
DEVELOPMENT OF APPLICATION-LEVEL FAULT TOLERANCE IN A

REAL-TIME BENCHMARK

Josh Haines, Vijay Lakamraju, Israel Koren and C. M. Krishna

Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003

Abstract

As multiprocessor systems become more complex� their reliability will need to increase as well�
In this paper we propose a novel technique which is applicable to a wide variety of distributed
real�time systems� especially those exhibiting data parallelism� We assert that for high reliability�
a combination of system�level fault tolerance and application�level fault tolerance works best� In
many systems� application�level fault tolerance can be used to bridge the gap when system�level
fault tolerance alone does not provide the required reliability� We exemplify this with the RTHT
target tracking benchmark�

� Introduction

Associated with every real�time application task is a deadline by which all calculations must be
complete� and the result�s� must be output� In order to ensure that deadlines are met� even in the
presence of failure� fault tolerance must be employed� Here we deal with fault tolerance at two levels�
system�level and application�level�

� System�Level Fault Tolerance� This encompasses all redundancy of system components and re�
covery actions taken by the system� The components involved might include operating systems�
scheduling�allocation algorithms� redundant hardware�network con�gurations� and recovery al�
gorithms� For example� in the event of a failed processing unit� the component of the system
responsible for fault tolerance would take care of rescheduling the task�s� at the faulty node�
and restarting them on a good node from the previous checkpoint�

� Application�Level Fault Tolerance� Application�level fault tolerance encompasses redundancy
and recovery actions within the application software� Here various tasks of the application may
communicate in order to learn of faults and then provide recovery services� making use of some
data�redundancy�

We present a solution whereby there is a degree of redundancy within each of the parallel appli�
cation processes� and the application as a whole is able to make use of that redundancy in the event
of a fault to ensure that the required level of reliability is guaranteed�

In Section � the reader is introduced to the RTHT benchmark� and in Section � we describe our
application�level fault tolerance technique� In Section 	 we analyze the e
ectiveness of this technique
when used in conjunction with the RTHT benchmark� Section � concludes the paper�

�



� The RTHT Benchmark

The Honeywell Real�Time Multi�Hypothesis Tracking �RTHT� Benchmark 
�� ��� is a general�
purpose� parallel� target�tracking benchmark� The purpose of this benchmark is to track a number
of objects moving about in a ��dimensional coordinate plane� using data from a radar system� The
data is noisy� with lots of false alarms� consisting of false�targets and clutter� The original� non�
fault�tolerant application consists of two or more processes running in parallel� each working on a
distinct subset of the data from the radar� Periodically frames of data arrive from the radar and are
split between the processes for computation of hypotheses� Each possible track has an associated
hypothesis which includes a �gure of likelihood� representing how likely it is to be a real track� A
history of the data points and a covariance matrix are used in generating up�to�date likelihood values�

For every frame of radar data� each parallel process performs the following steps� �� Creation of
new hypotheses for each new data point it receives� �� Extension of existing hypotheses� making use of
the new radar data and the existing covariance matrix� �� Participation in system�wide compilation or
ranking of hypotheses� lead by a Root application process� and 	� Merging its own list of hypotheses
with the system�wide list that resulted from the compilation step� The deadline of one frame�s
calculations is the arrival of the next frame�

By evaluating the performance of the original� non�fault�tolerant benchmark when run in conjunc�
tion with our RAPIDS real�time system simulator 
	�� it became apparent that despite the inherent
system�level fault tolerance in the simulated system� the benchmark still saw a drastic degradation
of tracking accuracy as the result of even a single faulty node� Even if the benchmark task was suc�
cessfully reassigned to a good node after the fault� the chances that it had already missed a deadline
were high� This was in part due to the overheads associated both with moving the large process
checkpoint over the network and with restarting such a large process� Once the process had missed
the deadline it would not be able to take part in compilation and would have to start all over again
and begin building its hypotheses anew� This took time� and caused a temporary loss of tracking
reliability of up to � frames� Although better than a non�fault�tolerant system� in which that process
would simply have been lost� it was still not as reliable as desired�

We decided to address two points� in order to improve the performance of the benchmark in the
presence of faults� �� The overhead involved with moving such a large checkpoint and �� A source
of hypotheses for the process to start with after restart�

Our measure of reliability is the number of real targets successfully tracked by the application
�within a su�cient degree of accuracy� as a fraction of the exact number of real targets that should
have been tracked� To simplify this calculation� the number of targets is kept constant and no targets
enter or leave the system during the simulation�

� Implementation of Application�Level Fault Tolerance

The technique uses redundancy in the form of extra work done by each process of the application�
Each process takes� in addition to its own distinct set of radar data� some portion of its neighbor�s
data set� The process then creates and extends hypotheses for both its own data and part of its
neighbor�s� but makes use of the redundant information only in the case that this neighbor is hit
by a fault� We explain brie�y how the data set is to be divided� how the application might learn of
faults� and how it would recover from them�

�



��� Division of Load

The extent of duplication between two neighboring processes will greatly a
ect the amount of
reliability which can be achieved� Duplication arises from the way we divide the data set among the
parallel processes� First� each frame of data is divided as evenly as possible among the application
processes� The section of the process �i that takes on this set of data is the primary task section�
Pi� Then we assign each process some additional work� part of its neighbor� �i���s primary dataset�
The section of the process that takes on this set of data is the secondary task section� Si� In other
words�

� The primary task section� Pi� refers to the calculations which process �i carries as part of the
original application� Hypotheses that are created out of Pi are considered to be owned by
process �i� and will be extended by that process in later frames�

� The secondary task section� Si� refers to the calculations which process �i carries out as a
backup for its neighbor� �i��� The secondary section Si will be kept in synchronization with
the primary Pi�� via the compilation process�

��� Detection of Faults

There are two ways in which fault detection information can reach the various application pro�
cesses� The �rst is that the system informs the application of a faulty node� and the second is through
speci�c timeouts at the compilation phase of the application where communication is expected� The
former would typically incur the cost of periodic polling� while the latter could result in late detection
of the fault�

��� Fault Recovery

If� at compilation time� process �i is discovered to be unable to participate in that frame�s com�
pilation� then the process �i�� which is serving as its backup will make use of Si���s data in the
compilation process in place of the data that �i is not able to supply� In the meantime� the system
will be working on replacing the process that was interrupted by the fault� In fact� the system�s job
here is made easier by the fact that it no longer needs to move the whole data segment of the process�
When the process is rescheduled� it will make use of the hypotheses extended by its secondary on
its behalf in order to pick up where it left o
 before the fault� This way� the application�s fault
tolerance is able to work in conjunction with the system fault tolerance� This will help even in the
case of transient faults� in that the application�level fault tolerance allows more leeway to postpone
the restarting of the process on another node� in hope that the fault will disappear�

��� Extension to a higher level of redundancy

Our technique guarantees the required reliability in the presence of one fault but could also with�
stand two or more simultaneous failures depending on which nodes are hit by the faults� For example�
if the nodes running processes �� �� and � fail� the technique would still be able to achieve the required
reliability� Of course� this is contingent on the assumption that the processes on the faulty nodes are
transferred to a safe node and restarted by the beginning of the next frame�

�



� Results

When applied to the RTHT benchmark� we found that only a small amount of redundancy between
the primary and secondary sections is necessary in order to provide a great amount of fault tolerance�
Furthermore� the increase in system resource requirements� even after including overheads of the
technique�s implementation� is minimal compared to that of other techniques� in achieving the same
amount of fault tolerance� These points are demonstrated in Figures �� � and �� Each run contains
�� targets which remain in the system until the end of the simulation �the ��th frame�� as well as
some number of false alarms� The case when only system level fault tolerance exists� corresponds to
the case when the secondary extends �� of the primary hypotheses�

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34

0 5 10 15 20 25 30

N
um

be
r o

f T
ar

ge
ts

 T
ra

ck
ed

Frame Number

Secondary extends 15% of primary hyps 
~

Secondary extends 10% of primary hyps
~

Secondary extends 5% of primary hyps
~

Secondary extends 0% of primary hyps

Figure �� Tracking accuracy� in number of real targets tracked for a given percentage of redundancy�

In Figure �� we see the number of targets which are successfully tracked� when we have just two
application processes and a fault occurs at frame ��� �In this case there were roughly �� false alarms
per frame of data�� In this run� ��� redundancy allows us to track all of the real targets� despite
the fault� We can attribute the fact that a small amount of redundancy can have a great e
ect on
the tracking stability� to the fact that the hypotheses which are being extended by the secondary are
the ones most likely to be real targets� At the beginning of the compilation phase� each application
process sorts its hypotheses� placing the most likely at the head of the list for compilation� Thus�
at the beginning of the next frame� each application process and their secondaries begin extending
those hypotheses which have the highest chance of being real targets�

To re�ne this point� Figure � shows the average percentage of redundancy required for a given
number of application processes and a single fault� as before� We can attribute the fact that the
amount required shows a gradual decrease as we add more processes� to the fact that the chances of
a single process containing a high percentage of the targets decreases�

In addition� a proportionally small load is imposed on the processor by the computation of the
secondary task set� as seen in Figure �� This can be attributed to the fact that the extension of a
hypothesis whose position and velocity are known precisely� does not take as much time to extend

	



10

11

12

13

14

15

16

2 3 4 5 6 7 8

P
er

ce
nt

ag
e 

of
 s

ec
on

da
ry

 o
ve

rla
p 

re
qu

ire
d

Number of Application Processors

Percentage of Secondary overlap

Figure �� Average minimum percentage of secondary overlap required to miss no targets despite a
fault at one node�

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

R
at

io
 o

f S
ec

on
da

ry
 E

xe
cu

tio
n 

tim
e 

to
 P

rim
ar

y

Percentage of Secondary Overlap

Ratio of Sec. Execution time to Pri. 

Figure �� Ratio of time taken to compute the secondary hypothesis to the time to compute the
primary hypothesis versus the percentage of secondary overlap�

compared to those hypotheses which are less well� known� And since the most likely hypotheses are
generally the most well�known� and are the hypotheses which the secondary extends� the amount of
processor time taken to execute the secondary task is proportionally much smaller�

�



� Conclusions

A high degree of fault tolerance may be obtained with a minimal investment of system resources in
applications exhibiting data parallelism and a prioritized ordering within the data set� It is achieved
through a combination of application�level and system�level fault tolerance�

In the case of this benchmark� the processes are very large� so that moving the checkpoint and
restarting the task may take a signi�cant amount of time� Thus the application�level fault tolerance
is able to ensure that� despite the temporary loss of the primary� the require reliability is maintained�

Since the primary and secondary task sets are incorporated within a single application process�
the primary is always executed �rst� and the secondary next� Once the primary has completed� it
may alert the scheduler� indicating that the secondary need not be executed� It is useful� but not
necessary� for the secondary to still be executed� as this allows it to be better synchronized with its
primary counterpart� If a fault is detected� the priority of the secondary could be raised� to ensure
that it will complete without missing its deadline� and provide the necessary data for compilation�

This technique is a substantial improvement over complete system duplication� in that it does not
require ���� system redundancy� but merely adds a small amount of load to the existing system in
achieving the same amount of fault tolerance� It di
ers from the recovery block approach in that the
secondary does not have to be cold�started� but is ready for execution when a failure of the primary
is detected�

In conclusion� we believe that steps to integrate this technique into the application should be taken
right from the early stages of design in order for this approach to be most e
ective�

Acknowledgment

This e
ort was supported in part by the Defense Advanced Research Projects Agency and the
Air Force Research Laboratory� Air Force Materiel Command� USAF� under agreement number
F�������������	�� order E�	�� The government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright annotation thereon�

The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the o�cial policies or endorsements� either expressed or implied� of the
Defense Advanced Projects Agency� Air Force Research Laboratory� or the U� S� Government�

References


�� A�L� Liestman and R�H� Campbell� �A Fault�Tolerant Scheduling Problem�� IEEE Transactions

on Software Engineering� vol SE���� pp� ���������� Nov� �����

�� B� VanVoorst� R� Jha� L� Pires� M� Muhammad� �Implementation and Results of Hypothesis

Testing from the C�I Parallel Benchmark Suite�� in Proceedings of the ��th International Par�

allel Processing Symposium� �����

�� D�A� Castanon and R� Jha� �Multi�Hypothesis Tracking �Draft��� DARPA Real�Time Bench�

marks� Technical Information Report �A����� �����


	� M� Allalouf� J� Chang� G� Durairaj� V�R� Lakamraju� O�S� Unsal� I� Koren� C�M� Krishna�
�RAPIDS� A Simulator Testbed for Distributed Real�Time Systems�� Advanced Simulation and

Technology Conference� ����� pp� ��������

�� C�M� Krishna and K�G� Shin� Real�Time Systems� McGraw Hill� New York� NY� �����

�


