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Abstract. Regular arrays of processing elements in VLSI have proved to be 
suitable for high-speed execution of many matrix operations. To execute an 
arbitrary computational algorithm on such processing arrays, it has been 
suggested mapping the given algorithm directly onto a regular array. The 
computational algorithm is represented by a data-flow graph whose nodes 
are to be mapped onto processors in the VLSI array. 

This study examines the complexity of  mapping data-flow graphs onto 
square and hexagonal arrays of processors. We specifically consider the 
problem of routing data from processors in a given (source) sequence to 
another (target) sequence. 

We show that under certain conditions, the above problem is equivalent 
to the one of finding a minimum-diameter cyclic arrangement. The complexity 
of the latter problem is analyzed and upper and lower bounds on the number 
of intermediate rows of processors (between the source and target rows) are 
derived. 

1. Introduction 

Recent developments in VLSI technology have made it possible to build relatively 
large processing arrays in a single chip. Schemes for mapping certain classes of 
computational algorithms onto these arrays have been recently proposed [1]-[3], 
enabling the achievement of high performance through parallelism and pipelining. 
Most of these computational algorithms have inherent regularity (like vector and 
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matrix operations, and problems in signal and image processing), a property that 
simplifies the task of mapping. 

There are, however, many computationally demanding problems which do 
not enjoy high regularity and, therefore, the task of mapping them onto processing 
arrays is substantially more complex. It has been shown in [4] that the mapping 
of algorithms onto processing arrays is equivalent, in its most general form, to 
the graph isomorphism problem (which is conjectured to be NP-complete).  
Consequently, we have to concentrate on efficient heuristics that find good 
mappings for most nonregular computational algorithms. A scheme which allows 
execution of  arbitrary algorithms, and still takes advantage of their inherent 
parallelism, has been presented in [5]. This scheme represents an algorithm by 
a data-flow graph [6], and then maps it onto the processing array. A hexagonal 
array of data-driven processors, capable of  hosting the result of  this mapping 
has been shown in [7], whereas [8] presents the actual mapping onto the array 
of  algorithms written in the data-flow language VAL [9]. 

This paper examines the complexity of  mapping data-flow graphs onto square 
and hexagonally connected processing arrays. Specifically, we address those 
problems which arise from the nonplanarity exhibited by these graphs as a 
consequence of operand ordering. For square arrays, nonplanarity caused by 
iterative constructs, e.g., do-loops, cannot be addressed within the regular intercon- 
nections present among the processors, and some extra connections (e.g., buses) 
must be provided. In the case of a hexagonal array, these constructs can be 
handled separately, using the connections already present in the array, as shown 
in [8]. Therefore, in the following we restrict our discussion to acyclic data-flow 
graphs. 

In the above context, we study the routing of  n output values (tokens) from 
a given row in the array, to be used as inputs to another such row. The permissible 
permutations of the n values in the latter row are determined by the constraints 
imposed by the given mapping process, as we shall see below. This problem can 
also be considered as a special case of channel routing in VLSI circuits [10], 
[11]. In its general setting, this problem studies the situation where a routing, 
which connects n pairs of terminals, one from each of two rows positioned 
opposite each other, must be performed under some constraints and optimizing 
some criteria. 

The effect of  rotations on the channel routing problem is studied in [12], 
where algorithms are shown which determine the rotations for minimizing the 
cost measures of density, crossing number, and length of wires. (In [ 13], the problem 
of  minimizing density is solved using a heuristic approach, but allowing for the 
reordering of  terminals within each row.) Viewing our problem in these terms, 
we are concerned with minimizing the length of the longest net, since this is 
directly related to the number of intermediate rows, which carry out the routing 
of the given n values. The exact bounds for this measure are more difficult to 
estimate than those for the measures in [ 12] and [ 13]. It is shown that this problem 
is equivalent to finding cyclic arrangements with minimum diameter in a sense 
to be defined. It is further shown that under the given constraints, the mapping 
process requires at most O(n) (more precisely, n - x / i f +  O(1)) intermediate rows, 
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in order to achieve the necessary routing. This O(n)  bound can be easily obtained 
by a straightforward array implementation of any standard permutation network 
[14]. In view of our results, it follows that usage of such networks cannot be 
considerably improved upon, in the worst case. (This bound is seldom reached, 
as seen in [8].) 

In the following section we introduce our approach to the solution of the 
mapping problem, following [5]. Section 3 presents the mathematical formulation 
o f  the problem and introduces the notation used throughout. Section 4 presents 
the main result on the complexity of the mapping process. These results are then 
used in Section 5 to determine bounds on the length of  paths in the array 
configuration by applying our solution to the mapping problem. 

2. The Mapping Problem: Motivation and Description 

2.1. Data-Flow Graphs 

We explore the problems involved in the mapping of acyclic data-flow graphs 
onto an array of processors. (Cycles caused by iterative constructs are handled 
separately.) These graphs represent programs in the context of data-flow com- 
puters. In these computers--as opposed to control flow machines (i.e., using a 
"Program Counter")--execution of instructions may proceed as soon as all the 
corresponding input operands become available [6]. 

In data-flow graphs (see, for example, Fig. 1), each node corresponds to an 
operator (e.g., plus, minus, boolean and, etc.), and operands move as "tokens" 
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Fig. 1. A data-flow graph. 
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Fig. 2. 
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A square array of processors. 

along the directed arcs connecting these nodes. On the other hand, the processors 
described in [7] are capable of  executing several such basic operations, and thus 
actual mapping of the data-flow graph onto the array may be preceded by a 
compression step. This step serves to tailor the graph to be mapped to the 
processors' capabilities (for details refer to [8]). 

Notice (in Fig. 1) that several operations may proceed concurrently, as soon 
as their operands arrive. There is no need to synchronize execution of  the different 
operations, or otherwise determine their order. Therefore, data-flow graphs enable 
concurrency of activities at the lowest possible level [6]. 

2.2. Processing Arrays 

In considering array topologies which are appropriate for embedding data-flow 
graphs, we begin by observing that we may restrict these graphs to nodes having 
at most two inputs and two outputs. This suggests the square array of  processors 
shown in Fig. 2. A somewhat more sophisticated setup is a hexagonal array of 
processors, such as the one used in [5] and shown in Fig. 3. 

Fig. 3. A hexagonal array of processors. 
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2.3. Mapping Data-Flow Graphs onto Arrays 

2.3.1. A General Description. The problems we study deal with the process of  
mapping a given acyclic data-flow graph onto a given array of processors. This 
process is carried out by assigning certain individual processors in the array to 
nodes in the data-flow graph, in a one-to-one fashion, and assigning edge-disjoint 
paths in the array to arcs in the graph. We consider here an array of unbounded 
size, whereas in reality the number of processors which fit in a single chip is 
limited by technology. To bridge this gap, the design proposed in [7] provides 
the means for building a large array from a number of chips, each containing a 
subarray of  between 50 and 100 processors. 

For example, the mapping of the data-flow graph in Fig. 1 onto a square 
array is shown in Fig. 4. We notice from the above example that the mapping 
process is complicated by the nonplanarity of the data-flow graph. In this example, 
six rows are used only for the rearrangement of  the data operands a , ,  a2, a3, 
and a4, while the actual processing is performed by the processors on the other 
rOWS. 

In this study we analyze the mapping process as proposed in [5]. This process 
may be viewed as composed of two phases, as detailed below. 

2.3.2. First Phase. We begin by assigning levels to the nodes (operators) of the 

. . . .  rOW fi 

.... row r|÷ I 

Fig. 4. Mapping a data-flow graph onto a square array. 
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data-flow graph. The operators accepting only  external input operands  are said 
to be at level 0. We say that an operator  is at level i, if  one o f  its inputs comes 
f rom an opera tor  at level i - 1, and none  come form higher-numbered levels. 

In  the mapping  process all the operators  at level i will be mapped  into some 
row r~ o f  the processor array, where r~ < r~+~ for  all i. The values o f  the r~'s will 
be successively determined, for  increasing i, in the second phase (note that ro = 1). 

2.3.3. Second Phase. Each processor  at row r~+~ receives its inputs (one or  two) 
from at most  two processors at row r~ (if one  o f  these processors is at row r~-t 
or  lower, its output  is first routed to row r~). When  two such processors (at row 
r~) are not  adjacent,  our  app roachmfo l lowing  [5J-- is  to route their values (out- 
puts) to a pair  o f  adjacent processors at row r~+l- 1. 

Let P 1 , . - . ,  P,  be the sequence o f  processors at row r~, and let Q 1 , . . . ,  Q,, 
be the sequence of  processors at row ri+~ - 1 which supply the inputs to row r~+~ 
(Fig. 5). Then  it follows from the above that  if P~ and Pj are to supply the inputs 
to a certain processor  at row r~+~, there must  be a pair  o f  adjacent processors,  
Qk and Qk+~ which receive their output  values (see Fig. 5). Routing o f  values 
f rom P~ . . . . .  P,  so as to achieve an ordering Q l , . - - ,  Q,, satisfying the above 
proper ty  is performed in this phase. 

2.4. Problem Statement 

In the sequel we study the complexity o f  the second phase of  the mapping  process, 
and obtain upper  and lower bounds  for  the required number  o f  intermediate 
rows (between rt and ri+~- 1), as a function o f  the number  o f  values to be routed, 
in a special case. 

P!  ' ' " P i  ' ' ' PJ  " " " Pn  

. . . . .  row  r I 

Q ~  " ' " Q k  Q k ~ - I  " " " Q m  

r o w  t i . i .  I 

Fig. 5. Routing in the second phase. 
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In the general case, there is no expression relating m and n, the number of 
processors in the sequence QI, Q 2 , - . . ,  Qm and P ~ , . . . ,  P,,  respectively. 
Moreover, the output of P~ may have to be routed to an arbitrary number of 
processors in the sequence Q1, Q 2 , . . . ,  Qm. Consequently, for the general case, 
only trivial upper and lower bounds on the required number of intermediate 
rows can be derived. 

We study below the mathematically tractable special case where (a) the 
number of  processors in row r~+~ is equal to the number of processors in row ri, 
and (b) the output of each processor Pj (1 -<j--- n) in row r~ is the input oper- 
and to exactly two adjacent processors P~, and P~,+~ (1-< k <  n) in row ri+~ (see 
Fig. 4). 

Even though assumption (b) simplifies the problem, we consider it to be of 
practical interest. First, we feel that routing a single value, which feeds two 
adjacent processors, has a potential for relieving routing bottlenecks, particularly 
in those graphs which exhibit complicated loop structures. Furthermore, if we 
look at the dynamic routing of operands from a VLSI technology point of view, 
it is always advantageous to have less transistors switching at the same time. This 
reduces the circuit's power consumption and heat dissipation, two critical factors 
in the design of VLSI circuits. 

Thus, in this case there are n+  1 processors on row ri+~- 1 (i.e., m = n + 1), 
and there is a permutation ~r of {1, 2 , . . . ,  n} such that the output from P , . )  is 
routed to both Q1 and Q,+~, and the output from each P~(j), 1 < j - n ,  is routed 
to Qj. 

Notice that the permutation rr can be replaced by any of  its cyclic permuta- 
tions, and still satisfy the requirements of the mapping process; e.g., the n 
arrangements 

P,~(2) P~(3) "'" P~(n) P~(1) P~(2) 

P.(3) P,r(4) "'" P.(,) P.(:) P~.(3) 

can replace the original one in the mapping process. 
Each such arrangement determines the ordering of the operators in row ri+l 

and, together with the order of  the processors on level ri, can determine the value 
r~+~, so as to minimize the number of intermediate rows. 

3. A Mathematical Formulation of the Problem 

3.1. Basic Notations 

Let o- = (a~, a : , . . . ,  a , )  be a permutation of the elements 1, 2 . . . .  , n. Define the 
reverse permutation of (7, o "R= ( a , , . . . ,  al), and the diameter of or, D (o ' )=  
max{]ai-  i[li = 1, 2 , . . . ,  n}. 
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We also define 

CYC(o-) = {~rlTr is a cyclic permutation of  tr}, 

F(~r) = min{D(w)l l r  ~ CYC(cr)}, 

G( t r )  = min{D(~')lTr ~ CYC(o-) w CYC(tra)},  

F(n) = max{F(tr)lo" ~ Sn}, 

G(n) = max{G(o') l t r  ~ Sn}, 

where Sn denotes the set o f  all the n ! permutat ions  o f  the elements 1, 2 , . . . ,  n. 
It follows immediately that 

( v ~  s.) [F(¢)- G(~r)] 

and therefore 

(Vn) [F(n)>-G(n)]. 

The p roo f  o f  the fol lowing lemma is s t raightforward (but a little tedious),  
and is left to the reader. 

Lemma 1. For every n, the following inequalities hold: 

F (n+l )<-F(n )+ l ,  

G(n+ l)<-G(n)+ l. 

3.2. An Example 

To demonstra te  the above, let n = 5 and tr = (1, 2, 5, 3, 4). For brevity we write 
t r = l  2 5 3 4 .  Then o ' a = 4 3  5 2  1 and 

D(~r) = max{ll - l l ,  12-21, 15 -31,  13-4],  14-51} = 15-31 =2 .  

The meaning of  D(t r )  is depicted in Fig. 6. 
In the first row we draw n nodes and label them with the numbers  1 to n, 

and in the second row we draw n nodes  and label them with the numbers  al to 
an. We then connect  the nodes having the same label. Note that l a , -  il is the 
distance o f  the element a~ from its original location. In our  example  l a 3 - 3 1 - -  
15 - 31 = 2, and this reflects the fact that  a 3 = 5 is the element farthest f rom its origin. 

The sets CYC(o-) and CYC(t r  R) are shown in Fig. 7. For each permutat ion 
7r we show its diameter D(zr)  where all the elements i satisfying [ai - il -- O ( ~ ' )  
are shown in boldface.  We see that  F( t r )  = 2, and this means that if  we consider 
the permuta t ion  tr = 1 2 5 3 4 and its cyclic shifts, we can find at least one 

1 2 3 4 5  

IJ2  
1 2 5 3 4  

Fig. 6. The function D(cr). 
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CYC(~r) 

CYC(o "R) 

~r D(~r) 

1 2 5 3 4  
4 1 2 5 3  
3 4 1 2 5  
5 3 4 1 2  
2 5 3 4 1  

4 3 5 1 2  
1 4 3 5 2  
2 1 4 3 5  
5 2 1 4 3  
3 5 2 1 4  

Fig. 7. The sets CYC(tr) and CYC(trR). 

permutation with diameter 2, and none with a lower diameter. Here, this smallest 
diameter is achieved by the permutations 1 2 5 3 4 and 3 4 1 2 5. In addition, 
G(cr) = 1, and this reflects the fact that among the ten permutations in CYC(cr) w 
CYC(tr  R) the minimal diameter is 1. This is achieved by the permutation 2 1 4 3 5. 

F ( n )  and G ( n )  are harder to demonstrate,  since we have to consider all 
5 ! = 120 permutations of  five elements, compute the functions F and G for each 
permutation, and take the largest one found. The reader may verify that F(5) = 3 
(take, for example, the permutation 3 4 1 5 2) and that G(5) = 2 (take, for example, 
the permutation 5 2 43 1). The values of  F ( n )  and G ( n )  for n = 1 , 2 , . . . ,  10 are 
shown in Fig. 8. 

In fact, it will follow from this work and from [15] that, for all n, 

F ( n ) - G ( n ) = O ,  1, or 2 

and we conjecture that 

F ( n ) > G ( n )  for n > 3 .  

3.3. Implications to the Mapping Problem 

We consider again the mapping process, as described in Section 2. The processors 
P], P2,- .  -, P, on row r~ correspond to the numbers 1, 2 . . . . .  n, respectively. The 
processors Q~, Q 2 , . - . ,  Q, on row r~+~-I correspond to the permutation or= 
ala2" • • a, .  (Notice that the implied arrangements is cr = a~a2" • • a~a~, since Q~ 
and Q,÷~ provide only one input each to row r~+~.) I f  we concentrate on those 

n 

F(,) 

G(n) 

Fig. 8. 

1 2 3 4 5 6 7 8 9 1 0  

0 0 1 2 3 3 4 5 6 7  

0 0 1 1 2 2 3 4 4 5  

F(n) a n d G ( n )  for n = 1,2 . . . . .  10. 
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special cases when Qk and Qk+l supply the inputs to the kth processor on row 
ri+l, then every circular shift of  the Qi's is also a valid configuration. In our 
terms, each of the permutations in CYC(o')  will satisfy the desired requirements. 
Hence, the functions F(tr)  and F(n )  are of  interest. I f  we consider the case when 
all the operators are commutative,  then every circular shift of  the Q{s or their 
reversals is also a valid configuration. (Actually, the design proposed in [7] makes 
every operation look as if it was commutative,  since it allows the specification 
of which input register will receive which operand,  through the "programming"  
of  each processor in the array.) In our terms, each of the permutations in CYC(tr  R) 
will also satisfy the desired requirements. Thus, the functions G(tr)  and G ( n )  
are of  interest too, in this case. 

Before proceeding to prove the main result of  this paper, we note that if we 
are given a permutation o', routing can be done with 2 x D(tr)  intermediate rows. 
The idea is that in two rows we can attain a permutation tr', such that D ( t r ' ) =  
D ( t r ) -  1 (the details of  the algorithm are left to the reader). 

4 .  M a i n  R e s u l t  

Our main result is that F ( n )  is n - x / n +  O(1). More specifically, we have the 
following theorem. 

Theorem. For all n >- 1, F ( n )  = n - a ( n ) ,  where a ( n )  = min{klk2+ k -  1 -> n}. 

The study of the function G(n). appears to be much more involved. The 
techniques originally developed here were later generalized in [15] to derive 
less tight bounds for G ( n ) .  More specifically, it is shown in [15] that, for all 
n -> 8, n - f l ( n )  <-- G ( n )  <- n - y ( n ) ,  where/3(n) = min{klk 2 -  k - 4 - >  n} and y ( n )  = 
min{klk2+ k / 2  >- n}. 

Proof  o f  Theorem. In order to demonstrate our technique we first show the 
following (weaker) result: G(tr)-> n-2x/ 'ff .  To see this we take for simplicity 
n = k 2 for some k. Let tr be the permutation a~, a 2 , . . . ,  an, defined as follows: 
a I = 1, ak+l = 2, a2k+ 1 ---- 3 , . . . ,  aik+ 1 = i +  1 , . . . ,  a(k_l)k+ 1 = k, and a~ is arbitrary 
otherwise. In Fig. 9 we show the permutation or for k =.3, 4. (A * means that any 

k=3 

i 1 2 3 4 5 6 7 8 9  
a~ 1 * * 2 * * 3 * * 

i 

i 

k=4 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 * * * 2 * * * 3 * * * 4 * * * 

Fig. 9. The permutation tr for k = 3, 4. 
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" u n u s e d "  element can be put in that location; we use this notat ion throughout . )  
It is clear that  in every cyclic permutat ion o f  o" or  o "R, one out  o f  the last k entries 
will be occupied by some i, i_< k, and this means that  G(o-) ~ n -2v/-ff, as desired. 

The p r o o f  o f  the theorem is done separately for the upper  and lower bounds ,  
as follows. 

Upper Bound. Let n be given. We show that  F ( n )  < - n - a ( n ) ,  where c t ( n ) =  
min{k[k 2 + k - 1 ~ n}. To show this, we prove that k 2 + k <- n implies F ( n )  < n - k. 
We first consider  the case when k2+  k < n, and then the case when kE-b k = n (if 
such a k exists). 

Case 1: k 2 + k < n. We show that for each o- ~ Sn the number  o f  permutat ions 
7r in CYC(O-) for  which D ( z r ) > - n - k  is at m o s t  k 2 + k ,  and hence less than n; 
this implies that for  each permutat ion o- there exists at least one permutat ion in 
CYC(O-) with diameter  smaller than n -  k, and hence that F ( n ) <  n -  k. 

Let i be in {1, 2 , . . . ,  n}. We denote by ms the number  o f  permutat ions zr in 
CYC(O-) in which i is at distance at least n -  k f rom its original location, and 
we say that i is f a r  in these permutations. Clearly, there are exactly k permutat ions 
in CYC(O-) for  which 1 is far, namely, the permutat ions  for which 1 occupies 
one o f  the last k entries, that is ai = 1 for some i in {n - k +  1, n - k + 2 , . . . ,  n}. 
Similarly, there are exactly k permutat ions in which n is far. Hence, ml = mn = k. 
In the same way we can easily verify that 

m2 = mn_l = k - 1  

m k ~ r a n _ k +  1 ~ 1 ,  

and 

ms=O for  k < i < - n - k .  

Hence,  ~ ms = 2(k + (k - 1) + • • • + 1) = k 2 + k. This means that the number  of  f a r  
permutations (i.e., permutations in which at least one element is far) in CYC(O-) 
cannot  exceed k 2 + k, since in ~ mi each far permuta t ion  is counted at least once. 
This completes  the p roof  o f  case 1. 

Note  that the number  o f  far permutat ions in CYC(O-) is exactly k2+ k if  and 
only if no permutat ion is overcounted in Y. ms, i.e., each far permutat ion contains 
a unique far element. 

Case 2: k 2 + k = n .  The theorem holds clearly for the case where k = l  (and 
n = 2), so assume k > 1. 

Let o- be a permutat ion in S, and let k be such that k 2 + k  = n. We have to 
show that  F ( o - ) <  n -  k. From the above discussion F(o-)-< n -  k, with equality 
being satisfied if  and only if in each cyclic shift o f  o- exactly one element is far. 
It remains to show that this last case (corresponding to F(o-) = n - k) is impossible. 

Consider  all the cyclic shifts o f  the permutat ion o- and assume that indeed 
there is a unique far element in each of  them. This far element can be either 
among  the last k elements (and hence is equal to one o f  the elements 1, 2 , . . . ,  k), 
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or among  the first k elements (and hence is equal to one o f  the elements 
n - k  + 1, n - k  + 2 , . . . ,  n). It follows that there must  be two successive permuta- 
tions 

7r~ = {a~, a i + l ,  • • - ,  a n ,  a t ,  • • • ,  a i - t } ,  

~ 2  = { a i + t ,  a i + 2 ,  . . -  , an, a s , . .  • ,  a i }  

such that in rrt the far element is among  the first k elements (i.e., belongs to the 
set { a , . . . ,  a~+k-~}), and in ~r2 the far element is among  the last k elements (i.e., 
belongs to the set {a~-k+t . . . .  , a~}). In all the cases ment ioned above an index j 
denotes 1 + ( j -  1) rood n. 

Since none  o f  the elements ai+,,..., ai+k is far in rr2, none o f  them can be 
far in ~rl ; hence,  the unique far element in ~'1 is the first element a~, which means 
that ai-> n -  k +  1. Similarly, the unique far element in ~r~ is the last element, 
which is also a~, meaning that ai-< k. Thus,  we have k2+ 1 = n - k +  1 --- a~ --- k, a 
contradict ion.  

Lower Bound. We show a construct ion for permutat ions  tr satisfying F(tr)>_ 
n-a(n) .  The following program generates permutat ions  0"= at . . . .  , an, where 
n = k2+ k - 1 ,  such that F ( t r ) =  n - k  (the p r o o f  is left to the reader).  

begin 
[distr ibution o f  large elements n - k +  1 to n] 
i :=  1; 
a i :=  n - k +  1; 
for j := 2 to k do 

begin 
i := i + j ;  
a i :=  n - k + j ;  

end; 
[distr ibution o f  small elements 1 to k] 
i :=  i - 1 ;  

ai = 1;  

for j := 2 to k do 
begin 

i :=  i + k + l - j ;  
ai : = j ;  

end; 
[distribute the remaining elements arbitrarily] 

end. 

The construct ion for the cases k = 3, 4 is shown in Fig. 10. 
From Lemma 1 it follows that, for  any n such that k 2 + k - l < n <  

( k +  1)2+ ( k +  1) - 1 = k Z + 3 k +  1, we have F(n) = n - k -  1. Furthermore,  since, 
for any such n, a (n )=k+l ,  we have, for  all n, F (n )=n-a (n ) .  [] 
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i 
k=3 

i 1 2 3 4 5 6 7 8 9 10 11 
a i 9 * 10 * 1 11 * 2 * 3 * 

97 

k=4  

i l 2 3 4 5 6 7 8 9 l0 11 12 13 14 15 16 17 18 19 
a~ 16 * 17 * * 18 * * 1 19 * * 2 * * 3 * 4 * 

Fig. 10. Lower bound for F ( n ) .  

5.  C o n c l u s i o n s  

In this sec t ion  we examine  the impl i ca t ions  o f  o u r  ana lys i s  on the pa th  lengths 
and  n u m b e r  o f  in te rmedia te  rows requ i red  for  m a p p i n g  a data-f low graph  on a 
square  o r  hexagona l  p rocessor  array.  These  results  a p p l y  only  to the specia l  case 
def ined in Sect ion 2.4, and  do not  represent  a so lu t ion  to the general  da ta- f low 
m a p p i n g  p rob lem.  

F rom the results in the last sec t ion we der ive  b o u n d s  on the longest  pa th  
which an o p e r a n d  (value) has to travel ,  f rom row ri to row ri+~. In the square  
ar ray ,  this  length  is at least  2 x F(o-) ,  o r  2 x  G(o-)  for  the  commuta t ive  case ( two 
rows are requ i red  to exchange a pa i r  o f  values ,  thus  the  fac tor  o f  2), where  o- is 
the p e r m u t a t i o n  o f  operands  to be used  as inputs  by row ri+~ (refer to Sect ion 
3.1). This  impl ies  a lower bound  o f  2(n - x / n )  in the wors t  case (where n is the 
n u m b e r  o f  values  to be routed)  on the pa th  length,  and  thus on the n u m b e r  o f  
rows requ i red  be tween ri and  r~÷~. 

On the o ther  hand,  it is well known  tha t  p e r m u t a t i o n  networks  [14] achieve 
any reo rde r ing  of  n values using n stages.  Therefore ,  we see that  in the  wors t  
case we save very little (in terms of  rows)  i f  we a l low cycl ic  shifts o f  the target  
pe rmuta t ion .  However ,  in special  cases which  might  be  encounte red  in prac t ice ,  
the  add i t i ona l  computa t iona l  effort incur red  by  a l lowing  such cyclic shifts carl 

be just i f ied.  
In the hexagona l  ar ray case, when we take  into  cons ide ra t ion  the hor izon ta l  

l inks,  our  results  imply a lower  b o u n d  o f  n - x / - ~  on the  longest  pa th .  Again ,  
i m p l e m e n t i n g  a pe rmuta t ion  ne twork  in this  case  can be  done  in n rows (since 
in te rchanging  two elements  may  be  done  in a s ingle row).  However ,  this  
i m p l e m e n t a t i o n  may  result  in longer  pa ths .  In  prac t ice ,  [8] shows that  it  is 
wor thwhi le  deve lop ing  heurist ics  to pe r fo rm  the rou t ing  o f  values in the  ar ray ,  
as the n u m b e r  of  rows ded ica ted  to this  t a sk  can  be enormous ly  r e duc e d  over  

the worst  case. 
Some interes t ing problems  remain  open:  

Ex tend ing  the results herein to a genera l  pe rmu ta t i on ,  i.e., inc lud ing  more  
than  one  cycle. 
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Examining the behavior of a random permutation, i.e., finding the average 
complexity of the problem at hand. 
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