THE DESIGN OF A 64-BIT INTEGER
MULTIPLIER /DIVIDER UNIT

David Eisig, Josh Rotstain
Intel Israel Ltd.
Haifa, Israel

Abstract

The highlights of the design of an integer multi-
plier/divider unit within a 64-bit processor are pre-
sented. The final design is the result of a compro-
mise between performance, complezity, and transistor
count. It is optimized for two specific operations with
the same hardware being shared by the remaining oper-
ations. Thus, for ezample, the multiplier can be con-
figured for the ezecution of several different multiply
operations and its hardware is also heavily utilized in
division. The divider design is optimized for repetitive
division by small numbers, since this is a character-
istic of several important applications planned for the
processor. For such small divisors, the reciprocal is
calculated and stored in a content-addressable mem-
ory. The stored reciprocals can then be used to gener-
ate quotients through fast multiplication. Simulations
of the planned applications show a 20 to 30 percent
performance increase over alternative designs.

1 Introduction

We present in this manuscript some of the decisions
that were made during the design of an integer multi-
ply/divide unit. This is a separate unit within a 64-bit
integer arithmetic unit in a high-performance 64-bit
processor. The multiply/divide unit executes several
types of multiply, divide and remainder instructions
and provides high performance within a given transis-
tor count budget.

The instructions that are executed include:

MULL - a 64-bit multiply with the result being the
low order 64 bits of the product. An overflow
exception must be generated when appropriate.

PACKED _MULL - four 16-bit multiply operations
performed in parallel. The 64-bit result consists
of four 16-bit products; each constitutes either
the low order or the high order half of the 32-bit
result.

DIV - a 64-bit integer divide.

1063-6889/93 $03.00 © 1993 IEEE

Israel Koren

Dept. of Electrical and Computer Engineering

171

University of Massachusetts, Amherst, MA 01003

REM - a 64-bit integer remainder.

Unit design goals and constraints

In view of the planned applications for the 64-bit
processor, higher priority is assigned to two particular
operations. One is the packed data multiply operation
(i.e., the PACKED_MULL instruction). This instruc-
tion must provide a throughput of one instruction per
clock with a latency of 2 clocks. The regular 64 x 64-
bit multiply can tolerate up to 8 clocks throughput
and latency.

As for the divide and remainder instructions, spe-
cial emphasis is put on divide operations with a divi-
sor which is 13 bits long or shorter. In the planned
applications for the designed processor, integer divide
operations with such a small divisor are expected to
be very common. Moreover, a very small number of
divisors (each of length 13 bits or less) are likely to
be used repeatedly. The selected design supports a
low execution time for such operations, while regular
divide or remainder operations would take a substan-
tially higher execution time. The details of this design
are presented in Section 3.

The most significant constraint in the design was
the limited transistor budget of 150K. Being a 64-bit
unit implied that in the implementation of all oper-
ations besides the packed data multiply and the re-
peated division with a small divisor, the major concern
would be the required number of transistors. Hence,
these implementations needed to reuse as many of the
already available circuits (used for implementing the
high priority operations) as possible.

Other severe constraints on the unit design were
the aggressive clock period and input/output timing
requirements. These determined the amount and par-
titioning of functionality among pipeline stages.

2 Multiplier Design

The multiplier must be capable of executing the
packed data multiply as well as the ordinary 64 x 64
multiply. The first multiplies four sets of 16-bit

multiplier-multiplicand pairs. All four are executed in
parallel, with each providing either the 16 least signifi-
cant bits or the 16 most significant bits of the product.
The 64 x 64 multiply calculates the low 64 bits of the
result and generates an overflow indication if the high
64 bits of the product are not just a sign extension.

The underlying multiplication algorithm is the
commonly used radix-4 modified Booth’s algorithm
for both operations [2]. Since the packed data multiply
has the highest priority, the multiplier was designed as
four small independent 16 x 16 multipliers. For each
16-bit multiplier nine partial products are generated
to allow either a signed or an unsigned multiplication.
These partial products are accumulated using three
levels of carry-save adders. The first and second lev-
els are ordinary 3 — 2 units reducing the number of
operands to 6 and 4, respectively. The last level is
a 4 — 2 unit, reducing the final number of operands
from 9 to 2. These steps, which include the generation
of the partial products (i.e., 0, £1, £2 times the 16-bit
multiplicand) through suitable multiplexors (MUXs)
and the carry-save addition, are completed within one
clock cycle. In the second cycle the two operands
are added using a carry-propagate adder. The par-
tial product reduction and the final addition are each
performed in separate stages of a 2-stage pipeline, thus
providing four 16-bit results per cycle.

Due to the overall limited transistor budget the
64 x 64 multiply operation uses as much of the circuitry
for the packed data multiply as possible. Therefore,
the carry-save adder which consumes the majority of
transistors was designed as a reconfigurable carry-save
tree with MUXs that can connect the four separate
trees to form a single 80-bit wide tree. Also, full
sign extension was performed in the separate trees,
although a simple technique to avoid this is very well-
known [2]. The reason for this design is that the ad-
ditional positions in the carry-save tree were needed
anyway when used as part of the 80-bit tree.

The 64 x 64 multiply is executed as a sequence of
four 64 x 16 multiplications, the results of which are
added and shifted in the second stage of the multi-
plier to produce the final result (for a total of 5 clock
cycles).

In each 64 x 16-bit multiply, the four independent
16 x 16-bit multiply units are provided with the same
common 16-bit multiplier. Each of these multiply
units also receives the most significant bit of the previ-
ous 16-bit multiplicand (of lower significance) to allow
forming the multiples +2 (this bit is zero in the case
of the first multiplicand). The CSA tree is configured
by a small number of multiplexors to concatenate the

172

sign-extension portions of the four independent CSA
trees, while at the same time bypassing the parts of
the CSA tree not required in the 80-bit partial-product
summation.

In a similar manner, a 64 x 80 multiply can easily be
performed as a sequence of five 64 x 16-bit multiplica-
tions. This is done in order to speed up the divide and
remainder instructions in the case of small divisors, as
described in the next section.

3 Divider Design

In order to speed up division by small numbers, the
divider employs two division procedures rather than
one. A standard radix-4 SRT division algorithm is
used in the general case. A multiply by the reciprocal
procedure, Q@ = A - 1/B is used in cases where the
reciprocal of the divisor has been precalculated. A
reciprocal of the divisor is calculated and stored in a
content-addressable memory (CAM) whenever a divi-
sor of 13 bits or less is encountered for the first time.
This is done for small divisors only, since small divi-
sors are frequently used in several inner loops within
the major application programs that will run on this
processor. Also, the reciprocal of a small divisor re-
quires less storage space and can be calculated faster,
making this approach even more attractive.

The reciprocals are calculated using the standard
radix-4 division with a dividend of 1. The result is
then incremented at the least significant bit to ensure
a positive error. Denote the calculated estimation of
the reciprocal of B by B,. Then,

B, =1/B+e¢
where ¢ is the error, satisfying ¢ > 0. When mul-

tiplying the reciprocal retrieved from the CAM by a
dividend A we obtain

A-B,=A-(1/B+e)=A/B+A-¢
Integer division should satisfy
A/B=Q+R/B

where Q and R are the integer quotient and remainder,

respectively, with R < B — 1. Thus,
A-B,=Q+R/B+A-¢

and the sum of the last two terms must be smaller than

1 in order to have a correct quotient. The maximum
value that R/B can assume is

R/B<(B-1)/B=1-1/B<1-2"1
and A < 25%, therefore

max {R/B+A-€¢} < 1-2"1B42%.¢ < 1

Srcb 1:4 Srca 1:4

[scoracn | [swatacn |
Srcb(12:0)
Norm&Shift Shift (01132)
110’s Counter 11 0's Counter
srcb_0_cnt
srca_0_cnt
f
CAM
divisor| 1/divisor
13bits | 80 bits
Hit
—
, |
DIVIDER MULTIPLIER
Radix-4 Booth & Csa
1/divisor
REG'’s

Result

Figure 1: The general organization of the multiplier/divider unit.

Consequently,
e<2™ 7

In other words, the precision of the stored reciprocal
must be 78 bits or higher. The length of 80 bits has
been selected since the multiplier circuitry operates on
multiples of 16.

The reciprocals are stored in a CAM (a.k.a asso-
ciative mcmoi'y) containing eight elements. A pseudo
LRU (least recently used) algorithm is used for entry
replacements. The decision regarding the number of
entries in the associative memory unit was influenced
by the requirements of the application software as well
as by cost considerations. An important feature of the
planned application is that about 95% of the divisions
are by a divisor having 13 or less bits. A typical inner
loop that includes division may be repeated hundreds
to thousands of times, and may simultaneously involve
around four separate small divisors.

The speed of the multiply-by-reciprocal division
procedure depends on the speed of the multiplier cir-

cuitry. The multiply hardware described in Section 2
can perform a 64 x 80-bit multiplication in 6 clocks
only, thus meeting the requirements of the divide al-
gorithm. The fast divide operation can therefore take
a total of 7 to 8 clocks. The only drawback is that
the first time a division by a certain divisor occurs,
it takes longer than a normal division. This happens
since the reciprocal is calculated to an extended pre-
cision of 80 bits, then incremented, and finally used
in a multiply operation. All these steps take about 47
clocks. In contrast, a standard division takes 3 to 35
clocks depending on the divisor. There is also the pos-
sibility that a spurious one-time division will replace
a desired reciprocal from the associative memory.

The stored reciprocals are also used to speed up the
remainder instruction. If the reciprocal is available,
the quotient is first obtained by calculating Q = A- B,
(where B, is the stored reciprocal). Then Rem =
A — Q- B. Thus a fast remainder can be calculated in
9 to 10 clocks, rather than up to 35 clocks.

173

srca[63:0) I b_recip{79:0]

5->1

srcb(63:0)

MULTIPLIERS

5-> 1 \ S5>1 \ 5-> 1 5-> 1
16 16 16 16
MULTIPLICANDS
[63:48] (47:32] (31:16] (15:0)
BOOTH BOOTH BOOTH BOOTH
9x32 9x16 9x16 9x16
SgI. exL] pp
BIL XY PP JIL eXL
SgrronT PP~ P ex
3T pp— SE | PI-
>y P- - 12
S — PP] J
R 0
A Trpe
A Ty
3 x16
I b,
¥ m— 4 m 4x16
I nan 16 ™

Figure 2: Four 16 x 16-bit multipliers.

4 Implementation Notes

The integer multiplier/divider is a separate unit in
a high-performance processor implemented in a BiC-
MOS process. The clock period is determined by an
aggressive processor design target.

Figure 1 depicts the major blocks of the multi-
plier/divider unit, consisting of registers, carry-save
adders and a carry-propagating adder. The latter can
be configured using multiplexors to allow for its use
in different operations. Operands are selected from
four sources and are examined by a special circuitry
that decodes leading zeros and special instances and
characteristics of the operands like zero, £1, < 8196,
etc. The operands may be negated and/or normalized,
as deemed appropriate to the instruction being exe-
cuted. Normalization of operands is required in SRT

174

division and allows us to reduce the number of divide
iterations. Leading zeros detection is used to mini-
mize the number of multiply iterations. Indications
of operand characteristics is provided to the control
logic (not shown in the figure). The low 13 bits of the
divisor (the B operand) are used to address the CAM
to access a previously stored reciprocal, which is then
routed to the multiplier.
The first stage of the multiplier

The multiplier comprises two stages. The first stage
performs Booth’s recoding, partial product genera-
tion, and reduction of the resulting nine partial prod-
ucts to two partial products. This stage can be config-
ured to generate and accumulate four sets of nine 32-
bit partial products in the case of a PACKED_MULL
instruction (see Figure 2), or a single set of nine 80-bit
partial products in the case of a 64 x 16-bit multipli-

srca(63 0)

! b_recip[79:0!

srebiold U,

(63:32

BOOTH BOOTH

sign ext
TEITTXT

oAt
SIETTEXT
STt
3T

ST
t i

T

BEEE

<
&.

CSATree

T

{ rmulsum l
16

UHMCan

BOOTH

BOOTH
9x32

Figure 3: The partial product generation for the 64 x 16-bit multiplication.

cation (see Figure 3). The configuration is performed
at the partial product generator and at the CSA re-
duction tree.

The configuration at the partial product generator
is done as follows. The partial product generators are
implemented with a multiplexor which selects one out
of five multiples of the multiplicand, namely, —2, —1,
0, +1or +2. The multiples are implemented by appro-
priate complements and/or shifts of the multiplicand.
To generate a 32-bit partial product, the multiplicand
provided to the partial product generator is a 16-bit
value sign extended to 32-bits. To generate an 80-bit
partial product, the multiplicand provided to the par-
tial product generator is a 32-bit value comprised of
two adjacent 16-bit segments of the 64-bit multipli-
cand op2rand. This causes some partial product bits
to be generated redundantly by more than one partial

175

product generator, and the redundant bits are ignored.

The configuration of the CSA is performed by a set
of six 2-to-1 multiplexors at each of three locations.
Figure 4 shows the details of the interconnections. In
effect, the switches bypass the unnecessary sparse por-
tions of the CSA array.
The second stage of the multiplier

The second stage of the multiplier (see Figure 5)
performs the result accumulation. It contains an 80-
bit adder with selectable inputs. The inputs corre-
spond to various partial results of multiplication and
division. One of the input pairs is the output of the
CSA. Since the output of the first stage of the mul-
tiplier is in redundant sum and carry form, a 3 — 2
CSA is required to accumulate these outputs with the
previous result of the adder.

A[47:16] AL310)
A3l
Af47:16] sign? Af31.0)
[[signex T apias) signext | A15:0)
JV A(sign ext) L l A(sign ext)
MUX MUX
A'[47:16 A[31:0 [\
V
117142 “wy»
2xA’l I1xA’ OXA:r ~lx_A1 -2xA’ 2xA'l 1xA’ OXAT -1xAl -2xA’
. A —
[rasar sz] {roran H_ [raiaep] [ranson M
fAas32D 1§:0] [raizs:15p Je—{ |[mmsaen 1] [ranson e
MA4332 tfor:2s0] [raizraep Je—— |[ramaep wfusiz] [amop — Je—r
frawazm [aoi26p] [ragzsaen Je— | o} [rarasiep] rwiis100] [raon jP— g
R R |) — g [weae ™ T mosan]| [mooy e— 3

[ratssan |

MU

CSA

CSA

a1 220] [magarci6p e———
e
..

R T

[ramaen | ised | [rason Je———

L

<

4x16

CsA CSA
~N
vie V4
<
4 4x16
rmul
$ 6
y
muls
6 16
'

Figure 4: The CSA configuration for the 64 x 16-bit multiplication.

The radix-4 divider

The radix-4 divider (Figure 6) performs SRT divi-
sion where multiples (+2, +1,0) of the divisor are it-
eratively subtracted from the partial remainder. The
partial remainder is generated by a 3 — 2 CSA and
maintained in redundant sum and carry form. The
implementation details of this well-known algorithm
(see for example, [1], [2], [3]) are not described here.
We only mention that, in keeping with the approach
to share circuitry whenever possible, the second stage
of the multiplier is used to accumulate the division
quotient, perform the final sum of the remainder, and
negate the divisor and final quotient if necessary. In
addition, the multiplier’s first and second stages are
used to perform the steps of multiplication, subtrac-
tion, and increment when executing the fast division
and remainder operations, as well as the reciprocal

176

generation itself.

5 Cost and Performance

The performance of the selected design was ana-
lyzed and compared to the expected performance of
alternative designs. The execution clock counts were
calculated for three different designs using a typi-
cal application code. These designs include: (I). A
straight-forward radix-4 divider and standard itera-
tive multiplier summing 32-bit partial products. (II).
The selected design. (III). Same as II, but with addi-
tional “caching” of dividends and remainders to sup-
port a fast look-up Remainder operation. The results
are shown in Table 1.

Table 1 also includes the cost associated with the
three designs in terms of area and number of transis-
tors. The additional cost of the selected implementa-

mukary 4x16 m, 4x16 [—m,u . 4x16 L,m . 4x16
musum rmussum m: um mulsum
16] 16 16 16 16 16 16 16
- -
13y NI U
4->2 /cLat \#>2/|cLa1q 4->2 [[cLat a->2 f[cLarg
sum(79:0}
v cary[80:1]
From [0.0.79:16
DIV l
2-> 2> 2 ->
CSA 322
from Q logic
(77:0:00}
A
2->Y \2->Y
wgr
v !
3->1
Co G
adder
16bit
To overflow control [rro:18] [[63:0]
N\ 2->1 d
To CAM (79:0]
Lastresult[79:0]
OUT[63:0]

4

Figure 5: The second stage of the multiplier.

tion (II) stems mostly from the configurability feature
of the CSA array. The addition of the CAM has a
relatively small impact due to the high density of the
memory cells.

8 Conclusions

The design of an integer multiplier/divider unit has
been presented in this paper. The divide (and remain-
der) operation is accelerated through the use of a small
associative memory to store the reciprocals of a few
divisors. This is an economical solution since almost
only the most likely to be used reciprocals are stored
by using a cache-type approach. This can become a
viable approach in designs of arithmetic units with
limited transistor budgets.

Performance optimization can come about from
increased cooperation between the designer and the

177

user/customer. Such cooperation helps the designer in
understanding the problem, refining the goals of the
design and achieving a satisfactory tradeoff between
the application requirements and the implementations
constraints.

References

[1] J. Fandrianto, “Algorithm for high speed shared
radix 4 division and radix 4 square root,” Proc.
8th Symp. on Comp. Arith., pp. 73-79, 1987.

[2] I. Koren, Computer Arithmetic Algorithms,
Prentice-Hall, Englewood Cliffs, NJ, 1993.

[3] G. S. Taylor, “Compatible hardware for division
and square root,” Proc. 5th Symp. on Comp.
Arith., pp. 127-134, 1981.

srca_0_cnt grch |

CONTROL

From Normé&Shift

0_cnt
dvsr_norm

From Shift (0 132)

i Q Tmp (i-1) l

ADDER
Guess q logic 0, +/-1,2,
A 5>1
| Qlogic \

CSA 3:2 /

80 bits ADDER

To CAM
< ! Quotient Or Remainder
Figure 6: The radix-4 divider.

Design MUL [DIV [REM | Normalized | Normalized | Number of
Alternative CLKS Performance Area Transistors

I 10 24 26 1.00 1.00 115,000

II 6 10 12 0.72 1.05 130,000

111 6 10 8 0.71 1.07 140,000

Table 1: Performance and cost comparison.

178

