
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO, 9, SEPTEMBER 1987 1019

The Effect of Operation Scheduling on the
Performance of a Data Flow Computer

MICHAEL GRANSKI, MEMBER, IEEE, ISRAEL KOREN, SENIOR MEMBER, IEEE, AND GABRIEL M. SILBERMAN, MEMBER, IEEE

Abstract-The effect of incorporating a priority scheme into a x
data flow computer is studied in this paper. Specifically, we deal
with the scheduling of instructions in a data flow program, and
the mechanisms by which such scheduling may be implemented
within a data flow computer. +2
We show that the assignment of priorities to data flow

operations is a special case of a problem in scheduling theory, and
also belongs to the NP-complete class of problems. Therefore, we of T5
develop a heuristic approach, based on the well-known Critical in
Path algorithm, as a basis for determining instruction priorities.
Our conclusions, based on the simulation of programs exe-

cuted in a modified data flow computer, show that adding a '
priority mechanism is not justifiable in the general case. This is
due mostly to the inability to reach the potential improvement /
offered by scheduling operations, because of implementation
restrictions. Nevertheless, certain algorithms (e.g., DFT) can still
benefit from the proposed scheme, mainly because of their highly Z
regular, static structure. Fig. 1. An example of a DF graph representing the computation y =

x + 2, z = (sin X2)/(X2/7).
Index Terms-Arbitration network, data flow, list scheduling,

Modified Critical Path algorithm, performance.
operator operates only on its private operands and produces

I. INTRODUCTION new operands to be consumed by other operators.
OVER the past few years, several architectures have been In the following we use the terms instruction and operator

proposed as the basis for data flow (DF) computers interchangeably, i.e., the material presented here applies
[1]-[4]. Even though these machines differ in their architec- equally to operators which represent single or multiple
ture and the DF language(s) they support, they all share the instructions. Whenever there is a difference between the two
same computation model-the DF graph model (See Fig. 1). cases, it is noted in the text.
The DF graph model represents a program by a directed There are still many open questions concerning architec-

graph G(T, E) where each node T (called an operator) stands tures and programming languages for DF computers. This
for either an individual program instruction or a group thereof, paper concentrates on one of them-the scheduling of instruc-
and the arcs E carry operands (tokens) from one operator to tions in a DF computer (this subject was first mentioned in
another. As opposed to the classical von Neumann model, [3]). Conceptually, instructions in a DF program can be
there is no sequential control flow and, therefore, no program executed as soon as their operands become available. In
counter. Instead, each operator has its own firing rule which practice, however, there are not enough processors to perform
defines the conditions under which it is ready for execution. all these instructions and thus some of them are executed
Consequently, at any moment there may be many operators before others. The order in which these instructions are
(instructions) ready for execution and all of them may be executed is neither defined in the compiler, nor supported by
executed in parallel. In the DF model there is no central the DF architecture. Our purpose is to study the cost
memory with common variables on which the program's effectiveness of fixing, at compile time, the execution order of
modules operate and, therefore, no side effects. Every the instructions in a DF program, in conjunction with the

introduction of a scheduling mechanism into the DF architec-

Manuscript received January 15, 1985; revised February 27, 1986. ture to enforce this order.
M. Granski was with the Department of Electrical Engineering, Technion- Scheduling of operations in a DF computer has the potential

Israel Institute of Technology, Haifa 32000, Israel. He is now with Zoran of speeding up the execution of programs. However, a
Microelectronics, Haifa, Israel. considerable overhead is expected when a scheduling mecha-

I. Koren is with the Department of Electrical and Computer Engineering,
University of Massachusetts, Amherst, MA 01003, on leave from the nism iS incorporated into the DF computer. It iS our goal to
Department of Electrical Engineering, Technion-Israel Institute of Technol- investigate this question and determine the conditions under
ogy, Haifa 32000, Israel. which scheduling of operations in a DF computer is beneficial.

G. M. Silberman is with the Department of Computer Science, Technion- InteexsciotharietuefteMTDFom tr
Israel Institute of Technology, Haifa 32000, Israel.IntenxsciotharietuefteMTDFom tr
IEEE Log Number 8715298. iS briefly presented and the scheduling problem is described.

0018-9340/87/0900-1019$01 .00 ©C 1987 IEEE

1020 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 9, SEPTEMBER 1987

Distribution Arbitration
Network .Network.

~~~~~> Cel Blc Prcso

Fig. 2. The MIT data flow architecture.

In Section III a formalization of the scheduling problem for a FIFO
DF graph is given and a heuristic algorithm to solve the
problem, called Modified Critical Path (MCP), is described.

R

. .ce
Section IV is devoted to the architectural features which upote 0 Activit 4k etc

implement the scheduling. In Section V we present some Store

simulation results and our conclusions are presented in Section Fig. 3. Implementation of a cell block.
VI.

II. DF COMPUTERS AND THE SCHEDULING PROBLEM 2 5 9

Extensive research has been done in the area of DF Pi T2 T4 | 3

computing and several suggested architectures for a DF I2
computer have emerged [1]-[4]. In each of these architectures

(a)
a scheduling mechanism can be incorporated. To illustrate a ( )
possible implementation of our suggested scheduling al- 2 5 8 11

gorithm, we have selected the MIT DF architecture proposed ' L$L9
by Dennis [1], [5] and shown in Fig. 2. A similar approach P2 3

could be taken in implementing these features in other DF
architectures, but their study is beyond the scope of this paper. (b)

The MIT architecture provides for a large number (thou- Fig. 4. Two possible schedules of the DF graph of Fig. 1 in a Gantt-chart

sands) of processors, a distribution network, a number of cell form. The execution times of the instructions are T== 1, = 2, T3 = 4,
blocks, and an arbitration network. The program instructions 4 - 5 - 6 3
are stored in the cell blocks. Once an instruction becomes
ready for execution, it is transferred with its operands to the subsequent transfer by the arbitration network. Special atten-
arbitration network. The function of this network is to route tion is given in this protocol to the resolution of conflicts
ready for execution instructions to idle processors. After the among requests from several processors.
instruction is executed, its results are transferred to the To illustrate the effect of the order in which instructions are
distribution network. This network passes the results back to selected for execution on the total execution time of the
the appropriate cell blocks. program, Fig. 4 gives two possible schedules of the DF graph

Fig. 3 describes the implementation of a cell block. The of Fig. 1. The schedules are given in a Gantt-chart form [6].
update unit receives result packets from the distribution A solution to the scheduling problem must include a method
network. A result packet consists of a result operand and for ordering the operations in a DF graph (at compile time)
destination address(es) used by the update unit to pass the and appropriate modifications to the DF architecture to enable
result operand to the proper target instruction(s). If an enforcement of this order during program execution. In the
instruction needs no more operands and, therefore, it is ready next section we describe in detail the scheduling problem for a
for execution, the update unit moves its address to the DF graph and present some solutions. Then, in Section IV we
instruction (FIFO) queue. The fetch unit takes the instruction describe the architectural mechanisms needed to implement
addresses from this queue and generates operation packets for these solutions within a DF computer.
the arbitration network. An operation packet consists of the III. SCHEDULING A DF GRAPH
instruction opcode, operand(s), and result address(es). A Sch

Operation packets must then proceed through the arbitration eduling Problems
network (refer to Fig. 2) to a processor for execution. Ideally, Scheduling theory includes a large number of models and
if there are any idle processors when an operation packet problems [6]-[8]. One type of scheduling problem consists of
becomes available, that processor should receive the packet 1) A set P = {P1, - - *, Pr} of r identical processors.
and act accordingly. But, in practice, the capacity of the 2) A set T = { T,, * * , T,n} of n tasks.
arbitration network could cause a departure from this ideal 3) A partial precedence order among the tasks. The
behavior, because of conflicts between several processors notation T, < 77, means th-at 7j can be executed only after the
requiring operation packets at the same time. This potential for execution of T, has been completed. Usually the precedence
a bottleneck, together with the realization that the arbitration order is given by a directed acyclic graph (DAG) G(T, F) in
network must take part in the enforcement of the schedule, which there is an arc from Ti to 77, if and only if T,< T).
lead us to search for an appropriate protocol to handle the 4) A function t: T -(0, so) which assigns an execution
request of operation packets by the processors, and their time to every task.



GRANSKI et al.: EFFECT OF SCHEDULING ON PERFORMANCE OF DATA FLOW COMPUTERS 1021

5) A performance measure. For example, the mean flow 1' lexicographically if 1) the two sequences agree up to j, for
time, which is the average of the flow times (i.e., the finish some j, but Xj < X,' (i.e., there exists a j, 1 5 j < k and 1
times) of the tasks. cj < k', such that Vi, I i < j, Xi = X' and Xj < XJ),
The objective is to find a schedule of the tasks Ti, 1 c i c or 2) the two sequences agree but list I is shorter (i.e., vi, 1 c

n, on the processors Pj, .1cj c r, which satisfies the partial i c k, Xi = Xi' but k < k').
precedence order and that optimizes the performance measure. Given a scheduling problem with a precedence graph G(T,
Formally, a schedule should assign to every task the proces- E), let t4 be the execution time of node T,, Xi be the node's
sor(s) on which it will be executed and indicate the exact time weight. Let Si denote the descendant group of Ti and (Si)
interval during which it will be performed. (In the case of denote the index group of Si, i.e.,
identical processors, specifying the time interval for each task
suffices to define the schedule.) 5i _ {TjT*T1E G(T,E)} (3.1)

Another parameter of the scheduling problem determines (Si) j IjTjE Si}. (3.2)
whether to allow the interruption (and subsequent resumption)
of a task before its completion. A schedule which allows such In the following CP algorithm, Part A computes the weight of
interruptions is referred to as a preemptive schedule, while every node in G(T, E), while Part B builds the priority list L.
nonpreemptive scheduling refers to systems without this Algorithm CP (Critical Path):
capability. In the following we deal with a special case of Part A:
nonpreemptive scheduling called list scheduling. For sched-
ules in this category, the exact time interval and the processor A. 1 For every leaf node Ti (satisfying Si - b) set Xi = ti.
assigned to a given task need not be specified. Tasks are A.2 Let Ti be a node such that every Tj, Tj E Si, has been
ordered by priority, and whenever a processor becomes idle, it given a weight Xj, then
selects from the priority list the next task which is ready for = t, + max (3.3)
execution. (The reason for choosing this type of schedule is its j } (Si)
suitability for implementation within a DF architecture, as will
become apparent in later sections.) The difference between list (i.e., the weight of a node equals its execution time plus
scheduling and the more general nonpreemptive scheduling is the maximum weight of its descendants).
that in the former a processor cannot remain idle if there is a A.3 Repeat step A.2 until all the nodes in the precedence graph
waiting task. Fig. 4(a) shows the best nonpreemptive schedule have been assigned weights. The successful completion
for the problem in Fig. 1, while Fig. 4(b) depicts the best list of this process is assured because there are no cycles in
schedule with the priority list being L = (T2, T1, T3, T4, T5, the graph.
T6) Part B:
The solution space of a scheduling problem is enumerable B. 1 For every node Ti in G(T, F) list the weights of all its

and, therefore, it is possible to find an optimal solution descendants in a decreasing order 1(T1).
through complete enumeration. Obviously, this is practical B.2 Let L' be the group of nodes with maximum weight in
only for the smallest problems due to the large number of G(T, E). Let Ti be a node in L' such that there is no
possible solutions. Unfortunately, most of the scheduling other' in L' for which l(Ti) < 1(T) lexicographically.
problems are NP-complete [6], [9] and there is no known A .

to L

polynomial algorithm for their solution. A more practical G(T oE)t
approach is to use heuristic algorithms which ensure polyno- (t, F) .
mial search time, but do not always find an optimal schedule. eptsd
The best known heuristic algorithm for list scheduling is the empty.

Critical-Path (CP) algorithm [6], and most of the suggested For the graph of Fig. 1 the CP algorithm yields the
heuristic algorithms for scheduling problems are variations of following weights: XI = 5, X2 = 8, X3 = 4, X4 = X5 = 6,
it. The basic idea is to assign to every node (task) in the X6 = 3. The resulting priority list is L = (T2, T1, T3, T4, T5,
precedence graph a weight that equals the maximum sum of T6) and yields an optimal list schedule [see Fig. 4(b)].
execution times of nodes on any directed path from this node Lemma 1: Let n be the number of nodes in the precedence
to a leaf in its corresponding subgraph. The tasks are given graph. If the number of node descendants is bounded by s then
priority in descending order of weights. This way the the complexity of the CP algorithm is Op = 0(n2s),
algorithm finds the maximum weight critical paths in the graph otherwise Op = 0(n3).
and assigns higher priorities to the nodes in these paths. For Proof: See Appendix. U
example, T2 in Fig. 4 has two equal weight critical paths: T2 The polynomial CP algorithm does not always find the best

1'4 -T 6 and T2 -~Ts T6. priority list. However, some researchers [10], [11] have
Several forms of the CP algorithm have been published. The shown that it finds optimal or near optimal schedules most of

one described below is based on a special case (for two the time. There are even some important special cases in
processors) which appears in [6], and serves as the starting which the CP algorithm has been proven to be optimal. Hu
point for the proposed DF scheduling algorithm. [12], in one of the first results in scheduling theory, proved

Definition: Let I = (Xl, X2, * * , Xk) and 1' = (X1', X2, that the CP algorithm is optimal if all the tasks have equal
* *. Xk,$) be sequences of positive numbers. We say that I < execution times and the precedence graph is a tree (or forest).



1022 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 9, SEPTEMBER 1987

Coffman and Graham [13] have shown that the CP algorithm conditional node we have
is optimal if all the tasks have equal execution times and there
are only two processors. (But if we allow tasks of two kinds Pij= 1. (3.4)
with execution time of one or two time units the problem is j KSi)
already NP-complete [9].) Let Dk(Tk, Ek) denote a deterministic subgraph of G

B. The Scheduling Problem for a DF Graph obtained by the following procedure.
For every conditional node in G choose one output arc and

Scheduling for a DF graph is an instance of the more delete all the others. (As a result there may be some nodes and
general scheduling problem described in the previous subsec- arcs which do not have a directed path from any root of G to
tion, where them; delete all these nodes and arcs.) The resulting subgraph

1) The operators (nodes) of the DF graph are the tasks to be is a deterministic subgraph of G. Executing G really means
executed. executing one of its deterministic subgraphs.

2) The set of edges in the DF graph convey tokens from one Let p(Dk) denote the probability that the deterministic
operator to another, and together with the firing rules, replace subgraph Dk will be executed. If the conditional nodes are
the partial precedence order. (Notice that a DAG is a special independent, then p(Dk) is equal to the product of the fire
case of a DF graph since the latter might have conditional probabilities of all arcs in Dk,
nodes and loops.)

3) The performance measure is the total execution time of P(Dk) = pjj (3.5)
the DF graph. e(T,, Tj)EEk

4) Assignment of execution times to tasks is based on an The assumption that all the conditional nodes are indepen-
estimate of how long it takes for a DF operator to execute. dent is unrealistic since conditional nodes often check depen-
(For the case where operators represent single DF instruc- dent (or even the same) conditions. Nevertheless, this assump-
tions, this is trivally done at compile time.) tion is necessary to make the analysis of the graph tractable.

5) The scheduling is nonpreemptive because it is not The conclusion is that the calculation of the mean critical path
possible to interrupt the execution of a basic DF operator. length presented here is only an approximation.

The approach we take to the solution of this problem, which The probability that a node T.will be executed equals the
is also amenable for implementation within a DF architecture sum of the probabilities of all deterministic subgraphs which
(as we shall see in Section IV below), is based on list include T*. Formally, let KDk)i denote the index group of all
scheduling. Another advantage with this type of schedule is the subgraphs which contain T1,
that there is no need to specify in advance the actual time
interval during which an operator will be executed. This KDk)* _ {k Ti E Dk} (3.6)
enables the production of schedules which can handle the case
of DF graphs with conditional nodes and loops which are Let p(T) denote the probability that Ti will be executed. Then
repeated a variable number of times.
Our approach to list scheduling is to extend the CP p(T,)=T p(D,). (3.7)

algorithm (as defined on DAG's) to handle conditional nodes IE KDk)i
and loops. This is the subject of the next two subsections.

For every deterministic subgraph Dk we will use the CP
C. Scheduling a DF Graph with Conditional Nodes algorithm to find the critical path length of its nodes. Let Xk be

A conditional node is a node with two or more output arcs. the critical path length of T, in Dk. The mean critical path of T1
Its firing rule directs the result operand to one and only one is the average weight of the critical path lengths of Ti in all the
output arc. The decision is made at run time depending on the subgraphs and is given by
input operands, and, therefore, the critical path through a - 1
conditional node cannot be evaluated before execution. Xi X$p(D,). (3.8)
The approach taken here follows that of Martin and Estrin in P ( T) I (Dk

[14]. Assume that for every output arc of a conditional node
we are given the probability that the node will fire and produce Example 3.]: A simple DF graph with one conditional node
an output token on that arc. This probability is called the fire (T3) is shown in Fig 5. The fire probabilities of its output arcs
probability of the arc. Before the actual execution of the DF are
graph, it is only possible to evaluate the expected value of the 2
critical path. This value is called the mean critical path p34=p(e( T3, T4)) - 3=zp(e( T3, T5))=
length. In what follows we present a modification of Part A of 33
the CP algorithm which finds the mean critical path length for The graph has two deterministic subgraphs.
every node.

Let G(T,F) be anacyclic DF graph. Letp11denote the fire D1( T1, F): T1 -{ T_ 1'2, T3, T4, T6, T7}
probability of an arc e(T,, T)). If T, is a conditional node then E' = {~e( T,, T2), e( T,, T3), e( T2, T7),
Pi., is the probability that T, will produce a token on e(T1, T1).
If T, is not a conditional node then PUj = 1. Clearly, for every e( T3, T4), et(T4, 7'6), e( T6, T7)}



GRANSKI et al.: EFFECT OF SCHEDULING ON PERFORMANCE OF DATA FLOW COMPUTERS 1023

TABLE II
RESULTS OF EXAMPLE 3.2

/T, tf,Si i
S

\T, 2 {T2, T3} 35/3
switch T2 ~ ~ ~~~~~~~~~5{ T7} 8

(wch 73T2 1 {T4, T5} 29/3
T4XT, S {T6} 10
T5 1 I{T6} 6
T6 ~~2 {T7} 5

T7 3 3

Algorithm ACP (Approximate Critical Path):
Given a DF graph G(T, E), let ai denote the approximation

of the mean critical path length of node Ti.
Fig. 5. A DF graph with a conditional node.

* ~~~1)For every leaf node T1 (satisfying 5, - @) set a,i =
(where ti is the execution time of T1).

TABLE I 2) Let Ti be a node such that every T7, Tj E Si, has been
RESULTS OF EXAMPLE 3.1 assigned a weight a, then

T4tj p(Ti) X(t+ E xia1, if T, is a conditional node;

T, 2 1 13 10 12 je(Si)
T2 5 1 8 8 8 (3.9)
T3 1 1 11 7 29/3 t,+ max {a1}, otherwise.
T4 5 2/3 10 - 10 iG(S,)
T5 1 1/3 - 6 6
T6 2 1 5 5 5 3) Repeat step 2) until all the nodes in the precedence graph
T7 3 1 3 3 3 have been given weights.

Example 3.2: The results of applying Algorithm ACP to the
D2( T2, F2): T2= {IT, T2, T3, T5, T6, T7} DF graph of Fig. 5 are given in Table II. Comparing these to

Table I we find that the approximations equal the mean critical
E2={e( Ti, T2), e( T1, T3), e( T2, T7), path lengths for all the nodes except TI, for which XI = 12 >

e(T3, 1T5), e(T5, 776), e(T6, T7)}. (35/3) = a1.
It can be proven [15] that for every node in the graph ai <

The probability that a subgraph is executed is calculated Xi-
using (3.5). D. Scheduling a DF Graph with Loops

2 1 The CP algorithm cannot be applied to a DF graph with
p(D,) =3, p(D2) = 3 loops since every node in the loop requires that all the others

be given a weight before a weight can be assigned to it. Each
The execution probabilities of the nodes are computed from node in a loop is executed several times, every time with a
(3.7). The CP algorithm yields the critical path length of the different path length from it to the nearest leaf. The ideal
nodes in D, and D2 (XI and X2, respectively). The mean solution would be to assign each node a dynamic weight, but
critical path length is found using (3.8). The results are the list scheduling scheme forces a fixed priority.
summarized in Table I. A common approach in similar problems with loops is to
The computation of the mean critical path length according unfold the body of the loop according to the number of

to the definition in (3.8) is very costly. If a DF graph has d iterations. This approach is inappropriate here because the
conditional nodes with two output arcs each, then the number number of iterations is not always known in advance. The
of deterministic subgraphs is of the order of 2d. The solution we present here is again based on work by Martin and
calculation of the mean critical path length requires 2d x O0, Estrin [16]. We first transform the original graph into an
steps and might render this method impractical. acyclic graph. (The purpose of the transformation is only to

Consequently, Algorithm ACP below replaces Part A of aid in assigning priorities; once a priority list has been found,
the CP algorithm, to calculate an approximated value for the the original graph is executed.) For simplicity, we discuss only
mean critical path length. The new algorithm has the same loops with one input node and one output node. An analysis of
complexity as the original CP algorithm, regardless of the more complicated cases can be found in [16].
number of conditional nodes. After assigning each node a The input and output nodes are called the entry and control
weight that is an approximation of its mean critical path nodes of the loop, respectively. The mean critical path length
length, (unchanged) Part B of the CP algorithm is executed as from the entry node to the control node is not affected by the
before. cyclic to acyclic transformation (performed by Algorithm CA,



1024 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 9, SEPTEMBER 1987

presented below). Other properties of the loop, for example switching network called a delta network. A N x N delta
the variance of the critical path length, are not preserved [16]. network with N input ports andN output ports is built of basic
We will distinguish between two types of loops, determi- units called routers. Each router hasp inputs and p outputs and

nistic and random. In the former, the loop is executed a fixed the routers are arranged in n stages such that N = pn. The
number of times-N, while in the latter, execution of the loop interconnections between consecutive stages in the network
continues with probability p. If for a random loop we assume enable a communication path between every input and every
different iterations to be independent, the number of actual output port. The routing of a packet in the network is
iterations can be represented by a random variable N with determined by an n digit number in base p which heads the
expected value N = 1/(I - p). packet and is called the packet address. The packet is routed
Algorithm CA (Cyclic to Acyclic Transformation) through the stages, passing one router in every stage. Every
For every loop in a given DF graph G(T, E) take the router chooses to transfer the packet to one of its outputs

following steps. according to one digit in the packet address. This way, the n
Let Te be the entry node and Tc be the control node. Let L digits of the packet address correspond to the n stages in the

be the set of loop nodes, which includes the entry and control delta network and every digit controls the passage through a
nodes and every other node which has a directed path either router in one of the stages. Dennis [1] suggested the use of a
from the entry node to it or from it to the control node. Let N delta network with 2 x 2 routers (p = 2), and n = 1og2 N
be the number of iterations. stages with N/2 routers each.

Comparing the delta network to a crossbar we find that in a

1) Eraseplythefexedback arc
e

e(T Te). crossbar the transfer time is constant and does not depend on
2)Mi the exof ntme lof n n N N, but the number of connections increases as O(N2). On the

other hand, in a delta network the number of connections
In summary, for a given DF graph a list schedule can be increases only as O(N log2 N), but the transfer time also

found by the following steps. First, use Algorithm CA to increases with N as 0(log2 N). Another problem in delta
eliminate all loops in the graph and adjust execution times of networks is that a packet being transferred might temporarily
loop nodes. Then, use the CP algorithm to find the priority block other packets. An accurate analysis [17] shows that the
list. If the graph has conditional nodes, replace Part A of the cost-performance ratio of the delta network is better than that
CP algorithm with Algorithm ACP. We shall refer to this of the crossbar.
process as the Modified Critical Path (MCP) algorithm. The distribution network can be implemented by a delta

network as described above. However, the implementation of

IARRELIZINTHE CHITEDTULI MECHANISMINADF the arbitration network raises some problems. First, assuming
ARCHITECTURE that all the processors are identical, an operation packet does

A method for finding a heuristic scheduling of a DF graph not have a unique address because it can be executed by any of
has been presented in the previous section. The result of the processors. Second, the load must be balanced among the
applying this algorithm (during compilation) to a DF graph is processors, and idle ones should be identified and new
the priority list which defines the list schedule for that graph. instrctions directed to them. Third, if scheduling is to be
In the following we describe the mechanisms used to enforce implemented, the routing of instructions by the arbitration
the above priorities while executing the DF program on the network must obey the priority list. These problems are
MIT DF architecture. discussed below.

A. Overview
First, the relative priority of the instructions (the priority B. Implementation of the Arbitration Network

list) must be present in the activity store along with the The arbitration network in the MIT DF computer can be
instructions themselves. The straightforward solution is to add implemented as a delta network with certain changes in its
a priority tag to each instruction in memory. The disadvan- management strategy and a special interconnection structure.

tages of this solution are the waste of memory space and the The input side of the network consists of N send units which
bounded number of priority levels. A better solution is to use receive operation packets from the fetch unit and transmit
the instruction's address as its priority. Then, when the them, one at a time, toN identical processors at the output side
program is loaded into the activity store, its instructions will of the network.
be arranged in descending order of priority. There are many forms of a delta network that provide a path

Next, we must be sure that the update unit, which transfers from every input to every output. We have chosen the network
results from the distribution network to the target instructions defined by the recursive construction shown in Fig. 6. Its
in the activity store, implements the desired schedule. This is advantage stems from the following property [15].
doneby passing result tokens with lower addresses first, which Property A: Whenever a router receives two operation
guarantees their earlier transfer to the instruction queue. packets at its inputs, the packet received through the upper

The main components of our implementation are the input port has originated at asend unit with aindex lower than
communication networks present in the MIT DF computer, that of the send unit which transmitted the other packet.
namely the arbitration and distribution networks. The communication protocol proposed for the arbitration

Dennis [1], [5] proposed to implement the communication network is based- on the following general strategy. The
networks of a DF computer as a special type of packet- transfer ofanoperation packet through the network is initiated



GRANSKI et al.: EFFECT OF SCHEDULING ON PERFORMANCE OF DATA FLOW COMPUTERS 1025

un ' r - - - 1 ports (not necessarily simultaneous requests), it will pass on
r-F+ 3sor both packets, each one to a different requesting processor.

4
outer router ProcesLor Phase 3: When a processor which issued a request receives

lunit 1 1 \ an operation packet, it issues an acknowledge signal along the

\/: *N/2xN/2 * transfer path to the send unit and thus terminates the
senjnd 2 > Al . network communication.

uX >> Q }The above protocol enables multiple packet transfers
through the network. The scheme of distributing the request

send
* \ \ YI router |generated by an idle processor to a maximum number of send

Il\/1 1 . units proved (in simulations) to be very effective. Every idle
processor which had a free path to a nonempty send unit

** / |received a packet in minimum time. In this scheme each router
|send N-4 *. / / \ router has to handle at any time instant, at most two requests, thus
lunit 1 % avoiding bottlenecks. Also, if there are several idle proces-

router sors, multiple packets sent in response to a single processor's
-sein* N/2 x N/2 request will be generally absorbed by these processors. Notice

/\ .network *. that operation packets are transmitted by send units using
\ otherwise (presently) unutilized paths in the arbitration net-

unitd2 I work, and are either passed to idle processors or canceled by
router router LI rcessor some router along the way.

send N-i I The protocol may introduce some changes to the priority
tunit i L _ _ _ _ _ list. If at a given time only a single packet is being transferred

Fig. 6. Recursive construction of the arbitration network. in the network, then the above protocol and Property A
guarantee that the highest priority instruction will be transfer-

by an idle processor, by sending a request towards the send red. However, if packets are being transferred in parallel
units. The network responds by transferring an operation (which is the usual case), then there might be some high
packet (from some send unit) to the requesting processor. This priority send units which will not receive the request at all (due
strategy of operation eliminates the need for prior knowledge to blockages by other transfer paths). Among the send units
about the processor in which the instruction will be executed. which do receive the request, the uppermost is selected. This
Another advantage is that the load is automatically balanced is a necessary compromise between the requirements of the
between the processors. scheduling algorithm and the network throughput.

In what follows, the phases of the complete communication A large delay between the execution of the current
protocol are presented. instruction and that of the next instruction by a processor can
Phase 1: When a processor becomes idle it sends a request be somewhat reduced by the following scheme. After the

signal to the router to which it is connected. This request is current instruction (or the last in a group of instructions, for
transferred (through dedicated lines in the arbitration network) the case of multiple instructions per operation packet) is
to a maximum number of send units in the form of a spanning decoded, its execution time is known and the processor can
tree, with the requesting processor as its root. Every router issue a request t<, time units before the end of execution (to, can
which receives a request signal from one of its right ports be set, for example, to equal the average transfer time through
(refer to Fig. 6) passes it to any of its left ports which is not the network).
engaged in a packet transfer. If a second request (from another Also to be considered is the mechanism by which operation
idle processor) is received by a router, it is not passed on. At packets move from the queue being filled by the fetch unit with
this point, the router has to remember only which right port(s) instructions ready for execution into the send units. The
had a request. possibility of organizing the send units themselves as a queue,
Phase 2: When a send unit receives a request and has an with packets entering at its tail (see Fig. 7) and being sent by

operation packet, it starts to transmit the packet and waits for the first unit which receives a request, proved to be inade-
either an acknowledge or cancel signal. It may happen that quate. Fig. 7 shows the steady state to which (as verified by
several send units received, at the same time, requests simulation) this solution brings the system, i.e., the last send
originating at the same processor and start to transmit their unit is engaged in a packet transfer and blocks the queue. All
packets simultaneously. However, only one packet will be other send units are empty and most of the processors are idle.
transferred to the processor. A router receiving two packets as When the blocking send unit ends its transmission and is filled
a response to a request from only one of its right ports, will with a new packet, it will immediately receive another request
pass on the packet received at its upper left port and send a and start transmitting again.
cancel signal back through its lower left port. According to In order to overcome this problem, an operation packet
Property A, the uppermost send unit which receives the queue is added in parallel to the send units, as shown in Fig. 8.
request transfers its packet successfully to the processor, while In this scheme, operation packets move up in the queue unless
all the other send units receive a cancel signal. If the router the send unit to their right becomes empty, in which case the
which received two packets had requests from both its right packet is passed to that send unit. Notice that this protocol



1026 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 9, SEPTEMBER 1987

MCP algorithm was tested by comparing the results of the
benchmark to the results of randomly generated priority lists.

|sendunit The Gantt chart of every graph in the benchmark was found
Arbitration Processor for the priority list of the MCP algorithm and for five

*elwork/ randomly generated lists. This was repeated for an increasing
number of processors until the minimum finish time (limited

Processor by the longest path in the graph) was reached.
send unit A typical result for the 32*32 DFT graph is shown in Fig. 9.

The curve marked MCP is the finish time when the MCP

Operation packet queue algorithm is used. The differences between the results of the
five random lists were small and their average finish time is

Fig. 7. An undesirable situation in the operation packet queue. sonb h uv akdR o igepoesrhshown by the curve marked R. For a single processor, the
Operation pocket queue finish time equals the sum of the execution times of all the

nodes in the graph, regardless of the priority list. The finish
send unit time that corresponds to the MCP algorithm decreases until it

reaches the minimum of 33 time units with 16 processors.
send unit Increasing the number of processors beyond that lowers the

Arbitration utilization of the processors but does not shorten the finish
: . . Network time. The finish time for the random lists decreases more

slowly and reaches its minimum with 33 processors. The
advantage of the MCP algorithm for the 32*32 DFT can be

send unit clearly seen in Fig. 10(a). It depicts the speedup due to the use
of the MCP algorithm which is defined by

average finish time for a random list
fetch Speedup = .(5.1)unit finish time for the MCP list

Fig. 8. The operation packet queue. The maximum speedup due to the use of the MCP algorithm
for the 32*32 DFT is achieved when there are 16 processors.does not necessarily preserve the order of the operation Icesn h ubro rcsosbyn 6cue h

packets in the queue, but rather constitutes another compro- Increasing the number of processors beyond 16 causes the
mise between the scheduling mechanism and the goal of high finish time of the MCP algithm doeasn ipo ve.uIn

finish time of the MCP algorithm does not improve. Inthroughput of the arbitration network.
general, when there are more processors than the inherent

V. SIMULATION RESULTS parallelism in the graph (so that every list may be executed in
The implementation of the scheduling mechanism was the minimum finish time), the speedup decreases to one.

tested by simulation [15], using a benchmark which included Clearly, the maximum speedup is not a constant, but depends
three types of DF graphs. on the structure of the DF graph.

1) Graphs without conditional nodes and without loops. The advantage of the MCP algorithm over random sched-
This group included some instances of the discrete Fourier ules can be seen when the number of processors is "tuned" to
transform for 3*3, 5*5, 8*8, 30*30, and 32*32 points. the parallelism of the problem at hand. Table III shows the

2) Graphs with conditional nodes but without loops. As a number of processors needed to execute various DFT graphs
representative of this type of graph, an 82-vertex graph used in their minimum finish time using the MCP algorithm or
by Martin and Estrin [181 was chosen. random schedules. For large problems, the ratio of needed

3) Graphs with loops. Some graphs representing numerical processors might be as high as 1:2 in favor of the MCP
calculations such as the Newton-Raphson approximation and algorithm. We have also calculated lower bounds on the
the Runge-Kutta method for solving differential equations number of processors required to execute the same DFT
were selected. graphs in minimum time. These calculations were done using
The experiments were carried out using three programs. the expressions presented in [19]. In all five cases the number

The first program finds a priority list for a given DF graph of processors needed when using the MCP algorithm proved to
according to the Modified Critical Path (MCP) algorithm equal the corresponding lower bound.
presented in Section III. The second program finds a Gantt The speedup for graphs with conditional nodes and loops
chart for a DF graph with a given priority list and a given are less "well behaved." For the 82-vertex graph [Fig. 10(c)],
number of processors. The third program simulates a complete the MCP algorithm can be even worse than a random list. This
DF computer with its scheduling mechanism as described in can be explained by the approximations of Algorithm ACP.
Section IV.- The Newton-Raphson graph [Fig. 10(d)] shows an advantage
The Gantt-chart program is essentially a simulation of a DF for the MCP algorithm, but not as evident as for the DFT

computer with zero delays in the communication networks, graphs. Clearly, the MCP algorithm has a greater potential for
and its purpose is to estimate the potential for performance graphs without conditional nodes or loops, and with possibly a
improvement. The quality of the priority lists generated by the regular structure like the DFT graphs.



GRANSKI et at.: EFFECT OF SCHEDULING ON PERFORMANCE OF DATA FLOW COMPUTERS 1027

finish
time

500

300

100I oMCP
l0 20 30 processors

Fig. 9. The finish time of the 32*32 DFT graph.

speed speed
up up

MCP
1.4 .4

MCP

1.2 ° 1.2 -

1.0 R1.0
-. -I.I

10 20 processors 20 40 60 processors
(a) 32x32 DFT (b) 3Ox3O DFT

speed speed
up up

1.4 -1.4

1.2 MCP i.2 -MCP

3 5 7 processors 3 5 7 processors
(c) 82-Vertex groph (d) Newton-Rophson groph

Fig. 10. Speedup factors for the Gantt-chart program.

TABLE III
NUMBER OF PROCESSORS FOR MINIMUM FINISH TIME

MCP schedule
MCP Random Proc. Ratio = -

Problem Schedule Schedules Random schedules

3*3 DFT 6 7 0.86
5*5 DFT 20 21 0.95
8*8 DFT 4 8 0.5

30*30 DFT 54 98 0.55
32*32 DFT 16 32 0.5



1028 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 9, SEPTEMBER 1987

speed speed
up up

1.10 MCP 1.10

1.05 ~ 1.05 -c

I. O 1.00

0.95 ~~~~~~~0.95-

4 16 32 processors 4 16 32 processors

a) 32x32 DFT b) 30x30 DFT
speed speed
up up

1.10 1.10

1.05 1i.05
mMCP .oo W oo ~~~~~MCP

1.00 1.00
R R

0.95 0.95

4 16 32 processors 4 16 32 processors

c) 82-Vertex graph d) Newton-Raphson graph

Fig. 11. Speedup factors for the simulation program.

The results of the Gantt-chart program showed the potential Fig. 11 shows the speedup factors obtained by the simula-
improvement of the MCP algorithm over random schedules. tion program. Note that the structure of the delta network
The simulation program was used to find to what extent the forces a number of processors which is a power of two. The
implementation presented in Section IV achieved this poten- results resemble those of Fig. 10 but the maximum speedup is
tial. This program performs a complete simulation of a DF significantly smaller (5-10 percent as opposed to 10-40
computer with its communication networks. A fixed delay of 2 percent for the Gantt-chart program). Moreover, in graphs
+ log2 (number of processors) in the distribution network was with conditional nodes or loops there is no significant
assumed. (This delay is equal to the minimum transfer time in difference between the MCP algorithm and random schedules.
a delta network plus an overhead of two time units.) The reason for the speedup loss lies in the implementation of
The ratio between the transfer time through the arbitration the arbitration network, which does not allow the exact

network and the average execution time of instructions poses execution of the MCP schedule. For example, a blockage in
another problem. The DFT graphs, for example, have two the network alters the execution order dictated by the priority
types of operations-complex addition and complex multipli- list.
cation. Let TA and TM denote the execution times of these These observations seem to suggest that the scheduling
operators, respectively. Assuming that a real addition takes algorithm and its implementation, as presented here, are not

one time unit and a real multiplication takes three time units suitable for a general-purpose DF computer. However,
we get, TA = 2 and TM = 14. The Gantt-chart program was consider DF computers intended for usage in special-purpose
run with the ratio TA/TM = 1/7. Let TN denote the time applications, such as numeric programs with a few conditional
required to transfer one word between two consecutive stages nodes and regular structures of computation. It is this
in the arbitration network. When the simulation program was environment, with its particular cost-performance tradeoffs,
run with the ratio TN/TA/TM = 1/1/7 the utilization of the which makes our approach, and its potential for performance
processors was near zero. Most of the time was spent in the improvement, appealing.
arbitration network and all the priority lists gave equally bad
results. This supports the idea that highly complex instruc- VI. CONCLUSIONS
tions, or blocks of instructions rather than single instructions, We showed in this paper a heuristic procedure, the
should be transferred and executed (e.g., [3], [20], [21]), s0 Modified Critical Path Algorithm, which can be used to
that the transfer time in the network will be sufficiently short schedule the execution of instructions in a DF computer. Also
relative to the execution time. For this reason, the ratio TN! presented, was a possible implementation of a priority
TA!/TM =1 /10/70 was chosen in the simulation. mechanism to enforce the above schedule. Results from



GRANSKI et al.: EFFECT OF SCHEDULING ON PERFORMANCE OF DATA FLOW COMPUTERS 1029

simulation runs were presented to show both the potential for [14] D. F. Martin and G. Estrin, "Path length computations on graph
improvement by using the schedule, and the measure to which models ofcomputations," IEEE Trans. Comput., vol. C-18, pp. 530-

the implemenation achieed this potntial. [15]536, June 1969.the implementation achieved this potential. [15] M. Granski, "Scheduling in a data flow computer," M.Sc. thesis Dep.
We conclude, based on the results obtained, that the Elec. Eng., Technion 1983 (in Hebrew).

hardware overhead required in the implementation of the [16] D. F. Martin and G. Estrin, "Models of computations and systems-
Cyclic to acyclic graph transformations," IEEE Trans. Electron.arbitration network outweighs any real benefit in performance, Comput., vol. EC-16, pp. 70-79, Feb. 1967.

for a general-purpose DF computer. Furthermore, it is the [17] J. H. Patel, "Performance of processor-Memory interconnection for
presence of conditional nodes and loops which precludes us multiprocessors," IEEE Trans. Comput., vol. C-30, pp. 771-780,

Oct. 1981.
from achieving better performance. Therefore, we feel that the [18] D. F. Martin and G. Estrin, "Experiments on models of computations
value of this approach may be realized in special-purpose and systems," IEEE Trans. Electron. Comput., vol. EC-16, pp. 59-
environments, in which the structure of the computational 69, Feb. 1967.

[19] E. B. Fernandez and T. Lang, "Computation of lower bounds for
algorithms involved better suit our scheme. multiprocessor schedules," IBM J. Res. Develop., vol. 19, pp. 435-

444, Sept. 1975.

APPENDIX [20] J. E. Requa and J. R. McGraw, "The piecewise data flow architecture:Architectural concepts," IEEE Trans. Comput., vol. C-32, pp. 425-
438, May 1983.

PROOF OF LEMMA 1 [21] F. J. Burkowski, "Instruction set design issues relating to a static
dataflow computer," in Proc. 9th Conf. Comput. Architecture,

Suppose there is a maximum of s descendants to every node 1982, pp. 101-111.
in the graph. It is easy to see that step A. I of the CP algorithm
takes 0(n). Also, each execution of step A.2 requires 0(ns) Michael Granski (S'82-M'84) received the B.Sc.
operations since we must find all the nodes for which every (cum laude) and M.Sc. degrees in electrical engi-
descendant has already been assigned a weight and then find neering from the Technion-Israel Institute of Tech-

nology, Haifa, in 1981 and 1984 respectively.
the maximum weight of their descendants. Since step A.2 is His cuffent research interests include computer
repeated up to n times, the complexity of Part A of the CP _ architecture, VLSI CAD tools, and artificial intelli-
algorithm is 0(n2s). gence. In 1984 he joined Zoran Microelectronics,Haifa, Israel, where he participated in several VLSI

In step B. 1 we obtain l(T,) in O(s log s) operations for every dsesign proects.
node, and thus require a total of 0(ns log s) operations. Step
B.2 takes 0(ns) operations and is repeated n times. Therefore,
the complexity of PartB is also 0(n2s) and consequently, Op _ Israel Koren (S'72-M'76-SM'87) received the
= 0(n2s). Now, if the number of descendants for each node B.Sc. (cum laude), M.Sc., and D.Sc. degrees in
is not bounded (by s), we replace s by n and obtain 0p = electrical engineering from the Technion-Israel
0(n 3). * _ 1 Institute of Technology, Haifa, in 1967, 1970, and

1975, respectively.
Since 1979 he has been with the Departments of

_Electical Engineering and Computer Science at the
REFERENCES Technion-Israel Institute of Technology, where he

became the Head of the VLSI Systems Research
[1] J. B. Dennis, "Data flow supercomputers," Computer, vol. 13, pp. Center in 1985. Previously he has held positions

48-56, Nov. 1980. with the University of California, Santa Barbara,
[2] A. L. Davis, "The architecture and system method of DDMI: A and the University of Southern California, Los Angeles. In 1982 he was on

recursively structured data driven machine," in Proc. 5th Conf. sabbatical leave with the University of California, Berkeley. He was a
Comput. Architecture, 1978, pp. 210-215. Consultant to National Semiconductor, Israel, in architecture of microproces-

[3] K. P. Gostelow and R. E. Thomas, "Performance of a simulated data sors and high-speed algorithms for arithmetic operations, from 1984 to 1986,
flow computer," IEEE Trans. Comput., vol. C-29, pp. 905-919, to Tolerant Systems, San Jose, CA, in architecture of fault-tolerant distributed
Oct. 1980. computer systems in 1983, and to ELTA, Electronics Industries, Israel, in

[4] I. Watson and J. Gurd, "A prototype data flow computer with token architecture of parallel signal processors from 1981 to 1982. Currently he is a
labeling," in Proc. Nat. Comput. Conf., vol. 48, 1979, pp. 623-628. Visiting Professor at the University of Massachusetts, Amherst. His current

[5] J. B. Dennis, G. A. Boughton, and C. K. Leung, "Building blocks for research interests are VLSI and WSI architectures, models for yield and
data flow prototypes," in Proc. Caltech Conf. VLSI, 1979, pp. 1-8. performance, reliability evaluation of computer systems, and computer

[6] E. G. Coffman, Ed., Computer and Job-Shop Scheduling Theory. arithmetic.
New York: Wiley, 1976.

[71 R. Kan, Machine Scheduling Problems. The Hague, The Nether-
lands: Nijhoff, 1976. Gabriel M. Silberman (M'87) received the B.Sc.

[8] M. J. Gonzalez, "Review on deterministic scheduling theory," ACM (cum laude) and M.Sc. degrees in computer science
Comput. Surveys, vol. 9, pp. 174-204, Mar. 1977. from the Technion-Israel Institute of Technology,

[9] J. D. Ullman, "NP-complete scheduling problems," J. Comput. Syst. Haifa, in 1975 and 1976, respectively and the Ph.D.
Sci., vol. 10, pp. 384-393, June 1975. degree in computer science from the State Univer-

[10] W. H. Kohler, "A preliminary evaluation of the CP method for sity of New York, Buffalo, in 1980.
scheduling tasks on multiprocessor systems," IEEE Trans. Comput., Since 1980, he has been with the Department of
vol. C-24, pp. 1235-1238, Dec. 1975. _ Computer Science and Electrical Engineering at the

[11] C. V. Ramamoorthy, K. M. Chandy, and M. J. Gonzales, "Optimal J _ Technion, as an Assistant Professor. In 1983 he was
scheduling strategies in a multiprocessor system," IEEE Trans. a Visiting Scientist at the IBM Thomas J. Watson
Comput., vol. C-21, pp. 137-146, Feb. 1972. Research Center, Yorktown Heights, NY. Since

[12] T. C. Hu, "Parallel sequencing and assembly line problems," Oper. 1984 he has been a Research Fellow at the IBM Haifa Seientific Center, Haifa,
Res., vol. 9, pp. 841-848, June 1961. Israel. His current research interests include computer architecture, operating

[13] E. G. Coffman and R. L. Graham, "Optimal scheduling on two- systems, VLSI design verification, and fault simulation.
processor systems," Acta Informatica, vol. 1, pp. 200-213, Jan. Dr. Silberman is a member of the Association for Computing Machinery
1972. and the IEEE Computer Society.


