1-16 ()
’)
© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Application-Level Fault Tolerance as a
Complement to System-Level Fault Tolerance

JOSHUA HAINES jhaines@ecs.umass.edu
VIJAY LAKAMRAJU vlakamra@ecs.umass.edu
ISRAEL KOREN koren@ecs.umass.edu
C. MANI KRISHNA krishna@ecs.umass.edu

Electrical and Computer Engineering Dept., University of Massachusetts, Amherst, MA 01003

Abstract. As multiprocessor systems become more complex, their reliability will need to
increase as well. In this paper we propose a novel technique which is applicable to a wide variety
of distributed real-time systems, especially those exhibiting data parallelism. System-level fault
tolerance involves reliability techniques incorporated within the system hardware and software
whereas application-level fault tolerance involves reliability techniques incorporated within the
application software. We assert that, for high reliability, a combination of system-level fault
tolerance and application-level fault tolerance works best. In many systems, application-level
fault tolerance can be used to bridge the gap when system-level fault tolerance alone does not
provide the required reliability. We exemplify this with the RT'HT target tracking benchmark and
the ABF beamforming benchmark.

Keywords: distributed real-time systems, fault tolerance, checkpointing, imprecise computation,
target tracking, beam forming.

1. Introduction

In a large distributed real-time system, there is a high likelihood that at any given
time, some part of the system will exhibit faulty behavior. The ability to tolerate
this behavior must be an integral part of a real-time system. Associated with every
real-time application task is a deadline by which all calculations must be completed.
In order to ensure that deadlines are met, even in the presence of failures, fault
tolerance must be employed. In this paper we consider fault tolerance at two
separate levels, system-level and application-level.

System-Level Fault Tolerance encompasses redundancy and recovery actions within
the system hardware and software. While system hardware includes the computing
elements and I/0 (network) sub-system, the system software includes the operating
system and components such as the scheduling and allocation algorithms, check-
pointing, fault detection and recovery algorithms. For example, in the event of a
failed processing unit, the component of the system responsible for fault tolerance
would take care of rescheduling the task(s) which had been executing on the faulty
node, and restarting them on a good node from the previous checkpoint.

Application-Level Fault Tolerance encompasses redundancy and recovery actions
within the application software. Here various tasks of the application may com-
municate in order to learn of faults and then provide recovery services, making use
of some data-redundancy. In certain situations, we find that fault tolerance at the

application-level can greatly augment the overall fault-tolerance of the system. For
example, if a task’s checkpoint is very large, application-level fault tolerance can
help mask a fault while the system is moving the large checkpoint and restarting
the task on another node.

N-Modular Redundancy is a well-known fault tolerance technique. A number of
identical copies of the software are run on separate machines, the output from all of
them is compared, and the majority decision is used [1]. This technique however,
involves a large amount of redundancy and is thus costly.

The recovery block approach combines elements of checkpointing and backup
alternatives to provide recovery from hard failures [2]. All tasks are replicated but
only a single copy of each task is active at any time. If a computer hosting an
active copy of a task fails, the backup is executed. The task may be completely
restarted (which increases the chances of a deadline miss) or else executed from
its most recent checkpoint [4]. The later option requires that the active copy of
the task periodically copy (checkpoint) its state to its backups. This can entail a
large amount of overhead, especially when the state information to be transferred
is large. Such is the case with the applications that we are dealing with.

Another common technique is the use of less precise (i.e., approximate) results
[3], obtained by operating on a much smaller data set, using the same algorithm. A
data set can be chosen such that a sufficiently accurate result can be obtained with a
greatly reduced execution time. A smaller data set is chosen either by prioritizing
the data set or by reducing the granularity. Examples of such applications are
target tracking and image processing, where it is better to have less precise results
on time, rather than precise results too late or not at all. Our recovery technique
caters to applications that exhibit data- parallelism, involves a large data set and
can make do with a less precise result for a short period of time.

Our approach makes use of facets of the recovery block technique and employs
reduced precision state information and results in order to tolerate faults. We
employ a certain degree of redundancy within each of the parallel processes. The
application as a whole is able to make use of that redundancy in the event of a
fault to ensure that the required level of reliability is achieved. We consider only
failures that render a process’ results erroneous or inaccessible. In the case of such
a fault, the redundant element’s less precise results are used instead of those from
the failed process. In this way, our technique can provide a high degree of reliability
with only a small computational overhead in certain applications.

Section 2 introduces the RTHT and ABF benchmarks that will be used to demon-
strate our technique. In Section 3 we describe in detail our application-level fault
tolerance technique. Section 4 analyzes the effectiveness of this technique when used
in conjunction with each of the benchmarks, and Section 5 concludes the paper.

2. The Benchmarks

Each of the benchmarks has the form shown in Figure 1. There are multiple, parallel
application processes, which are fed with input data from a source - in this case, a
source process which simulates a radar system or an array of sonar sensors. When

the parallel computations are complete, the results are output to a sink process,
simulating system display or actuators. Our technique is concerned with the ability
to withstand faults at the parallel processes.

Process 1

Process 2

Process 3

Process 4

input data consisting computationsin order results.

of real points and to track the targets, or form beams.
random noise.

Figure 1. Software architecture of both the RTHT and ABF benchmarks.

2.1. The RTHT Target Tracking Benchmark

The Honeywell Real-Time Multi-Hypothesis Tracking (RTHT) Benchmark [6, 7],
is a general-purpose, parallel, target-tracking benchmark. The purpose of this
benchmark is to track a number of objects moving about in a two-dimensional
coordinate plane, using data from a radar system. The data is noisy, consisting of
false targets and clutter, along with the real targets. The original, non-fault-tolerant
application consists of two or more processes running in parallel, each working on
a distinct subset of the data from the radar. Periodically, frames of data arrive
from the radar, or source process in this case, and are split among the processes for
computation of hypotheses. Each possible track has an associated hypothesis which
includes a figure of likelihood, representing how likely it is to be a real track. A
history of the data points and a covariance matrix are used in generating up-to-date
likelihood values.

For every frame of radar data, each parallel process performs the following steps:
1) Creation of new hypotheses for each new data point it receives, 2) Extension of
existing hypotheses, making use of the new radar data and the existing covariance
matrix, 3) Participation in system-wide compilation or ranking of hypotheses, led
by a Root application process, and 4) Merging of its own list of hypotheses with

the system-wide list that resulted from the compilation step. The deadline of one
frame’s calculations is the arrival of the next frame.

By evaluating the performance of the original, non-fault-tolerant, benchmark
when run in conjunction with our RAPIDS real-time system simulator [9], it be-
came apparent that despite the inherent system-level fault tolerance in the simu-
lated system, the benchmark still saw a drastic degradation of tracking accuracy as
the result of even a single faulty node. Even if the benchmark task was successfully
reassigned to a good node after the fault, the chances that it had already missed
a deadline were high. This was in part due to the overheads associated both with
moving the large process checkpoint over the network and with restarting such a
large process. Once the process had missed the deadline, it was unable to take part
in the compilation phase and had to start all over again and begin building its hy-
potheses anew. This took time, and caused a temporary loss of tracking reliability
of up to five frames. Although better than a non-fault-tolerant system, in which
that process would simply have been lost, it was still not as reliable as desired.

We decided to address two points, in order to improve the performance of the
benchmark in the presence of faults: 1) The overhead involved with moving such a
large checkpoint and 2) A source of hypotheses for the process to start with after
restart.

Our measure of reliability is the number of real targets successfully tracked by
the application (within a sufficient degree of accuracy) as a fraction of the exact
number of real targets that should have been tracked. To simplify this calculation,
the number of targets is kept constant and no targets enter or leave the system
during the simulation.

2.2. The ABF Beam Forming Benchmark

The Adaptive Beam Forming (ABF) Benchmark [8] is a simulation of the real-time
process by which a submarine sonar system interprets the periodic data received
from a linear array of sensors. In particular, the goal is to distinguish signals from
noise and to precisely identify the direction from which a signal is arriving, across
a specified range of frequencies. In this implementation, the application receives
periodic samples of data as if from the linear sensor array. The data is generated
so that it contains four reference beams, or signals, arriving from distinct locations
in a 180-degree field of view, along with random noise.

The application itself consists of several application processes, each attempting to
locate beams at a distinct subset of the specified frequency range. Frames of data
for each frequency are “scattered” periodically from the source process. Output,
in the form of one beam pattern per frequency, is “gathered” by the sink process.
Figure 2 depicts a typical beam pattern output, shown here at frame 18, frequency
250Hz, with reference beams at -20, -60, 20 and 60 degrees.

Each application process performs calculations according to the following loop of
pseudo-code, for each frame of input.

for_each (frequency) {

Update dynamic weights.
for_each (direction of arrival) {
Search for signal, blocking out interference
from other directions and frequencies.
3
X

-10 +

-15 +

-20 +

Magnitude (db)

-100 -80 -60 -40 -20 0 20 40 60 80 100
Direction of Arrival (Angle) - degrees

Figure 2. Typical beam pattern output.

For each frequency, the process first updates a set of weights that are dynamically
modified from frame to frame. Applying these weights to the input samples has the
effect of forming a beam which emphasizes the sound arriving from each direction.
The process searches in each possible direction (-90 to 90 degrees) for incoming
signals. The granularity of this direction is directly related to the number of sensors.

In addition, at the start of a run, there is an initialization period in which the
weights are set to some initial values, and then 15 to 20 frames are necessary to
“learn” precisely where the beams are.

It is evident that this sort of application faces reliability problems similar to
those of the RTHT benchmark. If a processing element fails, all output for those
frequencies is lost during the down time, and when the lost task is finally replaced
by the system, it has to go through a startup period all over again. Here, too,
the data sets of these processes are very large, creating a considerable overhead if
checkpointing is employed. To avoid the delay associated with this overhead, be
able to maintain full output during the fault, and provide quick restart after the
fault, application-level fault tolerance must be employed.

We evaluate the quality of the ABF output with two tests applied to the resultant
beam pattern. In the Placement Test we check whether the direction of arrival of
the beam has been detected within a certain tolerance. In the Width Test the aim
is to determine how accurately the beam has been detected by measuring the width
of the beam, in degrees, at 3db down from the peak. A beam that passes both tests
is considered to be correctly detected.

3. Implementation of Application-Level Fault Tolerance

Our technique uses redundancy in the form of extra work done by each process of
the application. Each process takes, in addition to its own distinct workload, some
portion of its neighbor’s workload, as shown in Figure 3. The process then tracks
beams or targets for both its own work and overlaps part of its neighbor’s, but
makes use of the redundant information only in case this neighbor becomes faulty.
We now explain briefly how the data set is divided, how the application might learn
of faults, and how it would recover from them.

Process 1 [pl @ [é f)

Process 2

Process 4

)

E)
R N
E)

& Frame of data arrives Time
here, at each node.

Figure 3. Architecture of both benchmarks with application-level fault tolerance.

3.1. Division of Load

The extent of duplication between two neighboring nodes will greatly affect the level
of reliability which can be achieved. Duplication arises from the way we divide the

data set among the parallel processing nodes. First, each frame of data is divided
as evenly as possible among the nodes. The section of the process that takes on
this set of data is the primary task section, P;. Then we assign each node, n;,
some additional work: part of its neighbor, n; ;’s, primary task. The section of
the process that takes on this set of data is the secondary task section, S;. In other
words,

e The primary task section, P;, refers to the calculations which node n; carries as
part of the original application.

o The secondary task section, S;, refers to the calculations which node n; carries
out as a backup for its neighbor, n;—;. Node n; hosts the secondary corre-
sponding to the primary running on the highest numbered node. The secondary
section, S;, will be kept in synchronization with the primary P; ;.

3.2. Detection of Faults

There are two ways in which fault detection information can reach the various
application processes. In the first, the system informs the application of a faulty
node, and the second is through specific timeouts at the phase of the application
where communication is expected. The former would typically incur the cost of
periodic polling, while the latter could result in late detection of the fault. Although
the exact integration of application-level fault tolerance would vary depending on
the fault detection technique chosen, the effectiveness of our technique should not.

3.83. Fault Recovery

If, at a deadline prior to that of the frame, node n; is discovered to be faulty and
is unable to output any results, then node n;;; which is serving as its backup will
send as output S;y1’s data in place of the data that n; is unable to supply. In
the meantime, the system will be working on replacing or restarting the process
that was interrupted by the fault. In fact, the system’s job here is made easier by
the fact that if the process has to be restarted on another node, the process data
segment no longer needs to be moved. When the process is rescheduled, it will
make use of the information maintained by its secondary on its behalf in order to
pick up where it left off before the fault. This way, the application fault tolerance
is able to work in conjunction with the system fault tolerance. This will help even
in the case of transient faults, in that the application-level fault tolerance allows
more leeway to postpone the restarting of the process on another node, in the hope
that the fault will soon disappear.

3.4. Euxtension to a higher level of redundancy

Our technique guarantees the required reliability in the presence of one fault but
could also withstand two or more simultaneous failures depending on which nodes

are hit by the faults. For example, in a six-node system if the nodes running
processes 1, 3, and 5 fail, the technique would still be able to achieve the required
reliability. Of course, this is contingent on the assumption that the processes on
the faulty nodes are transferred to a safe node and restarted by the beginning of
the next frame.

3.5. Benchmark Integration Specifics

We next discuss specific details regarding the application of our technique to each
of the benchmarks.

3.5.1. RTHT benchmark In the RTHT Benchmark, the “unit of redundancy”
is the hypothesis. That is, each secondary task section creates and extends some
fraction of the total number of hypotheses created and extended by the process
for which it is secondary. The amount of secondary redundancy is expressed as a
percentage of the number of hypotheses extended by the primary.

Redundancy is implemented in the following way: At the beginning of each frame,
the source process broadcasts the input radar data, and hypotheses are created and
extended as before, with the exception that additionally the secondary extends a
percentage of those extended by the corresponding primary. The secondary section
S; is kept in synchronization with primary P;_; via the compilation process, which
in this case is again a process-level broadcast communication, so that no extra
communication is necessary. If node n; is discovered to be faulty and is unable to
participate in the compilation of that frame, then node n;; which is serving as its
backup will make use of S;11’s data in the compilation process in place of the data
that n; is unable to supply.

When the process is rescheduled, it will make use of the hypotheses extended by
the secondary on its behalf so as to pick up where it left off. This information is
obtained from the secondary process by way of compilation - the newly rescheduled
process merely listens in on the compilation process and copies those hypotheses
which have been extended by its secondary.

3.5.2. ABF benchmark There are two ways in which we have integrated application-
level fault tolerance with the ABF Benchmark. They differ in the manner in which
the secondary abbreviates the calculations of the primary so as to obtain a full set
of results. The methods are:

e The Limited Field of View (Limited FOV) Method in which the secondary
looks for beams at every frequency as in the primary, however it searches only
a subsection of the primary’s field of view (divided into one or more segments).
Ideally the secondary will place these “windows” at directions in which beams
are known to be arriving. We impose a minimum width of these windows, due
to the fact that if an individual window is too narrow, the output could always
(perhaps erroneously) pass the width-based quality test, described in section 2.

The amount of redundancy is expressed as the percentage of the field of view
searched by the secondary.

e The Reduced Directional Granularity Method in which the secondary looks for
beams at every frequency and in every direction, but with a reduced granularity
of direction. The amount of redundancy is expressed as a percentage of the
original granularity computed by the primary.

Both techniques serve to reduce the computational time of the secondary task set,
while maintaining useful system output. In addition, the two techniques may be
employed concurrently in order to further reduce the computational time required
by the secondary task.

To implement either variation of the technique, the input frame of data is scat-
tered a second time from the source to the application processes. This is time -
rotated, so that each process receives the input data of the process for which it is
a secondary. Each process first carries out its primary computational tasks, and
then carries out its secondary task. At the frame’s deadline, if a process is detected
to be down, the sink will gather output from the non-faulty processes, including
the backup results from the process that is secondary to the one that is faulty. In
the event of an application process being restarted after a fault, it will receive the
current set of weights from its secondary in order to jump-start its calculations.

Some synchronization between primary and secondary is required in the Limited
FOV Method. It is a small, periodic communication in which either the sink process
or the primary itself tells the secondary at what frequencies and directions it is
detecting beams. Such synchronization is not necessary for the Reduced Granularity
Method.

4. Results
4.1. The RTHT Benchmark

When applied to the RTHT benchmark, we found that only a small amount of
redundancy between the primary and secondary sections is necessary in order to
provide a considerable amount of fault tolerance. Furthermore, the increase in
system resource requirements, even after including overheads of the technique’s
implementation, is minimal compared to that of other techniques, in achieving the
same amount of reliability. These points are demonstrated in Figures 4, 5, and
6. Each run contains 30 targets which remain in the system until the end of the
simulation (the 30th frame), as well as some number of false alarms. The case when
only system-level fault tolerance exists corresponds to the case when the secondary
extends 0% of the primary hypotheses.

In Figure 4 we see the number of targets which are successfully tracked, when we
have just two application processes and a fault occurs at frame 15. (In this case
there were roughly 80 false alarms per frame of data.) In this run, 15% redundancy
allows us to track all of the real targets, despite the fault. We can attribute the fact
that a small amount of redundancy can have a great effect on the tracking stability,

10

34 -
32 N
28
26
24
22
20
18
16
14
- Secondary extends 15% of primary hyps —— .

Number of Targets Tracked

Secondary extends 5% of primary hyps —=—

- Secondary extends 0% of primary hyps —— -

12
10 .
8 L Secondary extends 10% of primary hyps —+—
6
4
2
0

0 5 10 15 20 25 30
Frame Number

Figure 4. Tracking accuracy, in number of real targets tracked for a given percentage of redun-
dancy.

to the fact that the hypotheses which are being extended by the secondary are the
ones most likely to be real targets. At the beginning of the compilation phase,
each application process sorts its hypotheses, placing the most likely at the head of
the list for compilation. Thus, at the beginning of the next frame, each application
process and its secondary begin extending those hypotheses with the highest chance
of being real targets.

To refine this point, Figure 5 shows the average percentage of redundancy required
for a given number of application processors and a single fault, as before. The
amount required shows a gradual decrease as we add more processors. We can
attribute this to the fact that the chance of a single process containing a high
percentage of the real targets decreases as processors are added.

In addition, a proportionately small load is imposed on the processor by the
computation of the secondary task set, as seen in Figure 6. This can be attributed
to the fact that a hypothesis whose position and velocity are known precisely, does
not take as much time to extend compared to those hypotheses which are less well-
known. And since the most likely hypotheses are generally the most well-known
and are the hypotheses which the secondary extends, the amount of processor time
taken to execute the secondary task is proportionally much smaller.

11

Percentage of secondary overlap required

10 1 1 1 1 1
2 3 4 5 6 7 8
Number of Application Processors

Figure 5. Average minimum percentage of secondary overlap required to miss no targets despite
one node being faulty.

4.2. ABF Benchmark Results

When we integrate application-level fault tolerance with the ABF benchmark, we
find that only a small amount of redundancy is necessary to ensure complete mask-
ing of single frame faults. With either variation (reduced granularity or limited
FOV method) we see that a secondary redundancy of 33% is adequate to provide
complete and accurate results in the faulty frame and the following frames (after
the faulty process is restarted). If we combine the two techniques, we see an even
further reduction in the computational effort imposed by the secondary in order
to mask the fault. We have not taken additional network overhead and/or latency
into account in figures of overhead - they refer solely to computational overhead.
Network overhead will depend greatly on the medium used. In particular, a shared
medium would allow the secondary to “snoop” on the primary’s input and output,
eliminating the need for additional communication.

All results were obtained by running simulations with 75 sensors and four reference
input beams for 50 frames. There are two application processors, and a fault
occurs in one of them at frame 30. Results are presented and discussed for three
redundancy methods: the Limited FOV method, the Reduced Granularity method
and a Combined method (a combination of the first two). The quality of the results
is assessed by totalling the number of beams that were tracked successfully. Here,
there are four input beams at each frequency and 32 frequencies — making 128

12

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Ratio of Secondary Execution time to Primary

0 4 1 1 1 1 1 1 1
0] 10 20 30 40 50 60 70 80 90 100
Percentage of Secondary Overlap

Figure 6. Ratio of time taken to compute the secondary hypothesis to the time to compute the
primary hypothesis versus the percentage of secondary overlap.

beams in all. As an example, Figure 7 presents the results for several runs of the
ABF benchmark while utilizing the Limited FOV redundancy method alone, with
a single processor fault occurring at frame 30 and lasting one frame. We see that a
30% overlap is adequate to preserve all beam information within the system despite
the loss of one processor in frame 30. We have tabulated the results for all three
methods in Table 1.

4.2.1. ABF Results: Limited FOV Alone As we see in Table 1, roughly 30% sec-
ondary overlap is adequate to provide full masking of the fault. The computational
overhead imposed by the secondary is about 30%. In addition, Figure 8 shows the
rather linear increase in overhead as we increase the fraction of overlap.

Table 1. Amount of secondary overhead imposed by various redundancy methods, each
of which is capable of fully masking a single fault.

Redundancy Technique Secondary Overlap Computational Overhead
Reduced Granularity 33% 35%
Limited FOV 30% 30%

Combined - 30%FOV,50%Granularity 15% 17%

13

160 i . . |
30% secondary ——
20% secondary -
10% secondary -
taor 0% secondary ---- _
°
-‘9 o
c | e
@ 120 f‘. L |
k=] !
g v g
% i:“,‘ =
ot 100 i | |
2 5]
g “ V}A
[80 U |
> .
o .
3 :
S 60 [_
40 |

0 10 20 30 40 50
Time (Frames)

Figure 7. The number of beams correctly tracked in each frame, for the given levels of redundancy,
for the Limited Field of View Method. A single process experiences a fault of duration one frame,
at frame 30.

Associated with this technique however, is a potential dependence on the number
of beams detected in the system, as described earlier. In order to ensure that the
width test applied to the output can fail, we impose a minimum window-width. This
minimum width dictates that for a given amount of overlap, there is a maximum
number of windows in which the secondary may search for beams. If there are
more beams than the maximum number of windows then some may be missed by
the secondary search, depending on the direction of arrival. However, the system
designer can lessen the likelihood of this occurring by carefully choosing the amount
of overlap allotted, and tuning the criteria with which areas will be searched by the
secondary.

4.2.2. ABF Results: Reduced Granularity Alone Here, too, we see that, accord-
ing to Table 1, operating the secondary at 33% of the granularity of the primary
results in complete masking of the fault, and that this imposes a 35% overhead to
the processing node. Figure 8 again shows a linear relationship between the compu-
tational overhead and the overlap, and indicates that the overhead of the method
itself is a bit higher than that of the Limited FOV method. When considering
the Reduced Granularity method, we see no dependence on the number of beams
detected, although beams could be missed if their peaks were within a few degrees
of each other, and the granularity were very coarse.

14

0.55 T T T T
0.5 - Reduced Granularity method - ,'r'ﬂ
Limited FOV method -=--- P
0.45 + Limited FOV at 50% Granularity —— I
Limited FOV at 33% Granularity -+--- e
0.35 - i
0.3 ‘
0.25
0.2
0.15

0.1

Ratio of secondary exection time to primary

0.05 |

0 10 20 30 40 50
Percentage of Secondary Field of View Overlap

Figure 8. The ratio of secondary to primary execution time for the variations of application-level
fault tolerance integrated with the ABF Benchmark versus the percentage of secondary field of
view overlap.

4.2.3. ABF Results: Combined methods When we combine these two techniques,
we see the greatest reduction in computational overhead of the secondary task. As
shown in Table 1, a 30% field of view combined with a 50% granularity maintains
the tracking ability similar to that of either one alone, yet cuts the computational
overhead nearly in half. This reduction is illustrated in Figure 8, in the lower two
curves, representing the overhead imposed as we vary the field of view and make
use of 50% and 33% granularity respectively.

5. Conclusions

A high degree of fault tolerance may be obtained with a minimal investment of
system resources in applications exhibiting data parallelism, such as the ABF and
RTHT Benchmarks. It is achieved through a combination of application-level and
system-level fault tolerance. A prioritized ordering within the data set, as in the
RTHT benchmark, or a reduced granularity, as in the ABF benchmark, is made
use of, to decrease the computational overhead of our technique.

The processes in these benchmarks are very large, so that moving a checkpoint
and restarting the task may take a significant amount of time. The application-level
fault tolerance is able to ensure that, despite the temporary loss of the task, the
required reliability is maintained.

15

Since the primary and secondary task sets are incorporated within a single appli-
cation process, the primary is always executed first and the secondary next. Once
the primary has completed, it may alert the scheduler, indicating that the secondary
need not be executed. It is useful, but not necessary, for the secondary to still be
executed, as this allows it to be better synchronized with its primary counterpart.
If a fault is detected, the priority of the secondary could be raised, to ensure that
it will complete without missing its deadline, and provide the necessary data for
compilation.

This technique is a substantial improvement over complete system duplication, in
that it does not require 100% system redundancy, but merely adds a small amount
of load to the existing system in achieving the same amount of fault tolerance. It
differs from the recovery block approach in that the secondary does not have to be
cold-started, but is ready for execution when a failure of the primary is detected. In
addition, the level of reliability may be varied by varying the amount of redundancy.

In order to integrate such application-level fault tolerance, the designer will need
to first determine how to prioritize the data set and/or reduce the granularity in
order to define the secondary’s dataset. Second, the designer should choose mecha-
nisms by which the secondary gets the input data it needs, is able to output results
when necessary, and is able to communicate with the primary for synchronization
purposes. Naturally, some sort of fault detection will have to used as well. The
designer must carefully weigh the overheads imposed by various methods to achieve
fault tolerance and the quality of results that may be obtained from each.

In conclusion, we believe that steps to integrate this technique into the application
should be taken right from the early stages of the design in order for this approach
to be most effective.

Acknowledgments

This effort was supported in part by the Defense Advanced Research Projects
Agency and the Air Force Research Laboratory, Air Force Materiel Command,
USAF, under agreement number F30602-96-1-0341, order E349. The government is
authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon.

The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the Defense Advanced Research Projects Agency,
Air Force Research Laboratory, or the U. S. Government.

References

1. D.P. Siewiorek and R.S. Swarz Reliable Computer Systems Design and Evaluation, 2nd ed.
Digital Press, Burlington, MA, 1992.

2. B. Randell. System Structure for Software Fault Tolerance. IEEE Transactions on Software
FEngineering, vol. SE-1, pp. 220-232, 1975.

3. J.W.S. Liu, W. Shih, K. Lin, R. Bettati, and J. Chung. Imprecise Computations. Proceedings
of the IEEE, vol. 82, No. 1, pp. 83-93, Jan. 1994.

16

10.

N.A. Speirs and P.A. Barrett. Using Passive replicates in Delta-4 to Provide Dependable
Distributed Computing. Proceedings of the Nineteenth International Symposium on Fault-
Tolerant Computing, 1989, pp. 184-190.

A.L. Liestman and R.H. Campbell. A Fault-Tolerant Scheduling Problem. IEEE Transac-
tions on Software Engineering, vol. SE-12, pp. 1089-1095, Nov. 1986.

B. VanVoorst, R. Jha, L. Pires, M. Muhammad. Implementation and Results of Hypothesis
Testing from the C3I Parallel Benchmark Suite. Proceedings of the 11th International Parallel
Processing Symposium, 1997.

D.A. Castanon and R. Jha. Multi-Hypothesis Tracking (Draft). DARPA Real-Time Bench-
marks, Technical Information Report (A006), 1997.

R. Hamza, Honeywell Technology Center. Sonar Adaptive Beamformer (Draft). DARPA
Real-Time Benchmarks, Primary Technical Information Report, 1998.

M. Allalouf, J. Chang, G. Durairaj, V.R. Lakamraju, O.S. Unsal, I. Koren, C.M. Krishna.
RAPIDS: A Simulator Testbed for Distributed Real-Time Systems. Advanced Simulation
and Technology Conference, 1998, pp. 191-196.

C.M. Krishna and K.G. Shin Real-Time Systems, McGraw Hill, New York, NY, 1997.

