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ABSTRACT
Embedded systems often have severe power and energy con-
straints. Dynamic voltage scaling (DVS) is a mechanism by
which energy consumption may be reduced. In this paper,
we implement a dynamic voltage scaling based scheduler in
the eCos operating system running on Voltage Scalable In-
tel Xscale Board and show how energy usage can be reduced
while still meeting hard real-time deadlines.
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1. INTRODUCTION
Power is becoming a key constraint in embedded systems,

with Dynamic Voltage Scaling (DVS) emerging as a power-
ful mechanism for reducing the energy consumption during
system operation [1]. Many current embedded processors
such as the Intel XScale [14] and Transmeta Crusoe [15] al-
low their operating voltage to be changed dynamically. DVS
tries to address the tradeoff between performance and power
consumption by taking into account the fact that the ma-
jority of computer systems need high performance for only
a small fraction of the time, while most of the time, a lower
performance, lower-power processor would suffice.

Most modern microprocessors use CMOS circuits whose
power consumption has been modeled accurately. CMOS
circuits have both dynamic and static power consumption.
Dynamic power is consumed due to the switching of gates
and is still responsible for a large percentage of the total
power dissipated in CMOS circuits, although static power
consumption, which is due to the leakage current between
the power supply and ground, is expected to increase in the
future. Power consumption in present-day circuits is dom-
inated by its dynamic component, which can be expressed
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as [1].

Pcmos = CLNSW V
2

DDf (1)

where VDD is the CPU core supply voltage, CL is the circuit
output load capacitance, NSW is the number of switches per
clock cycle, and f is the clock frequency.

The circuit delay, denoted by δ, obeys the following equa-
tion [15]

δ =
CLVDD

K(VDD − VT )α
(2)

where K is a constant depending on the process and gate
size, VT is the threshold voltage, and α varies between 1 and
2; α = 2 for long-channel devices which have no velocity
saturation.

From (1), reducing the clock frequency linearly decreases
the power consumption while reducing the voltage reduces
it quadratically.

Equation (2) shows that δ is inversely proportional to VDD

(for devices with α=2) and as a result, decreasing the sup-
ply voltage increases the circuit delay. Clearly there is a
fundamental tradeoff between operating speed (or perfor-
mance) and supply voltage (or power consumption). For
hard real-time systems, where meeting deadlines is critical,
this tradeoff is particularly important.

The idea of trading off CPU energy consumption with
performance has gained attention in recent years. Unsal
and Koren present a comprehensive survey of system-level
power-aware design techniques for real-time systems [2]. A
study of periodic real-time tasks, which can consume energy
at possibly varying rates, is described in [9]. A benchmark
suite and simulation environment for voltage scaling is pre-
sented in [10]. Non-preemptive scheduling is studied in [18]
in a system where voltage scaling overheads were assumed
to be negligible. Dynamic voltage-scheduling algorithms for
fixed-priority task systems were presented in [5]. A DVS
based scheduling algorithm for hard real-time systems using
stochastic workload information is described in [27].

Most of the DVS research is based on simulations and not
much work has been done on implementing DVS in real-time
operating systems. A speculative scheme has been proposed
in [11] and implemented in the eCos operating system [23]
running on an Intel Xscale-based board. It allows proces-
sor speed to be reduced in anticipation of lower execution
time, and cannot therefore guarantee that deadlines will be
satisfied. Ma and Shin describe energy-adaptive scheduling
in mobile applications using their Emerald operating sys-
tem [13]. In [4], Earliest Deadline First (EDF) and Rate



Monotonic (RM) based DVS algorithms have been devel-
oped. These techniques are implemented as Linux kernel
modules, and do not guarantee real-time behavior. Energy
savings from asynchronous and synchronous clock scaling on
IBM PowerPC have been shown in [28], and [29]. DVS has
also been implemented in RTlinux [3] based on the EDF
algorithm. This work assumes task sets where all tasks
have identical periods, are non-preemptible, and run to their
worst case execution time.

In this paper, we present the implementation details of
an EDF-based DVS algorithm that guarantees meeting all
real-time deadlines with tasks which have arbitrary periods,
are preemptible, and do not necessarily run to their worst
case execution time (WCET). We demonstrate the validity
of our algorithm with measurements on an unmodified off-
the shelf processor. To the best of our knowledge, this is
one of the first working implementations of DVS for hard
real-time systems which addresses all these issues.

The rest of this paper is organized in the following man-
ner. Section 2 presents the models that we use and our ter-
minology. Section 3 describes our voltage scaling algorithm.
Section 4 provides the details of our hardware prototype and
the software implementation of our energy-aware kernel in
a Real Time Operating System (RTOS) followed by Section
5 describing the results. The paper concludes with a brief
discussion in Section 6.

2. MODELS AND TERMINOLOGY

2.1 Task Model
A typical real-time task model comprises of periodic real-

time tasks where each task Ti is characterized by:
Pi : Period of task Ti.
Di : Relative deadline of Ti (=Pi).
WCETi : Worst case execution time of task i under fault-
free conditions.
AETi : Actual execution time of Ti under fault-free condi-
tions.

All the tasks are independent, i.e., no task depends on the
output of any other task. Also, tasks must run to completion
in order to get any benefit from them, i.e., they do not have
the increased reward for increased service property [24].

AETi is assumed to vary uniformly in the range [a ×
WCETi, WCETi], 0 < a ≤ 1. As a increases, the task’s
execution time becomes more deterministic.

2.2 Power Model
The processor can operate at two voltage levels: vH and

vL (vH > vL). The slowdown factor by which the processor
is slower at voltage v relatively to when at voltage vH is:

slowdown(v) =
v(vH − vT )2

vH(vH − v)2
(3)

where vT is the threshold voltage.
We define one unit of execution as the computation per-

formed by the processor at vH in unit time. Hence, one unit
of execution will take slowdown(v) units of time at voltage
v. The ratio of energy consumed per cycle by a processor at
voltage v relatively to that at voltage vH is

Energy ratio per cycle(v) =

�
v

vH � 2

(4)

We have taken into account the cost associated with volt-
age scaling in our implementation. We calculated an upper
bound on this overhead and accounted for it by merging it
into the worst-case profile information of tasks.

3. VOLTAGE SCALING ALGORITHM
In this work we implement the algorithm described in [1].

We assume a periodic task set and for each periodic frame
(defined as the least common multiple of periods of all the
tasks) all tasks are released at the beginning of the frame
and must complete by the end of the current frame. Central
to this algorithm is the function Ψ(t) which has the property
that if the amount of unfinished work at time t is not greater
than Ψ(t), there is enough processing capacity to meet all
deadlines under the scheduling algorithm that is being used,
and thus provides a sufficient condition for schedulability.

3.1 Algorithm
The algorithm consists of two phases, offline and online [1].

In the offline phase, which is executed before the system is
actually used, we obtain the function Ψ(t) over the duration
of the frame.

In the online phase, when the system is operating, we
set the voltage level to guarantee that the unfinished work
will never exceed Ψ(t) at time t. This algorithm always
sets the processor voltage to vL when the unfinished work
is guaranteed to be below Ψ(t), and vH otherwise. The
offline phase is executed in the following way. Let u be
the worst-case utilization of the processor at high voltage
(i.e., the utilization if every task ran to its WCET and was
run at high voltage). For each task Ti, a corresponding

inflated T
′

i is constructed with the same period as Ti but
whose execution time is deterministic and is equal to 1

u
times

the WCET of Ti. The set of tasks T
′

= T
′

1 , T
′

2 , T
′

3 , · · ·

, T
′

n has utilization 1 by construction. We then use the
EDF scheduling algorithm to schedule it, and Ψ(t) is the
unfinished work according to this schedule.

In the online phase, when a task starts executing (or
restarts following a preemption), the worst case unfinished
work is compared to Ψ(t). If at Ψ(t), the task is run at vh

until it is completed or preempted by another task. If it is
below Ψ(t), we determine the next time τ when the worst-
case unfinished work will equal Ψ(τ ). The CPU is run at
vL until either τ is reached or the task has completed or
been preempted. When a task is completed or preempted,
we recalculate the worst-case unfinished work in the system.
If the task is preempted, the current unfinished work is cal-
culated by subtracting the amount of work done since the
last time the task was resumed or executed from the unfin-
ished work in the system. If the task is over, the worst-case
unfinished work is calculated depending upon the following
conditions:

If the deadline of the next task is greater than the dead-
line of this task (that just finished), we subtract the actual
remaining execution time of the task from the unfinished
work to get the current unfinished work in the system.

If the deadline of the next task is less than the deadline of
the task that just finished, we generate another pseudo task
in the system with the same period as that of the task that
just finished (say Ti), an execution time of WCETi - AETi ,
and the same deadline as that of Ti. The pseudo task is like
any other task, except that the CPU is idle while “execut-



ing” it. Define by the offline task(t) the task (if any) running
at time t under the offline schedule. Let online task(t) de-
note the task that is running under the online schedule at
time t.

At time t the processor will be running at low voltage ex-
cept when any of the following conditions is satisfied:
1. offline task(t) = online task(t).
2. The worst case unfinished work under the online algo-
rithm is equal to Ψ(t).

If any of these conditions are satisfied, the processor runs
at high voltage. The above-mentioned algorithm guarantees
that no task will miss its deadline.

3.1.1 Overheads
Voltage-clock scaling decision is taken at the following

points:

1. When a task is preempted or completed.

2. When the offline curve intersects the online curve.

The overhead associated with this algorithm can be bounded
by the fact that we know the task arrival epochs. Since a
scaling action may have to be taken at the very beginning
of the execution or at the intersection point, this bound is
given by

Ω = n(ωDV S + ωintersect)

where the following notation is used:

n Number of intersection points and task
completions plus 1

ωDV S Overhead of DVS action
ωintersect Overhead of calculating an intersection point

4. IMPLEMENTATION DETAILS

4.1 Hardware Platform
We implemented our prototype system on ADI Engineer-

ing’s Intel Xscale BRH board. The Xscale platform supports
nine frequency levels ranging from 200 Mhz to 733 Mhz [14].
CLK, the input reference clock, accepts an input clock fre-
quency of 33 to 66 Mhz. The processor uses an internal PLL
to lock to this reference clock and multiplies the frequency
by a variable multiplier (changeable through software) to
produce a high-speed core clock (CCLK). This gives the
software the ability to change the frequency without having
to reset the core. Intel Xscale also supports low voltage op-
eration with a core supply as low as 0.95 V. At each voltage
level, there is a maximum clock frequency (CCLK), though
the core can also operate at lower frequencies if desired. The
Xscale CPU core on this board is powered from a supply,
created by a switching regulator (LT1767). The supply volt-
age can be changed by varying a single resistance from 1.2V
to 1.8V.

If the feedback resistance (R64 in Figure 1) is short cir-
cuited, the supply voltage drops to 1.2 V. As shown in Fig-
ure 1, the power regulator circuit of the board is modified
by placing an MM74HC4066 (quad analog switch) across
the feedback resistance of the power regulator. This switch
is controlled through the COM2 port, by connecting the
Ready To Send (RTS) line of the serial port(COM2) to the
control pin of this switch. The RTS line is either at +5 V or

at -5 V. We set the RTS line to +5V to turn on the switch
when 1.2 V is required. On the other hand, when 1.5 V is
required, we set the RTS line to -5V to turn off the switch.
Since the switch turns off when it is at 0 V, we use a diode
and a 10 KΩ resistor to clip the voltage to 0 V if the input
goes to -5 V.

Using this circuit, a total of two voltage settings 1.2 V
and 1.5 V are made available to the kernel. Speed volt-
age combinations that we have used for our experiments are
summarized in Table 1.

Table 1: Voltage-Speed Settings.

Voltage CPU freq (MHz)

1.2 400

1.5 733

For measuring the input current to the core, the ferrite
bead (FB10) is replaced by a small resistance of .01 Ω,
which is connected to an Agilent 34401A multimeter [26].
The Agilent 34401A is capable of taking 1000 readings every
second. Voltage-clock scaling overheads include the phase-
locked loop (PLL) synchronization time of 2000 CPU cycles
and, based on our analysis, approximately 40µseconds of
voltage stabilization time.

4.2 Software Architecture
We implemented our voltage scaling algorithm in the Em-

bedded Configurable Operating system (eCos). eCos is a
highly configurable real-time operating system [23]. Most
embedded operating systems today provide more functional-
ity than is usually required by individual applications. This
extra code adds more complexity in the software. eCos gives
the developer the capability to remove the functionality that
is not needed. It has more than 200 configuration points
(which can be chosen using a configuration tool) and can be
used for fine-grained scalability. eCos can provide the basic
functionality of an RTOS with memory footprint in tens to
hundreds of KB.

The hardware abstraction layer provides a software layer
that gives general access to hardware. The kernel includes
interrupt and exception handling, thread and synchroniza-
tion support, a choice of schedulers, timers, counters and
alarms. Device drivers include standard serial, ethernet,
Flash ROM and others. eCos also has a GNU debugger
which provides communication between target and host. It
also includes ISO C and math libraries.

Both eCos and the application run in supervisor mode.
There is no division between user and kernel mode in eCos.
It is the responsibility of the application developer to take
proper care while writing embedded applications as a sin-
gle improper pointer access can wipe out the whole system.
In many operating systems interrupts are disabled during
the execution of schedulers: this is not the case with eCos,
ensuring low interrupt latency. eCos implements two static-
priority-based preemptive schedulers:

1. Multilevel Queue Scheduler: This scheduler allows the
execution of multiple threads, each at its priority level.
Priority levels can be configured from 0 (highest pri-
ority) to 31 (lowest priority). This scheduler allows
preemption of a lower priority thread by a higher pri-
ority thread and it also supports time slicing within a
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Figure 1: Circuit Diagram.

priority level.

2. Bitmap Scheduler : This scheduler allows the execu-
tion of threads at a pre-defined priority level and no
two threads can have the same priority level. It also
implements preemptive scheduling though time slicing
is irrelevant in this scheduler.

Currently available eCos schedulers do not have the notion
of periods and deadlines, and all of them are fixed priority-
based schedulers. We have implemented a dynamic priority
based scheduler in eCos, based on the earliest deadline first
(EDF) policy [17]. Priorities are therefore assigned at run
time based on the tasks’ deadlines. We call it the Power
Aware EDF (PA-EDF) Scheduler.

4.3 Implementation of EDF in eCos
The task structure in eCos kernel has been modified to

have the following additional parameters:

• WCET

• Period

• Deadline

New APIs have been implemented inside the kernel to
create and run a task using EDF:

• cyg edf thread create(): This function is responsible
for creating thread’s data structure inside the kernel
and differs from the already existing cyg thread create
in a way that it takes Period and WCET as input
parameters.

• cyg edf thread wait(): This function is called by the
thread itself at the end of its execution. It puts the
current task in sleep mode for a time equal to its period
and then the scheduler is called.

We have implemented our PA-EDF scheduler on top of
the Bitmap scheduler. All the calls to the native Bitmap
scheduler are captured by our PA-EDF scheduler, which first
modifies the priorities of individual tasks based on their re-
spective deadlines and then calls the Bitmap scheduler.

4.4 Voltage Scaling algorithm in eCos
We first run EDF to generate the offline curve based on

the inflated WCET of different tasks. This curve is stored
in a 2 dimensional array (time and offline-load) inside the
kernel. We lookup this array based on time relative to start
time. The EDF scheduler in eCos has been modified in a way
that it first calculates the online load based on the WCET

of different tasks and then updates it accordingly whenever
a task is completed or pre-empted.

We have also implemented a DVS thread that compares
the offline and online loads to find the appropriate CPU
speed settings. If the online curve is below the offline curve
to begin with, it finds out the intersection point of these
curves and changes the setting as required and sleeps until
the intersection point is reached. Every time a task is com-
pleted or pre-empted the scheduler recalculates the online
and offline loads and awakens the DVS thread. Tasks are
implemented as for loops as in [21]. These simulated tasks
provided us the flexibility to vary the actual execution time
during run time, which is very difficult to obtain using real-
time applications. We have implemented a function do dvs

(Figure 2) inside the PA-EDF scheduler which interfaces
with the Voltage-Clock scaling hardware. Currently do dvs

supports two voltage levels but it can be easily modified to
support multiple voltage levels by passing appropriate volt-
age level as an input to it.

void Cyg_Scheduler::do_dvs()

{

CYG_REPORT_FUNCTION();

unsigned char *com2;

com2= (unsigned char *)0x3100000;

//0x3100000 is mapped to RTS line of COM2 port

/*A true value of high_slope indicates 1.5V-733Mhz

setting and a false value indicates 1.2V-400Mhz

setting */

if(high_slope){

/*switching frequency from 733Mhz to 400Mhz*/

__asm__("MOV R1, #4");

__asm__("MCR p14, 0, R1, c6, c0, 0");

/*switching voltage from 1.5V to 1.2V*/

*(com2+4)=0x0a;

high_slope=0; }

else{

/*switching frequency from 400Mhz to 733Mhz*/

__asm__("MOV R1, #9");

__asm__("MCR p14, 0, R1, c6, c0, 0");

/*switching voltage from 1.2V to 1.5V*/

*(com2+4)=0x08;

high_slope=1; }

CYG_REPORT_RETURN();

}

Figure 2: Voltage-Clock scaling API.



5. RESULTS
The experimental setup for these results is as follows. The

execution times of all the tasks are specified in terms of the
high-voltage setting. The task periods are chosen randomly
to be integers between 200 and 1200 ms. Voltage-speed set-
tings for our experiments are summarized in Table 1.

The parameters of importance are the worst-case proces-
sor utilization, Uw, the number of tasks, and the value of a
(the actual execution is uniformly distributed in the range
[a × WCET , WCET ]). Energy consumption is expressed
as a percentage of the consumption if the processor was run
at high voltage during execution of the tasks.

The impact of a on the CPU energy consumption for dif-
ferent worst case utilizations is shown in Figure 3. As a

decreases, the variance in the execution time of tasks in-
creases. This means that the a priori information we have
about the tasks’ execution times decreases. For a low uti-
lization of 0.5 or less, the entire workload can usually be run
at low voltage, and so the energy consumption is 40% of the
high-voltage consumption. For worst case utilization of 0.6
or more, the value of a begins to have an impact on the en-
ergy consumption. For a small value of a, execution times
of tasks are more variable, which means that (for a given
worst case utilization) the system has more run-time slack
and can run at lower voltage for longer. As a increases and
the execution times do not vary as much, the system has less
run-time slack and runs at high voltage for longer, and thus
the energy consumption increases. When the worst case uti-
lization is 0.8 or 0.9, the fraction of time the system has to
run at high voltage increases and the energy consumption
goes up.
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Figure 3: Impact of a on CPU energy.

The effect of the number of tasks on the system energy
is due to the fact that a greater number of tasks in the
system for a given load provides more opportunity to the
system to effectively exploit the slack. Information about
the early completion of a task is only available when the
task finishes. In general, the higher the number of tasks,
the greater is the advantageous impact of small values of a.
This is illustrated in Figure 4 where for a small value of a, a
6-task system performs noticeably better then systems with
a lower number of tasks but this gap narrows down as we
move to higher values of a as shown in Figure 5.

6. CONCLUSION AND FUTURE WORK
We have implemented a dynamic voltage scaling scheduler
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Figure 4: Impact of the number of tasks on CPU

energy consumption for a=0.25.

a=0.75
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Figure 5: Impact of the number of tasks on CPU

energy consumption for a=0.75.

in eCos. This scheduler provides a way to claim run-time
slack in the system without missing any hard deadline and
can be used as an effective solution for power constrained
hard real-time system. We have modified an Intel Xscale
board for DVS to validate our algorithm.

Overall, we have demonstrated the energy savings achieved
by incorporating dynamic voltage scaling on a commercial
microprocessor using a power aware embedded OS. Our DVS-
enabled system (OS and hardware) when used for embedded
applications, can lead to significant energy savings.

There are several directions in which future work can
go. We have implemented a system with two voltage lev-
els that can be modified to multiple voltage-speed settings.
Other possible directions include implementing a DVS-based
scheduler for IRIS (Increase Reward Increase Service) [24]
tasks and tasks with precedence graphs [25].
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