
Math. Systems Theory 21, 85-98 (1988) Mathematical
Systems Theory
©1988 SDringer-Verlag New York Inc.

Minimum-Diameter Cyclic Arrangements in Mapping Data-Flow
Graphs onto VLSI Arrays

P. Erd6s, ~ I. Koren, 2 S. Moran, 3 G. M. Silberman, 3 and S. Zaks 3

i Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Hungary

2 Department of Electrical and Computer Engineering, University of Massachusetts,
Amherst, MA 01003, USA

3 Department of Computer Science, Technion--lsrael Institute of Technology,
Haifa 32000, Israel

Abstract. Regular arrays of processing elements in VLSI have proved to be
suitable for high-speed execution of many matrix operations. To execute an
arbitrary computational algorithm on such processing arrays, it has been
suggested mapping the given algorithm directly onto a regular array. The
computational algorithm is represented by a data-flow graph whose nodes
are to be mapped onto processors in the VLSI array.

This study examines the complexity of mapping data-flow graphs onto
square and hexagonal arrays of processors. We specifically consider the
problem of routing data from processors in a given (source) sequence to
another (target) sequence.

We show that under certain conditions, the above problem is equivalent
to the one of finding a minimum-diameter cyclic arrangement. The complexity
of the latter problem is analyzed and upper and lower bounds on the number
of intermediate rows of processors (between the source and target rows) are
derived.

1. Introduction

Recent developments in VLSI technology have made it possible to build relatively
large processing arrays in a single chip. Schemes for mapping certain classes of
computational algorithms onto these arrays have been recently proposed [1]-[3],
enabling the achievement of high performance through parallelism and pipelining.
Most of these computational algorithms have inherent regularity (like vector and

86 P. Erdrs, I. Koren, S. Moran, G. M. Silberman, and S. Zaks

matrix operations, and problems in signal and image processing), a property that
simplifies the task of mapping.

There are, however, many computationally demanding problems which do
not enjoy high regularity and, therefore, the task of mapping them onto processing
arrays is substantially more complex. It has been shown in [4] that the mapping
of algorithms onto processing arrays is equivalent, in its most general form, to
the graph isomorphism problem (which is conjectured to be NP-complete).
Consequently, we have to concentrate on efficient heuristics that find good
mappings for most nonregular computational algorithms. A scheme which allows
execution of arbitrary algorithms, and still takes advantage of their inherent
parallelism, has been presented in [5]. This scheme represents an algorithm by
a data-flow graph [6], and then maps it onto the processing array. A hexagonal
array of data-driven processors, capable of hosting the result of this mapping
has been shown in [7], whereas [8] presents the actual mapping onto the array
of algorithms written in the data-flow language VAL [9].

This paper examines the complexity of mapping data-flow graphs onto square
and hexagonally connected processing arrays. Specifically, we address those
problems which arise from the nonplanarity exhibited by these graphs as a
consequence of operand ordering. For square arrays, nonplanarity caused by
iterative constructs, e.g., do-loops, cannot be addressed within the regular intercon-
nections present among the processors, and some extra connections (e.g., buses)
must be provided. In the case of a hexagonal array, these constructs can be
handled separately, using the connections already present in the array, as shown
in [8]. Therefore, in the following we restrict our discussion to acyclic data-flow
graphs.

In the above context, we study the routing of n output values (tokens) from
a given row in the array, to be used as inputs to another such row. The permissible
permutations of the n values in the latter row are determined by the constraints
imposed by the given mapping process, as we shall see below. This problem can
also be considered as a special case of channel routing in VLSI circuits [10],
[11]. In its general setting, this problem studies the situation where a routing,
which connects n pairs of terminals, one from each of two rows positioned
opposite each other, must be performed under some constraints and optimizing
some criteria.

The effect of rotations on the channel routing problem is studied in [12],
where algorithms are shown which determine the rotations for minimizing the
cost measures of density, crossing number, and length of wires. (In [13], the problem
of minimizing density is solved using a heuristic approach, but allowing for the
reordering of terminals within each row.) Viewing our problem in these terms,
we are concerned with minimizing the length of the longest net, since this is
directly related to the number of intermediate rows, which carry out the routing
of the given n values. The exact bounds for this measure are more difficult to
estimate than those for the measures in [12] and [13]. It is shown that this problem
is equivalent to finding cyclic arrangements with minimum diameter in a sense
to be defined. It is further shown that under the given constraints, the mapping
process requires at most O(n) (more precisely, n - x / i f + O(1)) intermediate rows,

Minimum-Diameter Cyclic Arrangements in Mapping Data-Flow Graphs 87

in order to achieve the necessary routing. This O(n) bound can be easily obtained
by a straightforward array implementation of any standard permutation network
[14]. In view of our results, it follows that usage of such networks cannot be
considerably improved upon, in the worst case. (This bound is seldom reached,
as seen in [8].)

In the following section we introduce our approach to the solution of the
mapping problem, following [5]. Section 3 presents the mathematical formulation
o f the problem and introduces the notation used throughout. Section 4 presents
the main result on the complexity of the mapping process. These results are then
used in Section 5 to determine bounds on the length of paths in the array
configuration by applying our solution to the mapping problem.

2. The Mapping Problem: Motivation and Description

2.1. Data-Flow Graphs

We explore the problems involved in the mapping of acyclic data-flow graphs
onto an array of processors. (Cycles caused by iterative constructs are handled
separately.) These graphs represent programs in the context of data-flow com-
puters. In these computers--as opposed to control flow machines (i.e., using a
"Program Counter")--execution of instructions may proceed as soon as all the
corresponding input operands become available [6].

In data-flow graphs (see, for example, Fig. 1), each node corresponds to an
operator (e.g., plus, minus, boolean and, etc.), and operands move as "tokens"

\

(

Fig. 1. A data-flow graph.

/

l

88

Fig. 2.

P. ErdiJs, I. Koren, S. Moran, G. M. Silberman, and S. Zaks

S

A square array of processors.

along the directed arcs connecting these nodes. On the other hand, the processors
described in [7] are capable of executing several such basic operations, and thus
actual mapping of the data-flow graph onto the array may be preceded by a
compression step. This step serves to tailor the graph to be mapped to the
processors' capabilities (for details refer to [8]).

Notice (in Fig. 1) that several operations may proceed concurrently, as soon
as their operands arrive. There is no need to synchronize execution of the different
operations, or otherwise determine their order. Therefore, data-flow graphs enable
concurrency of activities at the lowest possible level [6].

2.2. Processing Arrays

In considering array topologies which are appropriate for embedding data-flow
graphs, we begin by observing that we may restrict these graphs to nodes having
at most two inputs and two outputs. This suggests the square array of processors
shown in Fig. 2. A somewhat more sophisticated setup is a hexagonal array of
processors, such as the one used in [5] and shown in Fig. 3.

Fig. 3. A hexagonal array of processors.

Minimum-Diameter Cyclic Arrangements in Mapping Data-Flow Graphs 89

2.3. Mapping Data-Flow Graphs onto Arrays

2.3.1. A General Description. The problems we study deal with the process of
mapping a given acyclic data-flow graph onto a given array of processors. This
process is carried out by assigning certain individual processors in the array to
nodes in the data-flow graph, in a one-to-one fashion, and assigning edge-disjoint
paths in the array to arcs in the graph. We consider here an array of unbounded
size, whereas in reality the number of processors which fit in a single chip is
limited by technology. To bridge this gap, the design proposed in [7] provides
the means for building a large array from a number of chips, each containing a
subarray of between 50 and 100 processors.

For example, the mapping of the data-flow graph in Fig. 1 onto a square
array is shown in Fig. 4. We notice from the above example that the mapping
process is complicated by the nonplanarity of the data-flow graph. In this example,
six rows are used only for the rearrangement of the data operands a , , a2, a3,
and a4, while the actual processing is performed by the processors on the other
rOWS.

In this study we analyze the mapping process as proposed in [5]. This process
may be viewed as composed of two phases, as detailed below.

2.3.2. First Phase. We begin by assigning levels to the nodes (operators) of the

. . . . rOW fi

.... row r|÷ I

Fig. 4. Mapping a data-flow graph onto a square array.

90 P. ErdiSs, I. Koren, S. Moran, G. M. Silberman, and S. Zaks

data-flow graph. The operators accepting only external input operands are said
to be at level 0. We say that an operator is at level i, if one o f its inputs comes
f rom an opera tor at level i - 1, and none come form higher-numbered levels.

In the mapping process all the operators at level i will be mapped into some
row r~ o f the processor array, where r~ < r~+~ for all i. The values o f the r~'s will
be successively determined, for increasing i, in the second phase (note that ro = 1).

2.3.3. Second Phase. Each processor at row r~+~ receives its inputs (one or two)
from at most two processors at row r~ (if one o f these processors is at row r~-t
or lower, its output is first routed to row r~). When two such processors (at row
r~) are not adjacent, our app roachmfo l lowing [5J-- is to route their values (out-
puts) to a pair o f adjacent processors at row r~+l- 1.

Let P 1 , . - . , P, be the sequence o f processors at row r~, and let Q 1 , . . . , Q,,
be the sequence of processors at row ri+~ - 1 which supply the inputs to row r~+~
(Fig. 5). Then it follows from the above that if P~ and Pj are to supply the inputs
to a certain processor at row r~+~, there must be a pair o f adjacent processors,
Qk and Qk+~ which receive their output values (see Fig. 5). Routing o f values
f rom P~ P, so as to achieve an ordering Q l , . - - , Q,, satisfying the above
proper ty is performed in this phase.

2.4. Problem Statement

In the sequel we study the complexity o f the second phase of the mapping process,
and obtain upper and lower bounds for the required number o f intermediate
rows (between rt and ri+~- 1), as a function o f the number o f values to be routed,
in a special case.

P! ' ' " P i ' ' ' PJ " " " Pn

. row r I

Q ~ " ' " Q k Q k ~ - I " " " Q m

r o w t i . i . I

Fig. 5. Routing in the second phase.

Minimum-Diameter Cyclic Arrangements in Mapping Data-Flow Graphs 91

In the general case, there is no expression relating m and n, the number of
processors in the sequence QI, Q 2 , - . . , Qm and P ~ , . . . , P,, respectively.
Moreover, the output of P~ may have to be routed to an arbitrary number of
processors in the sequence Q1, Q 2 , . . . , Qm. Consequently, for the general case,
only trivial upper and lower bounds on the required number of intermediate
rows can be derived.

We study below the mathematically tractable special case where (a) the
number of processors in row r~+~ is equal to the number of processors in row ri,
and (b) the output of each processor Pj (1 -<j--- n) in row r~ is the input oper-
and to exactly two adjacent processors P~, and P~,+~ (1-< k < n) in row ri+~ (see
Fig. 4).

Even though assumption (b) simplifies the problem, we consider it to be of
practical interest. First, we feel that routing a single value, which feeds two
adjacent processors, has a potential for relieving routing bottlenecks, particularly
in those graphs which exhibit complicated loop structures. Furthermore, if we
look at the dynamic routing of operands from a VLSI technology point of view,
it is always advantageous to have less transistors switching at the same time. This
reduces the circuit's power consumption and heat dissipation, two critical factors
in the design of VLSI circuits.

Thus, in this case there are n+ 1 processors on row ri+~- 1 (i.e., m = n + 1),
and there is a permutation ~r of {1, 2 , . . . , n} such that the output from P , .) is
routed to both Q1 and Q,+~, and the output from each P~(j), 1 < j - n , is routed
to Qj.

Notice that the permutation rr can be replaced by any of its cyclic permuta-
tions, and still satisfy the requirements of the mapping process; e.g., the n
arrangements

P,~(2) P~(3) "'" P~(n) P~(1) P~(2)

P.(3) P,r(4) "'" P.(,) P.(:) P~.(3)

can replace the original one in the mapping process.
Each such arrangement determines the ordering of the operators in row ri+l

and, together with the order of the processors on level ri, can determine the value
r~+~, so as to minimize the number of intermediate rows.

3. A Mathematical Formulation of the Problem

3.1. Basic Notations

Let o- = (a~, a : , . . . , a ,) be a permutation of the elements 1, 2 , n. Define the
reverse permutation of (7, o "R= (a , , . . . , al), and the diameter of or, D (o ')=
max{]ai- i[li = 1, 2 , . . . , n}.

92 P. Erdrs, I. Koren, S. Moran, G. M. Silberman, and S. Zaks

We also define

CYC(o-) = {~rlTr is a cyclic permutation of tr},

F(~r) = min{D(w)l l r ~ CYC(cr)},

G(t r) = min{D(~')lTr ~ CYC(o-) w CYC(tra)},

F(n) = max{F(tr)lo" ~ Sn},

G(n) = max{G(o') l t r ~ Sn},

where Sn denotes the set o f all the n ! permutat ions o f the elements 1, 2 , . . . , n.
It follows immediately that

(v ~ s.) [F(¢)- G(~r)]

and therefore

(Vn) [F(n)>-G(n)].

The p roo f o f the fol lowing lemma is s t raightforward (but a little tedious),
and is left to the reader.

Lemma 1. For every n, the following inequalities hold:

F (n+l)<-F(n)+ l ,

G(n+ l)<-G(n)+ l.

3.2. An Example

To demonstra te the above, let n = 5 and tr = (1, 2, 5, 3, 4). For brevity we write
t r = l 2 5 3 4 . Then o ' a = 4 3 5 2 1 and

D(~r) = max{ll - l l , 12-21, 15 -31, 13-4], 14-51} = 15-31 =2 .

The meaning of D(t r) is depicted in Fig. 6.
In the first row we draw n nodes and label them with the numbers 1 to n,

and in the second row we draw n nodes and label them with the numbers al to
an. We then connect the nodes having the same label. Note that l a , - il is the
distance o f the element a~ from its original location. In our example l a 3 - 3 1 - -
15 - 31 = 2, and this reflects the fact that a 3 = 5 is the element farthest f rom its origin.

The sets CYC(o-) and CYC(t r R) are shown in Fig. 7. For each permutat ion
7r we show its diameter D(zr) where all the elements i satisfying [ai - il -- O (~ ')
are shown in boldface. We see that F(t r) = 2, and this means that if we consider
the permuta t ion tr = 1 2 5 3 4 and its cyclic shifts, we can find at least one

1 2 3 4 5

IJ2
1 2 5 3 4

Fig. 6. The function D(cr).

Minimum-Diameter Cyclic Arrangements in Mapping Data-Flow Graphs 93

CYC(~r)

CYC(o "R)

~r D(~r)

1 2 5 3 4
4 1 2 5 3
3 4 1 2 5
5 3 4 1 2
2 5 3 4 1

4 3 5 1 2
1 4 3 5 2
2 1 4 3 5
5 2 1 4 3
3 5 2 1 4

Fig. 7. The sets CYC(tr) and CYC(trR).

permutation with diameter 2, and none with a lower diameter. Here, this smallest
diameter is achieved by the permutations 1 2 5 3 4 and 3 4 1 2 5. In addition,
G(cr) = 1, and this reflects the fact that among the ten permutations in CYC(cr) w
CYC(tr R) the minimal diameter is 1. This is achieved by the permutation 2 1 4 3 5.

F (n) and G (n) are harder to demonstrate, since we have to consider all
5 ! = 120 permutations of five elements, compute the functions F and G for each
permutation, and take the largest one found. The reader may verify that F(5) = 3
(take, for example, the permutation 3 4 1 5 2) and that G(5) = 2 (take, for example,
the permutation 5 2 43 1). The values of F (n) and G (n) for n = 1 , 2 , . . . , 10 are
shown in Fig. 8.

In fact, it will follow from this work and from [15] that, for all n,

F (n) - G (n) = O , 1, or 2

and we conjecture that

F (n) > G (n) for n > 3 .

3.3. Implications to the Mapping Problem

We consider again the mapping process, as described in Section 2. The processors
P], P2,- . -, P, on row r~ correspond to the numbers 1, 2 n, respectively. The
processors Q~, Q 2 , . - . , Q, on row r~+~-I correspond to the permutation or=
ala2" • • a, . (Notice that the implied arrangements is cr = a~a2" • • a~a~, since Q~
and Q,÷~ provide only one input each to row r~+~.) I f we concentrate on those

n

F(,)

G(n)

Fig. 8.

1 2 3 4 5 6 7 8 9 1 0

0 0 1 2 3 3 4 5 6 7

0 0 1 1 2 2 3 4 4 5

F(n) a n d G (n) for n = 1,2 10.

94 P. Erd6s, I. Koren, S. Moran, G. M. Silberman, and S. Zaks

special cases when Qk and Qk+l supply the inputs to the kth processor on row
ri+l, then every circular shift of the Qi's is also a valid configuration. In our
terms, each of the permutations in CYC(o') will satisfy the desired requirements.
Hence, the functions F(tr) and F(n) are of interest. I f we consider the case when
all the operators are commutative, then every circular shift of the Q{s or their
reversals is also a valid configuration. (Actually, the design proposed in [7] makes
every operation look as if it was commutative, since it allows the specification
of which input register will receive which operand, through the "programming"
of each processor in the array.) In our terms, each of the permutations in CYC(tr R)
will also satisfy the desired requirements. Thus, the functions G(tr) and G (n)
are of interest too, in this case.

Before proceeding to prove the main result of this paper, we note that if we
are given a permutation o', routing can be done with 2 x D(tr) intermediate rows.
The idea is that in two rows we can attain a permutation tr', such that D (t r ') =
D (t r) - 1 (the details of the algorithm are left to the reader).

4 . M a i n R e s u l t

Our main result is that F (n) is n - x / n + O(1). More specifically, we have the
following theorem.

Theorem. For all n >- 1, F (n) = n - a (n) , where a (n) = min{klk2+ k - 1 -> n}.

The study of the function G(n). appears to be much more involved. The
techniques originally developed here were later generalized in [15] to derive
less tight bounds for G (n) . More specifically, it is shown in [15] that, for all
n -> 8, n - f l (n) <-- G (n) <- n - y (n) , where/3(n) = min{klk 2 - k - 4 - > n} and y (n) =
min{klk2+ k / 2 >- n}.

Proof o f Theorem. In order to demonstrate our technique we first show the
following (weaker) result: G(tr)-> n-2x/ 'ff . To see this we take for simplicity
n = k 2 for some k. Let tr be the permutation a~, a 2 , . . . , an, defined as follows:
a I = 1, ak+l = 2, a2k+ 1 ---- 3 , . . . , aik+ 1 = i + 1 , . . . , a(k_l)k+ 1 = k, and a~ is arbitrary
otherwise. In Fig. 9 we show the permutation or for k =.3, 4. (A * means that any

k=3

i 1 2 3 4 5 6 7 8 9
a~ 1 * * 2 * * 3 * *

i

i

k=4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 * * * 2 * * * 3 * * * 4 * * *

Fig. 9. The permutation tr for k = 3, 4.

Minimum-Diameter Cyclic Arrangements in Mapping Data-Flow Graphs 95

" u n u s e d " element can be put in that location; we use this notat ion throughout .)
It is clear that in every cyclic permutat ion o f o" or o "R, one out o f the last k entries
will be occupied by some i, i_< k, and this means that G(o-) ~ n -2v/-ff, as desired.

The p r o o f o f the theorem is done separately for the upper and lower bounds ,
as follows.

Upper Bound. Let n be given. We show that F (n) < - n - a (n) , where c t (n) =
min{k[k 2 + k - 1 ~ n}. To show this, we prove that k 2 + k <- n implies F (n) < n - k.
We first consider the case when k2+ k < n, and then the case when kE-b k = n (if
such a k exists).

Case 1: k 2 + k < n. We show that for each o- ~ Sn the number o f permutat ions
7r in CYC(O-) for which D (z r) > - n - k is at m o s t k 2 + k , and hence less than n;
this implies that for each permutat ion o- there exists at least one permutat ion in
CYC(O-) with diameter smaller than n - k, and hence that F (n) < n - k.

Let i be in {1, 2 , . . . , n}. We denote by ms the number o f permutat ions zr in
CYC(O-) in which i is at distance at least n - k f rom its original location, and
we say that i is f a r in these permutations. Clearly, there are exactly k permutat ions
in CYC(O-) for which 1 is far, namely, the permutat ions for which 1 occupies
one o f the last k entries, that is ai = 1 for some i in {n - k + 1, n - k + 2 , . . . , n}.
Similarly, there are exactly k permutat ions in which n is far. Hence, ml = mn = k.
In the same way we can easily verify that

m2 = mn_l = k - 1

m k ~ r a n _ k + 1 ~ 1 ,

and

ms=O for k < i < - n - k .

Hence, ~ ms = 2(k + (k - 1) + • • • + 1) = k 2 + k. This means that the number of f a r
permutations (i.e., permutations in which at least one element is far) in CYC(O-)
cannot exceed k 2 + k, since in ~ mi each far permuta t ion is counted at least once.
This completes the p roof o f case 1.

Note that the number o f far permutat ions in CYC(O-) is exactly k2+ k if and
only if no permutat ion is overcounted in Y. ms, i.e., each far permutat ion contains
a unique far element.

Case 2: k 2 + k = n . The theorem holds clearly for the case where k = l (and
n = 2), so assume k > 1.

Let o- be a permutat ion in S, and let k be such that k 2 + k = n. We have to
show that F (o -) < n - k. From the above discussion F(o-)-< n - k, with equality
being satisfied if and only if in each cyclic shift o f o- exactly one element is far.
It remains to show that this last case (corresponding to F(o-) = n - k) is impossible.

Consider all the cyclic shifts o f the permutat ion o- and assume that indeed
there is a unique far element in each of them. This far element can be either
among the last k elements (and hence is equal to one o f the elements 1, 2 , . . . , k),

96 P. E r d f s , I. K o r e n , S. M o r a n , G . M. S i l be rman , a n d S. Z a k s

or among the first k elements (and hence is equal to one o f the elements
n - k + 1, n - k + 2 , . . . , n). It follows that there must be two successive permuta-
tions

7r~ = {a~, a i + l , • • - , a n , a t , • • • , a i - t } ,

~ 2 = { a i + t , a i + 2 , . . - , an, a s , . . • , a i }

such that in rrt the far element is among the first k elements (i.e., belongs to the
set { a , . . . , a~+k-~}), and in ~r2 the far element is among the last k elements (i.e.,
belongs to the set {a~-k+t , a~}). In all the cases ment ioned above an index j
denotes 1 + (j - 1) rood n.

Since none o f the elements ai+,,..., ai+k is far in rr2, none o f them can be
far in ~rl ; hence, the unique far element in ~'1 is the first element a~, which means
that ai-> n - k + 1. Similarly, the unique far element in ~r~ is the last element,
which is also a~, meaning that ai-< k. Thus, we have k2+ 1 = n - k + 1 --- a~ --- k, a
contradict ion.

Lower Bound. We show a construct ion for permutat ions tr satisfying F(tr)>_
n-a(n) . The following program generates permutat ions 0"= at , an, where
n = k2+ k - 1 , such that F (t r) = n - k (the p r o o f is left to the reader).

begin
[distr ibution o f large elements n - k + 1 to n]
i := 1;
a i := n - k + 1;
for j := 2 to k do

begin
i := i + j ;
a i := n - k + j ;

end;
[distr ibution o f small elements 1 to k]
i := i - 1 ;

ai = 1;

for j := 2 to k do
begin

i := i + k + l - j ;
ai : = j ;

end;
[distribute the remaining elements arbitrarily]

end.

The construct ion for the cases k = 3, 4 is shown in Fig. 10.
From Lemma 1 it follows that, for any n such that k 2 + k - l < n <

(k + 1)2+ (k + 1) - 1 = k Z + 3 k + 1, we have F(n) = n - k - 1. Furthermore, since,
for any such n, a (n)=k+l , we have, for all n, F (n)=n-a (n) . []

Minimum-Diameter Cyclic Arrangements in Mapping Data-Flow Graphs

i
k=3

i 1 2 3 4 5 6 7 8 9 10 11
a i 9 * 10 * 1 11 * 2 * 3 *

97

k=4

i l 2 3 4 5 6 7 8 9 l0 11 12 13 14 15 16 17 18 19
a~ 16 * 17 * * 18 * * 1 19 * * 2 * * 3 * 4 *

Fig. 10. Lower bound for F (n) .

5. C o n c l u s i o n s

In this sec t ion we examine the impl i ca t ions o f o u r ana lys i s on the pa th lengths
and n u m b e r o f in te rmedia te rows requ i red for m a p p i n g a data-f low graph on a
square o r hexagona l p rocessor array. These results a p p l y only to the specia l case
def ined in Sect ion 2.4, and do not represent a so lu t ion to the general da ta- f low
m a p p i n g p rob lem.

F rom the results in the last sec t ion we der ive b o u n d s on the longest pa th
which an o p e r a n d (value) has to travel , f rom row ri to row ri+~. In the square
ar ray , this length is at least 2 x F(o-) , o r 2 x G(o-) for the commuta t ive case (two
rows are requ i red to exchange a pa i r o f values , thus the fac tor o f 2), where o- is
the p e r m u t a t i o n o f operands to be used as inputs by row ri+~ (refer to Sect ion
3.1). This impl ies a lower bound o f 2(n - x / n) in the wors t case (where n is the
n u m b e r o f values to be routed) on the pa th length, and thus on the n u m b e r o f
rows requ i red be tween ri and r~÷~.

On the o ther hand, it is well known tha t p e r m u t a t i o n networks [14] achieve
any reo rde r ing of n values using n stages. Therefore , we see that in the wors t
case we save very little (in terms of rows) i f we a l low cycl ic shifts o f the target
pe rmuta t ion . However , in special cases which might be encounte red in prac t ice ,
the add i t i ona l computa t iona l effort incur red by a l lowing such cyclic shifts carl

be just i f ied.
In the hexagona l ar ray case, when we take into cons ide ra t ion the hor izon ta l

l inks, our results imply a lower b o u n d o f n - x / - ~ on the longest pa th . Again ,
i m p l e m e n t i n g a pe rmuta t ion ne twork in this case can be done in n rows (since
in te rchanging two elements may be done in a s ingle row). However , this
i m p l e m e n t a t i o n may result in longer pa ths . In prac t ice , [8] shows that it is
wor thwhi le deve lop ing heurist ics to pe r fo rm the rou t ing o f values in the ar ray ,
as the n u m b e r of rows ded ica ted to this t a sk can be enormous ly r e duc e d over

the worst case.
Some interes t ing problems remain open:

Ex tend ing the results herein to a genera l pe rmu ta t i on , i.e., inc lud ing more
than one cycle.

98 P. Erd/Js, I. Koren, S. Moran, G, M. Silberman, and S. Zaks

Examining the behavior of a random permutation, i.e., finding the average
complexity of the problem at hand.

References

[1] Fisher, A. L. et al., Design of the PSC: A Programmable Systolic Chip, Proc. Third Caltech
Conf. on VLSI, March 1983, pp. 287-302.

[2] Kung, S. Y., On Supercomputing with Systolic/Wavefront Array Processors, Proc. IEEE, Vol.
72, July 1984, pp. 867-884.

[3] Li, G., and Wah, B. W., The Design of Optimal Systolic Arrays, IEEE Trans. Comput., Vol.
C-34, January 1985, pp. 66-77.

[4] Bokhari, S. H., On the Mapping Problem, IEEE Trans. Comput., Vol. C-30, March 1981,
pp. 207-214.

[5] Koren, I., and Silberman, G. M., A Direct Mapping of Algorithms onto VLSI Processing Arrays
Based on the Data Flow Approach, Proc. 12th International Conf. on Parallel Processing, August
1983, pp. 335-337.

[6] Special issue on Data Flow Systems, IEEE Comput., Vol. 15, No. 2, February 1982.
[7] Koren, I., and Peled, I., The Concept and Implementation of Data-Driven Processor Arrays,

IEEE Comput., Vol. 20, No. 7, July 1987, pp. 102-103.
[8] Mendelson, B., and Silberman, G. M., Mapping Data Flow Programs on a VLSI Array of

Processors, Proc. 14th International Syrup. on Computer Architecture, Pittsburgh, PA, June 1987,
pp. 72-80.

[9] Ackerman, W. B., and Dennis, J. B., VALmA Value-Oriented Algorithmic Language; Pre-
liminary Reference Manual, Technical Report MIT/LCS/TR-218, Laboratory for Computer
Science, Massachusetts Institute of Technology, Cambridge, MA, 1974.

[10] Mizraian, A., Channel Routing in VLSI, Proc. 16th Annual A C M Syrup. on Theory of Computing,
1984, pp. 101-107.

[11] Preparata, F. P., and Lipski, W., Optimal Three-Layer Channel Routing, IEEE Trans. Comput.,
Vol. C-33, 1984, pp. 427-437.

[12] Atallah, M. J., and Hambrusch, S. E., Optimal Rotation Problems in Channel Routing, IEEE
Trans. Comput., Vol. C-35, September 1986, pp. 843-847.

[13] Savage, J. E., Heuristics in the SLAP Layout System, Proc. International Conf. on Computer
Design (ICCD), Port Chester, New York, October 1983, pp. 637-640.

[14] Knuth, D. E., The Art of Computer Programming, Vol. 3, Addison-Wesley, Reading, MA, 1973,
Section 5.3.4.

[15] Erd/~s, P., Linial, N., and Moran, S., Extremal Problems on Permutations under Cyclic
Equivalence, Discrete Math., Vol. 64, No. 1, 1987, pp. 1-13.

Received September 28, 1987, and in revised form February, 1988, and March 31, 1988, and in final
form May 27, 1988.

