicon area, they have been lim-

ited to bit-, byte-, or digit-sliced systems[3].

In this paper, we present phantom redundancy, an

alternate technique for fabrication-time repair and re-

con�guration of ICs. In contrast to the previous tech-

niques, phantom redundancy realizes fabrication-time

recon�gurability by using redundant programmable

interconnects instead of spare functional units.

Phantom redundancy, in addition to enhancing chip

yield, entails minimal hardware overhead. The intercon-

nection network can be reprogrammed in the event of a

fault to recon�gure the fault-free functional units into

an operational IC, albeit with a degraded performance.

We have incorporated phantom redundancy at the

register transfer level within a top-down VLSI design

methodology for the following reasons: (i) there is a tight

interdependence between the synthesized microarchitec-

ture without recon�gurability and the recon�gurability

of such an architecture and (ii) the underlying func-

tional fault model is at the register transfer (RT) level.
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We used a genetic algorithm [4] to incorporate the

scheduling, allocation and recon�gurability constraints.

In a recon�gurable microarchitecture, the control unit

is important since recon�guration is a�ected by repro-

gramming the control signals[2]. We assume a micropro-

grammable controller where recon�gurability is achieved

by loading a suitable microprogram based on the re-

sults of testing the fabricated chips. Fault tolerance

of the microcontroller can be achieved by the use of

standard memory fault tolerance techniques like adding

spare rows and columns[3].

Related research in CAD for manufacturability is

briey outlined. Recently, Chiluvuri and Koren[5] have

developed layout compaction and routing algorithms to

maximize defect-tolerance. At the RT level, Guerra

et. al. [2] have presented a technique for incorpo-

rating BISR to enhance the yield of VLSICs. They

use redundant functional units to overcome permanent

fabrication-time faults. In the area of high-level synthe-

sis most researchers have addressed the problems of area

and performance optimization[6]. More recently, other

important objectives, such as power [7], testability [8],

and fault tolerance [9] have also been addressed.

2 PHANTOM REDUNDANCY

Phantom redundancy yields gracefully degradable

data paths with minimal hardware overhead by using

additional interconnects instead of spare functional units

to achieve fault-tolerance. Upon detecting a faulty func-

tional unit at fabrication time, the interconnect is re-

programmed so as to perform the intended function on

the fault-free functional units, although at a reduced

throughput.

Towards illustrating and clarifying the concept of

phantom redundancy, consider a CDFG consisting of six

operations (a; b; : : : ; f) shown in Fig. 1(a). Assuming

that all operations are of the same type and no back-to-

back chaining is allowed, the fastest schedule requiring

two clock cycles and four functional units is shown in

Fig. 1(a). A gracefully degrading microarchitecture in-

corporating phantom redundancy is shown in Fig. 1(b).

The redundant interconnects, shown in dotted lines in

the �gure, render the basic architecture recon�gurable in

the presence of any single functional unit failure. Upon

identifying a faulty functional unit, the controller is pro-

grammed so as to operate the recon�gured microarchi-

tecture with a degraded performance. For example, if
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Figure 1: (a) Scheduled CDFG (b) Microarchitecture

realizing the CDFG (c){(f) Area optimal phantom re-

dundant microarchitectures.

functional unit 2 is faulty (shown as a dark rectangle in

Fig. 1(c)), operation b assigned to it can be reallocated to

the remaining fault-free functional units. The recon�g-

ured microarchitecture with a degraded performance of 4

clock cycles (as opposed to the original 2 clock cycles) is

shown in Fig. 1(c). Operations fa, cg have been assigned

to functional unit 3 and operation b which was originally

allocated to functional unit 2 has been assigned to func-

tional unit 4. The reallocated and hence recon�gured

microarchitectures in the event of failure of any one of

the other three functional units are shown in Fig. 1(d),

(e), (f), respectively.

2.1 HARDWARE AND FAULT MODELS
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Figure 2: (a) Hardware Model without Recon�gurability

(b) Hardware Model for Phantom Redundancy Showing

the Redundant Links and Extra Multiplexers

The model for recon�gurable microarchitectures is

shown in Fig. 2. The redundant links and the multiplex-

ers labeled mux2 and the demultiplexers labeled demux2

constitute the reprogrammable interconnect. The func-

tional units connected as in Fig. 2 form a backup pair.

Within such a backup pair, if a functional unit is de-

fective at fabrication time, the other functional unit can

take over by programming the select signals ofmux2 and

demux2. In general, to have redundancy amongN func-

tional units, at least d

N

2

e backup pairs are necessary.

The two level multiplexing and demultiplexing scheme

shown in Fig. 2 may be attened into a single level.

We also assume that at most one functional unit may

be faulty. Our functional fault model is based on the

observation that the critical area (i. e., the area suscep-

tible to fabrication faults) of the functional units is much

larger than that of the buses and the registers. Conse-

quently, the probability of faults in functional units is

much larger than that of the buses and register �les.

3 SYNTHESIS FOR MANUFACTURABILITY
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Figure 3: (a) A schedule and an interconnect optimal

allocation (b) Sub-optimal recon�guration in the pres-

ence of a faulty A0 as a result of a two-step approach

to incorporation of recon�gurability constraints (c) A

global schedule, and allocation incorporating recon�g-

urability constraints (d) An e�cient recon�guration in

the presence of a faulty A0

During microarchitecture synthesis, incorporation of

recon�gurability following the scheduling and binding

phases will yield architectures with a poorer perfor-

mance. Consequently, scheduling, allocation and recon-



�gurability constraints have to be considered in an inte-

grated fashion. For example, consider a CDFG consist-

ing of �fteen add operations (a1, ..., a15) as shown in

Fig. 3(a).

Assuming three adders (A0, A1, A2), one possible

schedule and an allocation that minimizes the intercon-

nect overhead is shown in Fig. 3(a). While the horizon-

tal lines across the CDFG identify the time step wherein

a node is executed, the annotations to the left of each

node determine the functional unit on which it is exe-

cuted. In Fig. 3(a), node a14 is scheduled in control step

4 and is executed on adder A2. Until now scheduling

and allocation have not accounted for possible perfor-

mance degradation in the presence of an adder failure.

Recon�gurability can be achieved by identifying fA0,

A1g and fA1, A2g to be the backup pairs. That is,

if A0 is faulty, adder A1 takes over, if A2 is faulty,

A1 takes over and if A1 is faulty either A0 or A2 take

over. However, this results in a worst-case performance

degradation of four clock cycles. In Fig. 3(b), one such

schedule (using 11 control steps) and allocation (wherein

A1 takes over from a failed A0) is shown. An alternate

schedule and allocation resulting in a worst-case perfor-

mance degradation of only three clock cycles is shown

in Fig. 3(c,d).

The problem of microarchitecture synthesis with

phantom redundancy constraints can be formulated as

follows: Given a CDFG and a hardware model, synthe-

size a microarchitecture such that (1) the performance

of the unimpaired system is not compromised. (2) the

performance degradation in the event of a single FU fail-

ure is minimal. (3) the area overhead of recon�guration

is minimal.

To �nd such globally optimal solutions, we use genetic

algorithms to perform scheduling, binding and partition-

ing of the functional units into backup pairs simultane-

ously. The cost function simultaneously explores the

space and time dimensions. Each valid solution is en-

coded using four chromosomes (strings). The mod-

ule selector string encodes the space dimension of the

solution. The module allocator string encodes the

functional unit on which an operation is carried out.

The time stamp string encodes the time dimension

of the scheduling and allocation problem. Finally, the

backup pair string identi�es the backup pairs in the

recon�gured architecture. The reader is referred to [10]

for a detailed discussion of the cost function, the prob-

lem speci�c encodings, the genetic operators and the

selection scheme employed.

It is important to note that the two functional units

forming a backup pair need not be identical in terms of

performance although they should be capable of carrying

out the same function. For example, a fast multiplier

unit can have a slow multiplier as the backup unit. A

high-level synthesis tool should explore these tradeo�s.

4 RESULTS

In this section we summarize the trade-o�s conducted

on a set of benchmark examples namely, the �fth order

elliptic wave digital �lter (Ex #1), an AR �lter (Ex #2),

a third order bilinear lossless discrete integrator �lter

(Ex #3), and the FIR �lter (Ex #4).

Non-pipelined Functional Units: Initially, we used

non-pipelined functional units with the multiplier taking

2 clock cycles and the adder taking one clock cycle. The

system word length is assumed to be 24 bits and the

�lter coe�cients are assumed to be represented in 16

bits.

The results of this experiment are summarized in Ta-

ble 1. The second and the third columns indicate the

number of multipliers and adders, used in the design.

While the fourth column (titled Orig) shows the num-

ber of clock cycles required for executing the CDFG

when the system is unimpaired, the �fth column gives

the control steps required in the worst case to execute

the CDFG (in the presence of any single functional unit

failure). The next column summarizes the percentage

degradation in performance. The chip area estimates for

the original IC, the phantom redundant recon�gurable

IC, and the chip with BISR redundancy are given in the

columns titled Chip Area Orig., Chip Area Phant. and

Chip Area BISR respectively. All the reported chip area

estimates were obtained using the HYPER [11] hard-

ware database. These area estimates are are about 15%

o� the actual layout areas[12]. The BISR area was com-

puted by assuming one redundant functional unit of each

type and does not include any additional interconnect

and multiplexing overheads. The percentage area over-

heads for the phantom redundancy and BISR techniques

over that of the original chip area are indicated in the

tenth and eleventh columns. The last column summa-

rizes the percentage savings in area overhead of the pro-

posed technique vis-a-vis the BISR technique.

E # Clks % Chip Area % Ovrhd %

x M A O D D O Ph B Ph B I

# u d r e e r an I an I m

l d i g g i to S to S p

t g r r g m R m R r

1 3 3 17 19 11.8 1.8 1.8 2.4 1.5 31.8 30.3

2 2 2 19 34 78.9 1.2 1.3 1.8 4.6 46.6 42.0

2 4 3 11 18 63.6 3.1 3.2 3.9 1.9 24.5 22.6

2 4 2 11 18 63.6 3.1 3.2 3.9 2.1 24.7 22.7

3 2 2 8 11 37.5 1.2 1.3 1.8 1.7 47.2 45.4

4 4 4 8 12 50.0 2.8 2.8 3.5 1.4 24.1 22.7

4 8 8 6 8 33.3 7.8 7.9 8.8 0.7 12.3 11.6

Table 1: Impact of phantom redundancy on designs syn-

thesized using non-pipelined functional units.

From the table, it can be seen that the area savings

due to phantom redundancy over the BISR technique is,

on an average, 28.19%. While the area overhead of phan-

tom redundancy is negligible when compared to that of

original designs, the additional area required for BISR

techniques corresponds to a signi�cant proportion of the

original chip area. This we believe is in general true for

most designs.

In contrast to BISR, the performance degradation of

these partially good chips is quite signi�cant. In fact,

the performance degradation (of over 78%) is highest

for the AR �lter built from 2 adders and 2 multipli-

ers. A closer look into this synthesized design and the

AR algorithm reveals that this is because of two fac-



tors. Firstly, the number of functional units of a given

type are very small. Secondly, the multiplication and

the addition operations in the AR �lter are clustered,

thereby dramatically increasing the critical paths in the

algorithm.

Pipelined Functional Units: For this experiment we

use a two stage pipelined multiplier with a latency of 2

clock cycles and an initiation rate of 1 clock cycle. The

results are summarized in Table 2.

E # Clks % Chip Area % Ovrhd %

x M A O D D O Ph B Ph B I

u d r e e r an I an I m

# l d i g g i to S to S p

t g r r g m R m R r

1 2 3 17 19 11.7 1.3 1.3 1.9 2.3 45.5 43.2

2 2 2 13 19 46.2 1.2 1.3 1.8 4.2 46.6 42.4

2 4 3 11 13 18.2 3.2 3.2 3.9 1.5 24.5 23.0

2 4 2 11 16 45.5 3.1 3.2 3.9 1.4 24.7 23.3

3 2 2 8 9 12.5 1.2 1.2 1.8 1.3 47.2 45.9

4 4 4 7 9 28.6 2.8 2.8 3.5 1.4 24.2 22.8

4 8 8 6 7 16.7 7.8 7.9 8.8 0.6 12.3 11.7

Table 2: Impact of pipelined functional units on phan-

tom redundancy

The best results were obtained for Ex #1, where the

performance degradation is 11.76% while the area over-

head incurred is only 2.29%. On the other hand, the

BISR strategy leads to no performance degradation but

the area overheads amount to 45.53%. The worst per-

formance degradation occurs for the Ex #2 example

with 2 multipliers and 2 adders. The large performance

degradation is largely due to the availability of only one

adder(multiplier) unit in the event of a failure in one

of the 2 adder(multiplier) units present. The savings in

area over the BISR technique is on the average 30.34%.

The average degradation in performance is 25.61%. No-

tice the marked reduction in performance degradation

when using pipelined functional units.

The performance penalties in Table 1 are quite high

as compared to Table 2. This is because the use of

pipelined units permits the initiation of operations at

a much higher rate when one of the functional units fail.

Thus operations assigned to a failed unit are scheduled

in earlier steps as opposed to waiting for a multicycle op-

eration to be completed before the next operation can be

initiated. Pipelining is particularly e�ective when oper-

ations of the same type are clustered in the CDFG. The

reduction in performance degradation will be even more

signi�cant with more deeply pipelined functional units.

Multifunctional ALUs: The results for the examples

using ALU type functional units are summarized in Ta-

ble 3. The average saving in area over the BISR tech-

nique is 21.22% while the average degradation in perfor-

mance is 38%. The degradation values are higher in this

table as compared to Tables 1 and 2 because the number

of functional units used in the examples is much smaller.

5 DISCUSSION

The e�ectiveness of phantom redundancy has been

veri�ed on benchmark examples. The results indicate

large savings in area (of over 30%) over the BISR ap-

proach. The overheads due to phantom redundancy are

E # Clks % Chip Area % Ovrhd %

x A O D D O Ph B Ph B I

# L r e e r an I an I m

U i g g i to S to S p

s g r r g m R m R r

2 3 12 15 25.0 1.7 1.8 2.3 1.9 33.1 31.1

2 4 9 14 55.6 3.1 3.1 3.8 1.9 25.2 23.3

2 6 8 10 25.0 4.5 4.6 5.3 1.3 17.0 15.7

4 4 9 13 44.4 2.7 2.7 3.4 1.3 25.0 23.7

4 8 5 7 40.0 7.5 7.6 8.5 0.6 12.8 12.2

Table 3: Results on Benchmark Examples using multi-

functional ALUs

negligible as compared to the original designs (� 5%).

Further, the performance degradation in pipelined archi-

tectures is signi�cantly lower than that of non-pipelined

data paths. Phantom redundancy is eminently suited for

mature processes where the yields are su�ciently high

to make the overheads of BISR too exorbitant. Since

the BISR technique does not lead to performance degra-

dation it may be preferable in designs with tight perfor-

mance constraints. There is also an increase in the num-

ber of registers required to store the state information.

The use of pipelined data path elements leads to smaller

performance degradation as opposed to multicycle non-

pipelined functional units.
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