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As power density of microprocessors is increasing rapidly and resulting in high temperatures, the
reliability of chips is greatly affected, making thermal simulation a necessity for CPU designs. Cur-
rent thermal simulation methods (for example, the HotSpot simulator) are very useful, but are still
inefficient when performing thermal analysis for long simulation times. In this paper, we propose
a novel transient thermal simulation method for CPU chips at the architecture level, TILTS (Time
Invariant Linear Thermal System), which utilizes the fact that the input power trace is discretized
over a fixed sampling interval to accelerate thermal simulations. TILTS allows us to calculate tran-
sient temperatures on a chip over long simulation times. Based on a linear system formulation,
TILTS has the same accuracy as that of traditional thermal simulation tools and is orders of magni-
tude faster than previous algorithms. Compared to the HotSpot simulator, TILTS achieves speedups
of 1300 for the processors in our experiments for an appropriate sampling interval of 100 �s. With
some additional memory space, the improved algorithm CONTILTS (Convolutional TILTS) is about
6000 times faster than the HotSpot simulator for the processors in our experiments.

Keywords: Thermal Simulation, Fast Method, Linear System, Performance Counters, Runtime
Temperature Monitoring.

1. INTRODUCTION

Power density is increasing in each generation of micro-
processors, since feature size and frequency are scaling
faster than the operating voltage. Power density directly
translates into heat, and consequently processors are get-
ting hotter. Operating temperature has a significant impact
on microprocessor design. At higher temperatures, tran-
sistors work slower because of the degradation of carrier
mobility. The interconnect metal resistivity is also higher
at higher temperatures, causing longer interconnect RC
delays, and therefore performance degradation. In addition,
due to its exponential dependence on operating tempera-
ture, leakage power can be orders of magnitude greater at
higher temperatures. Reliability is also strongly related to
temperature, and increasing the temperature will exponen-
tially decrease the lifetime of the chip. Last, but not least, a
higher operating temperature increases the cost of cooling
solutions. Therefore, keeping the chip at low temperatures
is an important goal for chip designers.

Dynamic thermal management (DTM)7�15 has been
proposed to provide real-time regulation of on-chip
temperature for today’s high-performance microprocessors.
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Fast on-chip thermal estimation is necessary to study the
effectiveness of various DTM techniques.

The finite element method (FEM) is the traditional
approach to thermal simulation. In FEM, the problem
domain under study, which is usually complex, is dis-
cretized into a series of smaller regions (called elements)
where the differential equations associated with the ther-
mal simulation are solved. The behavior over the entire
problem domain is determined by assembling the set of
equations for each region. FEM is very accurate but also
very computation-intensive, and it is thus only appropriate
for detailed thermal analysis of small scale chips. There
is a tradeoff between accuracy and computation time in
choosing granularity in FEM. Several FEM tools are avail-
able for thermal package designers, such as FLOTHERM3

and COMSOL.2 Recently, Yang et al. presented a spa-
tially and temporally adaptive thermal analysis technique,
ISAC,16 which considerately accelerates the FEM. Despite
its higher implementation complexity, ISAC achieves one
to two orders of magnitude speedup over COMSOL,
making practical its use within IC synthesis algorithms.

There exists a well-known duality between heat flow
and electrical current flow, since both are described by
exactly the same differential equations. Heat flow can be
described as a current passing through a thermal “resistor”,
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leading to a temperature difference analogous to a volt-
age. Lumped values of thermal resistance and capacitance
can be computed to represent the heat flow among units.
Based on this duality, equivalent circuits called compact
RC models can be constructed.15 Dynamic compact RC
models at the architecture level are preferable over FEM
due to their faster simulation speed.

Based on a compact thermal RC model, a transient ther-
mal simulator HotSpot9�15 has been developed to study
different DTM techniques in microprocessors. HotSpot
generates the thermal RC circuit dynamically when initial-
ized with a CPU floorplan. During thermal simulation, the
power values of blocks are fed into the HotSpot model by a
dynamic architectural power/performance simulator, such
as Wattch.8 Based on the present temperature of blocks,
HotSpot uses the fourth-order Runge-Kutta method (rk4)
to solve the differential equations that describe the RC cir-
cuit, and returns the new temperature of blocks at each
time step. In this way, the complete temperature profile of
an application can be computed step by step.

However, due to the use of a conventional integration-
based transient simulation method, HotSpot becomes inef-
ficient when attempting to obtain the temperature profile
of an entire chip for a given benchmark program. A typ-
ical benchmark program has tens to hundreds of billions
of instructions and the approach followed in HotSpot can
lead to a very long simulation time.

We notice the fact that the input power trace to a com-
pact thermal RC model is usually disctretized over a fixed
sampling interval, e.g., 3.3 �s, 5 �s, or 40 ms. During the
sampling interval time, the input power is assumed to be
constant. Traditional simulation methods used in HotSpot
are intended for continuous input power curves in gen-
eral cases. Such general purpose methods perform a large
amount of redundant computations in calculating thermal
responses to a constant power in a sampling interval.

This characteristic of the input power trace provides an
opportunity to accelerate the thermal simulation. The basic
idea is to identify redundant computations and replace
them with more efficient computations. We developed such
a method, TILTS (Time Invariant Linear Thermal System),
which is much faster than conventional methods without
any loss in accuracy for such type of input power traces.
We have integrated TILTS in the widely used architec-
tural level thermal simulator HotSpot. Experimental results
show that TILTS is hundreds of times, or even millions of
times faster than the original HotSpot, while generating the
same results as HotSpot. Based on TILTS, we also imple-
mented a lightweight runtime temperature monitoring tool
called Temptor to demonstrate an example application of
TILTS. To the best of our knowledge, TILTS is the first
method to utilize linear system formulation to accelerate
thermal simulations.

In Ref. [12], the authors propose a thermal moment
matching (TMM) method to accelerate the thermal

simulation by applying fast moment matching techniques
in the frequency domain. Their method is 79 times faster
than HotSpot with a maximum error of 0.37 �C, but is
restricted to estimating the thermal response to the DC
component in the input power trace: the AC components
are disregarded. Their estimate is an approximation due to
the reduced order of the dynamic system.

In Ref. [12], the authors extend the TMM method to
calculate the steady state thermal response to a periodic
power trace via the discrete Fourier transform, and use
the steady-state thermal response as an approximation for
the transient thermal response to the periodic power trace.
The error of the revised method, based on the figures in
Ref. [13], is about 0.3 �C.

The TMM method is a model order reduction (MOR)
method.6 Our TILTS method is complementary to MOR
methods. TILTS reduces the amount of computations in
the time domain, while MOR methods reduce the state
space size of the dynamic system. If both methods are
used, it is possible to perform fast thermal simulation for
large-scale systems. MOR methods usually cause some
degree of accuracy loss due to state space approximation.
TILTS does not incur any accuracy loss since the input
power trace is already discretized in its intended usage
scenarios.

Based on a linear system formulation, the time-
consuming integration computations are replaced in TILTS
by more efficient matrix multiplications, as is presented in
the following section.

2. LINEAR SYSTEM THEORY OVERVIEW

A linear system14 is described by its state equations, where
the state variables are system internal variables. Denote the
number of state variables by N , the number of inputs to
the system by M , and the state and input vectors by x�t�
and u�t�, respectively:

x�t�= �x1�t�� x2�t�� 	 	 	 � xN �t��
T

u�t�= �u1�t�� u2�t�� 	 	 	 � uM�t��
T

The linear system equation is:

ẋ�t�= Fx�t�+Gu�t� (1)

where F is an N ×N matrix, and G is an N ×M matrix.
These matrices are fixed for a time-invariant linear system.

For such a linear system, the complete response is
the sum of the zero-input response and the zero-state
response:1

x�t�= eFtx�0�+
∫ t

0
eF�t−�Gu��d (2)

The first term on the right hand side is the zero input
response due to the initial condition and the second term
is the response to the input impulse, u�t�.
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2.1. CPU Chip as a Linear System

A CPU chip is a thermal system that can be described by
its equivalent thermal circuit composed of thermal resistors
and capacitors. All of these components are linear compo-
nents, making it a linear system. The input to this linear
system is the power dissipated by each functional unit on
the chip, and its state variables are the temperatures of the
internal nodes in the thermal circuit.

Let M be the number of functional units which dissipate
power, and N the number of internal nodes in the thermal
circuit (N ≥ M). Denote the thermal resistance between
node i and j by rij , and the thermal capacitance to the
thermal ground (the ambient environment) by ci for node i.
For convenience, let 1/rii = 0 in Eq. (3). The CPU thermal
system obeys the following differential equation:

ciẋi�t�=−
N∑
j=1

1
rij

�xi�t�−xj�t��+ ũi�t�� i = 1�2� 	 	 	 �N

(3)
where x�t�= �x1�t�� 	 	 	 � xN �t��

T is the temperature vector
and ũ�t�= �u1�t�� 	 	 	 � uM�t��0� 	 	 	 �0�T , i.e., ũ�t� is u�t�
(the power vector) extended by N–M zeros, corresponding
to nodes which have no power dissipation associated with
them (e.g., thermal interface material, heat spreaders, heat
sinks, etc.).

Let D = �dij�N×N �C = �cij �N×N , where

dij =



−

N∑
k=1

1
rik

if i = j

1
rij

if i 
= j

(4)

cij =
{
ci if i = j

0 if i 
= j
(5)

Then, Eq. (3) can be rewritten as:

Cẋ�t�= Dx�t�+ ũ�t� (6)

C is a diagonal matrix, and thus it is easy to compute its
inverse C−1 and obtain the standard differential equation:

ẋ�t�= C−1Dx�t�+C−1ũ�t� (7)

Note that since ũi = 0 for i > M , only the leftmost M
columns of C−1 are useful in the second term in Eq. (7).
We can, therefore, construct an N ×M matrix G out of
the left M columns of C−1 and replace ũ by u. Thus, we
obtain an equation similar to (1) with

F = C−1D and G = left M columns of C−1 (8)

Therefore, a formula similar to Eq. (2) can be used to
calculate the transient temperature of the CPU.

The input power trace to the CPU is usually given as
a series of power vectors. In a sampling interval �t, the

power vector u�t� is constant, allowing us to simplify
Eq. (2) as follows:

x��t�= eF�tx�0�+
[∫ �t

0
eF��t−�Gd

]
·u (9)

We use this simplified equation to reduce the amount of
computation. Denoting

A = eF�t� B =
∫ �t

0
eF��t−�Gd (10)

we obtain the equation:

x��t�= Ax�0�+Bu (11)

Because the system is a time-invariant linear system, we
obtain the same equation for any interval �t with the same
matrices A and B:

x�n�t�= Ax��n−1��t�+Bu�n−1� (12)

where u�n− 1� is the power vector in the time interval
��n−1��t�n�t�.

We will use x�n� to represent x�n�t� for conciseness,
resulting in:

x�n�= Ax�n−1�+Bu�n−1� (13)

3. TIME INVARIANT LINEAR THERMAL
SYSTEM (TILTS) METHOD

Our transient thermal simulation method, TILTS, is based
on Eq. (13). Suppose that the number of power vectors
(called data points) in the input power trace u is n, and
the initial temperature is x0. TILTS is shown below:

Algorithm TILTS(x0�u� n)
(1) Calculate matrices D and C using HotSpot. Then cal-
culate matrices F and G using Eq. (8). Finally, calcu-
late matrices A and B for the sampling interval �t using
Eq. (10).
(2) For i = 1 to n do x�i�= Ax�i−1�+Bu�i−1�.

Denoting A= �a1a2 	 	 	aN � and B= �b1b2 	 	 	bM�, where
ai� i = 1� 	 	 	 �N and bi� i = 1� 	 	 	M are the i-th column
vectors in A and B, respectively, then for a given time
interval �0��t�,

x��t�=



ai� if xi = 1, xj = 0 �j 
= i�, uj = 0

bi� if ui = 1, uj = 0 �j 
= i�, xj = 0
(14)

That is, each column vector of the matrices A and B is
the step response to only one xi or ui. In our implemen-
tation, HotSpot is used to calculate the step response to
a single xi or ui over time �t, and then the matrices A
and B are obtained using Eq. (14). Therefore, while the
calculation of the matrices A and B still uses the conven-
tional integration-based method, this calculation is only
performed once with a computation time which is less than
0.01 seconds.
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Table I. The number of inputs M and the number of internal nodes
N in the equivalent thermal circuits for the Pentium Pro, Alpha, and
Pentium 4 processors.

Processor Number of nodes N Number of inputs M N/M

Pentium Pro 58 16 3.63
Alpha 21364 97 18 5.39
Pentium 4 76 22 3.45

3.1. Performance Analysis

In our experiments we studied the Intel Pentium Pro,
Compaq Alpha 21364, and Intel Pentium 4 processors. The
number of inputs M and the number of internal nodes N
in the equivalent thermal circuits are shown in Table I. The
floorplans of the Pentium Pro, Alpha 21364 and Pentium 4
processors are shown in Figures 1, 2, and 3, respectively.

In HotSpot, the transient temperatures are computed by
solving the thermal differential equation using a numerical
integration method based on the fourth-order Runge-Kutta
technique (rk4).15 In order to keep the truncation error of
rk4 small, the step size in rk4 must be very small. In one
sampling interval �t, tens of iterations of rk4 are required
to keep the truncation error negligible. The number of iter-
ations of rk4 in HotSpot during one sampling interval �t
is shown in Table II.

The computations in one iteration of rk4 consist of tem-
perature calculations at 4 time instants, which are roughly
equal to 4 times that of an Ax+Bu operation.

The numbers of floating-point multiplications (FPM) in
one iteration of rk4 and in the Ax + Bu operation are
shown in Table III. We can see from Table III that the
number of FPMs in one iteration of rk4 is roughly 5 times
that of the Ax+Bu operation, validating our analysis.
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In our TILTS method, we need only one step to calcu-
late the temperature at t = �t. The time consuming inte-
gration computations are replaced by one step of matrix
multiplications. Our new method saves many computations
performed by the fourth-order Runge-Kutta method used
in HotSpot. This way, we achieve identical results in a
much shorter computation time.

4. AN IMPROVED ALGORITHM CONTILTS

The performance of the TILTS algorithm can be fur-
ther improved without any loss of accuracy. Based on
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4 J. Low Power Electronics 3, 1–9, 2007



Han et al. TILTS: A Fast Architectural-Level Transient Thermal Simulation Method

Table II. The number of iterations of rk4 in the
HotSpot simulator.

Sampling interval �t Number of rk4 iterations
in HotSpot

3.33 �s 9
5 �s 13
10 �s 26
20 �s 51
50 �s 128
100 �s 256
5 ms 12800
40 ms 102400

Eq. (13),

x�p� = Apx�0�+
p−1∑
j=0

Ap−1−jBu�j�

= Apx�0�+
p−1∑
j=0

Lju�p−1− j� (15)

where
Lj = AjB� j = 0�1� 	 	 	 � p−1 (16)

We can precompute the matrices Ap and Lj � j =
0�1� 	 	 	 � p−1, and save them in a table for later use. This
is the motivation behind the revised algorithm.

The second term on the righthand side of Equation (15)
is the convolution of the input power trace and the step
response of the thermal system. We call the revised algo-
rithm CONTILTS (CONvolutional TILTS), and it is shown
below:

Algorithm CONTILTS(x0�u� n�p)
(1) Calculate matrices A and B for the sampling interval
�t as in TILTS.
(2) Calculate matrices Ap and Lj � j = 0� 	 	 	 � p− 1, from
A and B using (16).
(3) Divide the input power trace u into groups of size p
which are called windows. The n data points contain �n/p
such windows.
(4) For window i = 1 to �n/p do

x�i�= Apx�i−1�+
p−1∑
j=0

Lju��i−1�p+p−1− j�

where x�i� and x�i− 1� are the output temperatures of
windows i and i−1, respectively.

Table IV. The memory overhead of the Lj matrices for a window of p data points and the speedup ratio of floating-point
multiplications in the algorithm CONTILTS versus TILTS.

Number of FPMs in Number of FPMs in
Processor Window size p Memory size TILTS CONTILTS Ratio �N +M�/M

Pentium Pro 512 3.63 MB 2197504 478500 4.59 4.63
Pentium Pro 1024 7.25 MB 4395008 953636 4.61 4.63
Alpha 512 6.82 MB 5711360 903361 6.32 6.39
Alpha 1024 13.64 MB 11422720 1797313 6.36 6.39
Pentium 4 512 6.53 MB 3813376 861840 4.42 4.45
Pentium 4 1024 13.06 MB 7626752 1717904 4.44 4.45

Table III. The comparison of the number of floating-point multiplica-
tions (FPMs) in one iteration of rk4 in HotSpot to that in the Ax+Bu
operation.

Number of FPMs Number of FPMs in
Processor in rk4 Ax+Bu Ratio

Pentium Pro 20590 4292 4.797
Alpha 21364 57133 11155 5.122
Pentium 4 35188 7448 4.724

(5) Process the remaining �n mod p� data points using the
TILTS algorithm.

The Lj matrices introduce some memory overhead.
Assuming that a floating-point number is saved in 8 bytes
of memory, the memory overhead for the Lj matrices is
shown in Table IV. The memory overhead for a typical
window size of 512 is only 3.6 MB for modeling the Pen-
tium Pro processor, 6.8 MB for the Alpha processor, and
6.5 MB for the Pentium 4 processor, which are negligible
for modern desktop computers.

Although the memory space requirement of CONTILTS
is negligible for the main memory, it is larger than the
cache size of a modern microprocessor, and thus it will
cause cache corruption. This, however, will not have a sig-
nificant impact on the performance since spatial locality
can be exploited in matrix multiplication operations.

The calculation of the matrices Ap and Lj � j =
0� 	 	 	 � p− 1 takes less than 1 second, and is performed
only once. The method used to calculate matrix expo-
nents is not important in CONTILTS: since p is always
a power of 2, and A1024 = A210

, we only need 10 matrix
multiplications to calculate A1024. Matrix diagonalization
is not needed to accelerate matrix exponent computations
because the architectural level thermal model is always
a small-scale system. Furthermore, since we pre-calculate
these matrices before performing transient thermal simu-
lation, the efficiency of calculating the matrix exponents
does not affect the computation speed of the transient ther-
mal simulation later on.

For a window of p data points, p− 1 redundant Ax
operations are removed in the algorithm CONTILTS. The
number of floating-point multiplications is reduced from
p�N 2 +NM� to N 2 +pNM . The speedup ratio s is:

s = p�N 2 +NM�

N 2 +pNM
= p�N +M�

N +pM
(17)
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When p→�� s→ �N +M�/M . Therefore, the maximum
speedup ratio of the algorithm CONTILTS over TILTS is
�N +M�/M .

The numbers of floating-point multiplications in TILTS
and CONTILTS are shown in Table IV. From Table IV,
we can see that the speedup with a window size of 512 is
already very close to the maximum speedup ratio, so 512
is large enough for the algorithm CONTILTS. N is about
4 to 5 times M in the Pentium Pro, Alpha, and Pentium 4
processors. A speedup of 5 to 6 is therefore expected with
the revised algorithm CONTILTS compared to TILTS.

5. STEADY STATE TEMPERATURE

We next derive an equation to calculate the steady state
temperature of a CPU chip.

x�1� = Ax�0�+Bu�0�

x�2� = Ax�1�+Bu�1�= A2x�0�+ABu�0�+Bu�1�

	 	 	

x�n� = Anx�0�+An−1Bu�0�+ 	 	 	+Bu�n−1�

= Anx�0�+
n−1∑
i=0

An−1−iBu�i� (18)

When n→��An → 0, and if we use the average power
vector u to replace every power vector u�i� in (18), we
can get the approximate steady state temperature x���.

uj =
∑n−1

i=0 uj�i�

n
� j = 1�2� 	 	 	 �N (19)

u = �u1� u2� 	 	 	 � uN �
T (20)

x�n�≈ Anx�0�+ �An−1B+ 	 	 	+B�u

= Anx�0�+
n−1∑
i=0

AiBu

= Anx�0�+ �I−A�−1�I−An�Bu

(21)

x���= �I−A�−1Bu (22)

In HotSpot, the steady state temperature is calculated
with the following method: Let �x�t�= ẋ�t��t= �Fx�t�+
Gu�t���t = 0, we can then get the equation:

x�t�=−F−1Gu (23)

We notice that for a small time interval �t,

A = eF�t ≈ F�t+ I (24)

and

B =
∫ �t

0
eF��t−�Gd ≈ G�t (25)

thus �I − A�−1B ≈ −F−1G. Eq. (23) is approximately
equivalent to Eq. (19) for a small time interval �t.
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Fig. 4. The comparison of the computed steady state temperatures using
the TILTS method to those computed by the HotSpot simulator.

The computed steady state temperatures for the gcc
benchmark (for �t = 3	33 �s) are shown in Figure 4,
which also shows the steady state temperatures computed
by the HotSpot simulator. We can see from Figure 4 that
they agree very well. The maximum temperature differ-
ence is 0.03 �C.

6. EXPERIMENTAL RESULTS

Pre-calculation of the matrices A�B�Ap, and Lj � j =
0�1� 	 	 	 � p−1 takes less than 1 second for a typical win-
dow size of p = 1024. Since these pre-computations are
done only once, this overhead is amortized over all simu-
lation steps, making it negligible. For any given processor,
these matrices are fixed, and we only need to calculate
them once and use them for any input power trace.

We used in our experiments version 3.0.2 of the HotSpot
simulator. Our algorithms are implemented in C, and have
been incorporated into the HotSpot simulator.

We evaluated our results by running several SPEC2000
benchmark programs4 to generate the power trace files.
After that, the same power trace file was fed into both the
original HotSpot simulator and the modified HotSpot sim-
ulator with our proposed methods, to enable a comparison.

The power traces for the Pentium Pro and Alpha pro-
cessors have been generated using the Wattch simulator.8

The sampling interval for the Pentium Pro processor in our
experiments is 5 �s, and for the Alpha 21364 processor
is 3.3 �s. The power trace for the Pentium 4 processor
was generated through power modeling based on runtime
performance counter readings from a real Pentium 4 pro-
cessor. The sampling interval of the Pentium 4 processor
is 40 ms, which is the smallest interval allowed by the tool
for collecting power traces in a real Pentium 4 processor.
It is a limitation imposed by the power trace collecting
platform. Although such a long interval is not reasonable
(or practical) for the HotSpot simulator, we can still see
from such experiments the benefits we can expect from
TILTS in some special applications.

The experiments were performed on a 3 GHz Intel
Pentium 4 machine. The speedups of our methods over

6 J. Low Power Electronics 3, 1–9, 2007
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Table V. Comparisons of computation times for different benchmark programs between our TILTS and CONTILTS methods
and the HotSpot method.

Processor Bench-mark Interval �t (�s) Number of intervals HotSpot (s) TILTS (s) Speed-up CONTILTS Speed-up

Pentium Pro gcc 5 20 M 15.8 K 237 67 59 s 268
Pentium Pro mgrid 5 20 M 15.8 K 238 66 59 s 268
Alpha gcc 3.33 20 M 28 K 592 47 129 s 217
Alpha mgrid 3.33 20 M 28 K 592 47 129 s 217
Pentium 4 gcc 40000 2500 26 K 0.05 520 K 13 ms 2 M
Pentium 4 mgrid 40000 2500 26 K 0.05 520 K 13 ms 2 M
Pentium Pro gcc 100 1 M 15.6 K 12 1300 3 s 5200
Alpha gcc 100 1 M 40 K 30 1333 6.5 s 6154
Pentium 4 gcc 100 1 M 26 K 20 1300 5 s 5200

the method used in HotSpot are shown in Table V. For
the algorithm CONTILTS, we used p = 1024 in our
experiments.

When generating the same temperature trace, our TILTS
algorithm was 67 times faster than the HotSpot simulator
for the Pentium Pro processor (�t = 5 �s), 47 times faster
for the Alpha processor (�t = 3	3 �s), and 0.5 million
times faster for the Pentium 4 processor (�t = 40 ms).
The extent of the speedup for the Pentium 4 is mainly
due to the very large interval which we had to use. Our
CONTILTS algorithm is 268 times faster than the HotSpot
simulator for the Pentium Pro processor (�t = 5 �s), 217
times faster for the Alpha processor (�t = 3	3 �s), and
2 million times faster for the Pentium 4 processor (�t =
40 ms). None of our methods loses any accuracy compared
to HotSpot.

We also did some experiments for a sampling inter-
val of 100 �s for all three processors. A 100 �s inter-
val results in high performance of TILTS while preserving
simulation accuracy (described in the next section). For
such a sampling interval, TILTS is 1300 times faster than
HotSpot, and CONTILTS is about 6000 times faster than
HotSpot.

The speedup ratio is determined only by the number of
inputs M , the number of internal nodes N in the equiva-
lent thermal circuit, and the sampling interval �t. We can
see from Table V that the speedup is independent of the
benchmark program.

7. APPLICABILITY AND LIMITATIONS

The TILTS method is only intended for small linear sys-
tems such as the architectural level thermal model, and not
for large-scale linear systems with millions of nodes. For
large-scale systems, model order reduction is necessary,
which is complementary to our TILTS method. The TILTS
method is not scalable for large systems by itself.

Also, the TILTS method is not intended to calculate
the thermal response to continuous input power traces. It
is only intended to calculate the thermal response of dis-
cretized power inputs, e.g., the application of runtime tem-
perature monitoring in Temptor (described below).

Although linear system modeling of thermal systems is
not new, the TILTS method is novel in utilizing the specific
properties of the input power trace to accelerate thermal
simulations. As a result, TILTS is simple and effective in
reducing the amount of computations in transient thermal
simulations, helping HotSpot users accelerate their ther-
mal simulations without any accuracy loss. To the best of
our knowledge, no such linear system based method that
utilizes the fact of constant power trace during a fixed
sampling interval has been proposed for architectural level
thermal simulation.

We also want to emphasize that the matrices A and B in
TILTS are calculated using the rk4 method. TILTS makes
use of linear system formulation to eliminate unnecessary
computations when the input power trace is constant over
a fixed sampling interval. Therefore, TILTS does not lose
any accuracy if the input power trace is discretized.

One characteristic of the TILTS method is that the num-
ber of FPMs is fixed for one temperature calculation inter-
val. We can thus choose different temperature calculation
intervals for different purposes. To reduce the overhead of
temperature calculations, we can use a longer interval, or if
a more accurate temperature estimation or finer granular-
ity is required, we can use shorter intervals. In such cases,
error-vs-computation overhead tradeoffs must be made for
certain purposes.

We did some experiments to see the impact of the sam-
pling interval length on temperature calculation accuracy.
The calculated temperature for a sampling interval of �t=
3	333 �s served as the baseline. We tried 2, 4,	 	 	, 128
times of the base sampling interval �t, and calculated
the temperature errors. The maximum temperature errors
for 24 SPEC2000 benchmarks are shown in Figure 5. We
can see from Figure 5 that when the sampling interval
is 16�t = 53 �s, the maximum temperature error is only
0.002 �C, which is clearly acceptable. When the sampling
interval is 32�t= 107 �s, the maximum temperature error
is only 0.003 �C, still acceptable. Even when the sam-
pling interval is 128�t = 427 �s, the maximum tempera-
ture error is less than 0.04 �C. Thus, a very small sampling
interval length does not always increase accuracy. A sam-
pling interval of 100 �s will give almost the same results
as the original interval. Therefore, we can use a sampling
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Fig. 5. Temperature errors for different sampling intervals.

interval of 100 �s and still guarantee a sufficiently high
accuracy in most cases while taking advantage of higher
speedup when using TILTS or CONTILTS. The speedups
of TILTS and CONTILTS for a 100 �s interval are shown
in Table V.

8. APPLICATION TO RUNTIME
TEMPERATURE MONITORING

To show the effectiveness and usefulness of TILTS, it has
been applied to runtime temperature monitoring. Based on
TILTS, we developed a lightweight runtime temperature
monitoring tool called Temptor. Using the internal perfor-
mance counters in the Pentium 4 microprocessor,5 Temptor
is able to estimate runtime temperature distributions in this
chip.

Temptor uses hardware performance counters to mea-
sure processor activities, based on which the power
consumption of each functional unit is estimated.10 The
temperature of each functional unit is then calculated using
the TILTS method, providing detailed temperature distri-
bution information at the architecture level.

Most importantly, the bottleneck of inefficient tempera-
ture calculations in11 is resolved in Temptor. The system
overhead of Temptor is negligible. In,11 to reduce the large
overhead of temperature calculations, instead of using the
original rk4 method in Hotspot, the authors implement an
improved Runge-Kutta-Fehlberg method (rkf) with adap-
tive step size to minimize the temperature calculation time.
The rkf method is more efficient than the rk4 method
despite its higher complexity. Even with the improved rkf
method, the authors of Ref. [11] have observed more than
50 % performance degradation for some SPEC2000 bench-
marks. They point out that a more efficient temperature
calculation method is needed, which is exactly what the
TILTS method attempts to do.

The experimental results for the gcc benchmark using
Temptor are shown in Figure 6, which shows the temper-
atures of the IntReg, FPReg, and Rename units, and the

40

50

60

70

80

90

100

110

120

0 10 20 30 40 50 60 70 80 90 100

T
em

pe
ra

tu
re

 (
C

)

Time (seconds)

IntReg
FpReg

Rename
Avg

Fig. 6. Temperatures for gcc benchmark.

average temperature of the whole chip. Without TILTS,
temperature calculations for such a long time would affect
the application performance significantly as reported in
Ref. [11].

9. CONCLUSIONS

In this paper, we have proposed a new transient thermal
simulation method for CPU chips, which utilizes the fact
that the input power trace is discretized over a fixed sam-
pling interval, thus allowing us to calculate transient tem-
peratures on a chip for long simulation times. Based on a
linear system formulation, our TILTS algorithm achieves
the same accuracy as that of conventional thermal sim-
ulation tools, and is orders of magnitude faster. Com-
pared to the HotSpot simulator, TILTS achieves speedups
of 1300 for the processors in our experiments for an
appropriate sampling interval of 100 �s. With some addi-
tional memory space, the revised algorithm CONTILTS
is about 6000 times faster than the HotSpot simulator for
the processors in our experiments. Since thermal aware
designs and dynamic thermal management are becoming
more important today, the proposed methods in this paper
can prove to be very useful for temperature aware chip
designs.
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