
A Study on Performance Benefits of Core
Morphing in an Asymmetric Multicore Processor

Anup Das, Rance Rodrigues, Israel Koren and Sandip Kundu
Department of Electrical and Computer Engineering

University of Massachusetts at Amherst
Email: {anupdas, rodrigues, koren, kundu}@ecs.umass.edu

Abstract—Multicore architectures are designed so as to provide
an acceptable level of performance per unit power for the
majority of applications. Consequently, we must occasionally
expect applications that could have benefited from a more
powerful core in terms of either lower execution time and/or
lower energy consumed. Fusing some of the resources of two (or
more) cores to configure a more powerful core for such instances
is a natural approach to deal with those few applications that
have very high performance demands. However, a recent study
has shown that fusing homogeneous cores is unlikely to benefit
applications. In this paper we study the potential performance
benefits of core morphing in a heterogeneous multicore processor
that can be reconfigured at runtime. We consider as an example
a dual core processor with one of the two cores being designed
to target integer intensive applications while the other is better
suited to floating-point intensive applications. These two cores can
be fused into a single powerful core when an application that can
benefit from such fusion is executing. We first discuss the design
principles of the two individual cores so that the majority of
the benchmarks that we consider execute in a satisfactory way.
We then show that a small subset of the considered applications
can greatly benefit from core morphing even in the case where
two applications that could have been executed in parallel on the
two cores are run, for some percentage of time, on the single
morphed core. Our results indicate that a performance gain of
up to 100% is achievable at a small hardware overhead of less
than 1%.

I. INTRODUCTION

Technology scaling has permitted an ever increasing number
of transistors to be integrated per unit area, while running at
higher frequencies. This had lead to a tremendous increase
in power density. When power density became a pressing
issue and multi-gigahertz frequencies could not be sustained,
processor manufacturers responded with lower frequency in-
tegrated processors featuring multiple cores. When multiple
cores are integrated on a die, they are still limited by an
overall power dissipation envelope that stems from packaging
and cooling technologies. Consequently, most chip multipro-
cessor (CMP) systems integrate cores of relatively moderate
capability as integration of extremely capable cores will result
in higher cost and breaching of dissipation limits. This is
also consistent with the typical mix of workloads run by
a processor. For the majority of applications, the capability
of cores found in today‘s CMP system is quite acceptable.
However, we must occasionally expect applications that could
have benefited from a more powerful core in terms of either
lower execution time and/or lower energy consumed. Fusing

the resources of two cores to configure a larger core seems
to be a natural solution. However, researchers have found that
most applications have limited Instruction Level Parallelism
(ILP) [17]. Therefore, integrating resources from several cores
to increase parallelism in execution is unlikely to result in im-
proved performance, unless the underlying execution engines
become more powerful themselves. As we have indicated, it is
infeasible for every core to have high performance execution
engines due to area and power constraints. To overcome this
problem, we propose to use asymmetric CMPs.
CMP cores may be symmetric (SCMP) or asymmetric
(ACMP). It is well known that different workloads require
different processor resources for high performance. Some
workloads are load-store intensive, some are integer ALU
intensive, while others are floating-point (FP) intensive or
memory bus intensive or any combinations of the above. Also,
the resource requirements of these workloads may vary with
time due to changes in program phases [3]. Accordingly, we
propose an ACMP architecture where different cores have
strength in different areas. There are several benefits of this
approach. First, it allows certain programs or program phases
to run on a core at a very high level of performance. Second,
each core remains modest in size, which allows the ACMP
to meet cost and power targets. Third, when operated as
an uniprocessor, the combined processor acquires strength in
all areas of execution allowing much higher performance for
those programs that benefit from a higher level of processor
parallelism. The disadvantage of this approach is that work-
loads are naturally affine to certain cores for performance. To
take advantage of ACMP, this thread to core affinity must be
discovered and the tasks must be scheduled accordingly. This
problem has been addressed previously in multiple contexts
[3-4]. We assume that such a solution exists to take advantage
of an ACMP system that can also morph itself to run as a
uniprocessor.
The processor parameters are decided upon by experimenta-
tion, so that satisfactory performance is achieved for most
workloads and hence cannot take advantage of situations
where a workload with different characteristics than those
tested is encountered. Under such conditions, a reconfiguration
of the CMP on the fly to match the demands of any incoming
workload is an attractive approach. By contrast, reconfiguring
an SCMP as a uniprocessor offers more of the same resources
and hence its performance saturates as the ILP saturates.

978-1-4244-8935-0/10/$26.00 ©2010 IEEE 17

Further, SCMPs are limited to optimizing a single core de-
signed so that high performance is achieved for a large set
of workloads [9]. This can be a problem if sequential as well
as parallel performance is required, as the design principles
for achieving these two goals are different [2],[6], hence a
compromise must be arrived at in the design. A reconfigurable
ACMP offers a more appealing alternative as it can provide
both strong performance and less idling. In an ACMP, a few
cores can be designed for strong FP performance and the rest
for ALU performance. Thus, unlike SCMP, when a workload
is matched against processor resources, an ACMP has a greater
potential to deliver performance while idling fewer resources.
For the purpose of our experiments, the analyzed ACMP
consists of two cores, one designed to perform best for ALU
intensive and the other for FP intensive applications. There-
fore, both ALU and FP intensive applications can be handled
with ease. The main feature of our paper is a core morphing
technique, where depending upon the current workload, an
automatic reconfiguration of the cores in the ACMP into a
strong uni-processor takes place to best suit the needs of
the workload. The design parameters used for each of the
cores and the justification of choices is explained in the later
sections of the paper. The experimental results demonstrate the
performance advantage of the proposed system. Our results
indicate that despite some hardware overhead for control and
communication to support core morphing, the performance
gains far outweigh the limited hardware overhead for many
applications.
The rest of the paper is organized as follows: In Section
II, we survey the prior research on this topic and show the
key differences between our approach and those previously
proposed. In Section III, the hardware design is described. In
Section IV, the experiments to determine the base architecture
are described. Results and analysis are presented in section V.
Section VI presents the conclusions.

II. PREVIOUS WORK

The recent literature on reconfigurable processor fabrics can be
broadly classified into SCMPs and ACMPs. In this section we
provide a brief overview of the proposed ideas and distinguish
between those and our proposed architecture. CMPs have
recently received considerable attention with the increasing
levels of ILP in applications. Core fusion [8] involves the
use of a homogeneous CMP, reconfigurable at runtime into
stronger cores by fusing resources from the available cores.
Another approach to fusion of homogeneous cores is presented
in [10], where 32 dual-issue cores can be fused into a
single 64-issue processor. However, both methods suffer from
inter-core communication overheads. Also, the reconfiguration
overhead of critical units like the ROB, issue queue and
load/store queue, affects the ability to maximize benefits. The
hurdle in achieving good performance by fusing simple in-
order cores into out-of-order (OOO) cores has been shown in
[2]. In [11], the authors propose Conjoined core architecture to
achieve a compromise between Simultaneous Multithreading
(SMT) and CMPs. They employ time sharing between re-

sources and report the tradeoffs between area savings and per-
formance slowdown. Heterogeneous architectures to achieve
power/performance benefits have also been explored. In [3],
Kumar et al. show the benefits in terms of power reduction
using a single ISA heterogeneous CMP. They map different
applications to different cores using criteria such as reduced
power consumption. Energy related benefits have also been
explored in [1], where single ISA heterogeneous cores working
at different frequencies are used. In [6], the authors explore
various methods of reducing power consumption and report
that heterogeneous cores are the most useful in such situations.
Benefits of heterogeneous architectures for performance gains
with multi-programmed workloads have been explored in [4].
Higher performance per area and performance per watt have
been shown for asymmetric cluster CMP architectures in [12].
All the above mentioned publications consider off the shelf
cores and do not design them from scratch. In [13], the authors
address the design of an ACMP such that area and power
efficiency are achieved. They use cores that match the resource
requirements of certain types of workloads. They also report
performance gains of up to 40%.

III. OUR APPROACH

Our proposed morphing architecture is distinct from prior
work in multiple regards. First, we use a dual core ACMP,
with one core designed for strong ALU performance (called
strongALU core) while the other is designed for strong FP
performance (called strongFPU core). Second, we keep the de-
sign and communication overhead low by using the front end
of just one processor instead of fusing the fetch/decode/issue
units. Third, we focus on a fusing just 2 cores, to reduce the
complexity of backend execution units. Fourthly, we turn-off
the weak execution units, such as the ALU of the strongFPU
core and the FPU of the strongALU core to keep the issue
logic simple.
In the normal mode of operation, the cores work independently
of one another. This mode works well for applications that
are parallel. However, whenever an application that requires
high single threaded performance is encountered, a dynamic
reconfiguration of the two cores into a single core takes place.
There are several automatic approaches for detecting such an
event [8],[10]. In this paper we assume that changes in the
Instructions Per Cycle (IPC) metric can trigger an ACMP to
uni-processor or a uni-processor to ACMP reconfiguration.
Upon morphing into a uni-processor, the strongALU core
retains its frontend (fetch/decode, ROB) and ALU units while
taking control of the FPU units from the strongFPU core. In
the proposed design, the strongALU core has a better front end
and weak FPU units, while the strongFPU core has a weaker
front end but a valiant FPU unit. Hence, by taking charge of
the FPU units from the StrongFPU core, the morphed core
is formed with a strong front end and strong ALU and FPU
units. This is depicted in Fig. 1. As a result, the morphed core
is capable of handling applications that demand high single
threaded performance. When the computational demands from
both ALU and FPU units are high, the morphed core performs

18

better than either one of the constituent ACMP cores. Hence,
the morphed core is capable of handling sequential or parallel
threads that have a variety in their instruction mix.

Fig. 1. Hardware support for morphing

IV. HARDWARE SUPPORT FOR MORPHING

Core morphing involves a dynamic reconfiguration of the
ACMP into a single core that is used for single threaded
performance. In this section we provide an overview of the
hardware support for morphing. In Fig. 2, the additional
hardware support for core morphing is shown. In the usual
mode of operation, morph-enable is deasserted and the two
cores work independently of one another with no communica-
tion between them. When we detect that morphing is indeed
necessary, either by detecting variations in the IPC or by
determining a change in the composition of the workload being
executed, morph-enable is asserted and the logic to enable
morphing comes into play. It can be seen from Fig. 1 that the
morphed core uses all the resources of the strongALU core
and takes charge of the FPU units from the strongFPU core.
The other unused units are power-gated. In the uni-processor
mode, instructions are fetched in the strongALU core and FPU
instructions are dispatched to the issue queue in the strongFPU
core. Logic is needed here to inform the strongALU core that
it is now in the uni-processor mode and has access to the FPU
units of the strongFPU core. In modern OOO processors, the
Reorder Buffer (ROB) is used to enable in order commit for
precise interrupts. Since in the uni-processor mode the FPU
units of the neighboring strongFPU core are used, there must
be a provision to ensure that the results of the FPU units in
the strongFPU core make it to the ROB of the strongALU
core. At the same time, data needed by the FPU units must
be fetched from the ROB in the strongALU core and not that
in the strongFPU core.
This logic for the instruction issue and ROB can be easily
implemented by means of a multiplexer or a tri-state driver. For
the sake of brevity, we show the logic for just the passing of
results from the Common Data Bus (CDB) of the strongFPU
to that of the strongALU core. In the tri-state driver based
design, the driver is controlled by the morph-enable signal
such that data is passed from one CDB to the other. In the
multiplexer based design, the inputs for the 2:1 multiplexer

come from the outputs of the FPU units of the two cores
and the select is the morph-enable. Considering 32-bit FPU
outputs, the multiplexer is a 2 select 32-bit input multiplexer.
In either case, whether tri-state or multiplexer based, we need
two of each, one for the instruction issue and the other for
the ROB. An additional overhead is the interconnect, and
for a multimillion gate dual-core processor we estimate this
overhead to be less than 1%.

Fig. 2. Possible hardware solutions for data passing in the uni-processor
mode

V. EXPERIMENTS TO DETERMINE PROCESSOR
PARAMETERS

The design space for processor cores is particularly large, and
our goal was to find a set of processor parameters that best
fits the role of the strongALU and strongFPU cores. In this
section, the experiments used to set the parameters for each
core are described.
For our experiments we used the SimpleScalar architectural
simulator [16] on a class of benchmarks from SPEC2000 [7],
Mediabench [14] and the Mibench [15] embedded benchmark
suites. The benchmarks were chosen to target a wide range
of applications. Some of these could be high-end scientific
computations, embedded applications like secure hashing, and
media applications like jpeg encoding/decoding.
As mentioned earlier, we consider for our experiments two
cores: one with a strong floating-point unit (and weak in-
teger unit) and the other with a strong integer unit (and a
weak floating-point unit). We call these two cores StrongFPU
and StrongALU, respectively. The experimental methodology
consists of determining the best configurations for the two
cores to suit the majority of the benchmarks considered. This
will ensure that we are not undersizing the resource while
studying the potential benefits of core morphing. The strategy
for determining the configuration for a core was to select
a configuration such that the majority (90%) of floating-
point intensive and integer intensive benchmarks will run with
reasonable performance on the StrongFPU and the StrongALU
core, respectively.

A. Determining the base configuration

In the first set of experiments we determined the best possible
configuration for the individual cores. We selected 24 different
benchmarks with 15 from the SPEC2000 suite, 3 from Media-
bench (MeB) and 6 from Mibench (MiB). The configurations
are determined by varying the following parameters: (i) L1
Cache Size (D and I), (ii) L2 Cache Size (D and I), (iii) ROB

19

Fig. 3. IPC performance for APPLU and Basicmath

size and (iv) LSQ (Load/Store Queue) size.
Fig 3 shows the result of varying these parameters for APPLU
and Basicmath running on the strongFPU and strongALU
cores, respectively. The IPC improvement for APPLU going
from the leftmost bar (L1 = 8 KB, L2 = 256 KB and
ROB = 64) to the rightmost bar (L1 = 32KB, L2 = 512
KB, ROB = 256) is 1%, which is insignificant. Clearly,
APPLU can be run on the StrongFPU core with L1 = 8KB,
L2 = 256 KB and ROB = 64 without significant drop in
performance. We did similar experiments for 8 floating-point
intensive benchmarks (APPLU, WUPWISE, SWIM, MGRID,
AMMP, APSI, ART, and EQUAKE). Apart from AMMP and
EQUAKE, none of the other benchmarks showed noticeable
improvement from a bigger L2 cache (512 KB) and a larger
ROB (256 entries). The best configuration for the strongFPU
core is shown in Table I. The table also lists the parameters
for the backend section (FP and INT execution units) of
the strongFPU core. The strongFPU core is designed with
a pipelined (strong) floating-point execution unit and a non-
pipelined (weak) integer execution unit.
A similar set of experiments were performed for the integer
intensive benchmarks. Fig 3 shows the IPC variation for the
Basicmath benchmark from the Mibench embedded bench-
mark suite. The IPC improvement in going from the leftmost
bar (L1 = 8 KB, L2 = 256 KB and ROB = 64) to the 6th
bar (L1 = 32 KB, L2 = 256 KB and ROB = 128) is 260%,
which is significant. Moreover, going to the rightmost bar (L1
= 32KB, L2 = 512 KB and ROB = 256), there is an additional
improvement of only 2%, not significant enough to justify
a bigger L2 of size 512 KB and a big ROB of size 256.
The suitable configuration of the strongALU core to run the
Basicmath application is therefore L1 = 32KB, L2 = 256KB
and ROB = 128. Out of the 16 integer intensive benchmarks,
13 benchmarks show a similar behavior. For the remaining
three benchmarks (mcf, vortex and sha), a configuration of
L1 = 8KB, L2 = 256 KB and ROB = 64) is sufficient. The
system parameters for the strongALU core are also shown in
Table I. The backend section of the core includes a pipelined
(strong) INT execution unit and a non-pipelined (weak) FP
execution unit. In the uni-processor mode of operation, the
bigger frontend and the pipelined (strong) INT execution unit
of the strongALU core will be used along with the pipelined
(strong) FP execution unit of strongFPU core.

TABLE I
CORE PARAMETERS

StrongFPU core parameters
Front end

F/I/R L1 D$ L1 I$ L2 $ L2 I$ ROB LSQ
2 8K 8K 256K 256K 64 32

Back end
FP units INT units

ALU MUL DIV ALU MUL DIV
2 units 1 unit 1 unit 1 unit 1 unit 1 unit

4 cycles 4 cycles 12 cycles 2 cycles 30 cycles 120 cycles

StrongALU core parameters
Front end

F/I/R L1 D$ L1 I$ L2 $ L2 I$ ROB LSQ
2 32K 32K 256K 256K 128 64

Back end
FP units INT units

ALU MUL DIV ALU MUL DIV
1 units 1 unit 1 unit 2 unit 1 unit 1 unit

10 cycles 30 cycles 120 cycles 1 cycles 3 cycles 12 cycles

TABLE II
CLASSIFICATION OF THE VARIOUS BENCHMARKS

Benchmarks Suite Class Benchmarks Suite Class
wupsize SPEC C twolf SPEC C
equake SPEC C vortex SPEC C

apsi SPEC C cjpeg MeB C
bzip SPEC C djpeg MeB C
gcc SPEC C mpeg2enc MeB C

parser SPEC C sha Mib C
gzip SPEC C dij Mib C
mcf SPEC C patricia Mib C
crc MiB C basicmaths Mib C

applu SPEC A mgrid SPEC A
ammp SPEC B swim SPEC B

art SPEC B fft MiB B

VI. RESULTS

In this section we show the benefits of our method with
respect to IPC for various applications when running in the
uni-processor mode. We also show the potential benefits of
morphing by running two threads in parallel on the individual
cores and then back to back on the morphed core, varying
the load for each thread and comparing execution times. For
the SPEC benchmarks we ran 10 million instructions after
skipping the initialization instructions, while for the embedded
benchmarks we ran 1 billion instructions without skipping any
instructions.

Fig. 4. IPC for the benchmarks considered on the three cores

20

A. IPC comparison results

After selecting the best configuration for the strongFPU and
strongALU core, we performed a set of experiments on
the 24 benchmarks to determine the potential benefits of
core morphing. In these experiments, we assume that the
FP execution units in the uni-processor mode of operation
require an extra cycle latency to account for the overhead of
morphing. The IPC results are shown in Fig 4. Out of the
24 benchmarks considered, only 6 show improvement from
morphing of cores, namely, APPLU, MGRID, SWIM, AMMP,
ART and FFT. Based on these results we classified the 24
benchmarks into three categories, as shown in Table II. Class A
includes the benchmarks which run decently on the strongFPU
core and show improvement from morphing. Class B consists
of benchmarks which run well on the strongALU core and
show improvement from morphing. Class C comprises of
those benchmarks which do not show any improvement from
morphing.
Out of the 6 benchmarks that belong to either class A or B,
only 2, namely, APPLU and MGRID, show a considerable
speedup of almost 100% (when moving from the segregated to
the morphed core), while the remaining 4 benchmarks (SWIM,
AMMP, ART and FFT) show a smaller speedup (10-50%).
This can be explained by looking at the temporal distribution
of instructions for the benchmarks. To illustrate this we show
in Fig. 5 the distribution for APPLU. Fig 4 shows that
APPLU benefits significantly (100%) when moving from the
strongFPU to the morphed core. The improved performance
can be attributed mostly to the presence of the strong INT
units in the morphed core. Fig. 5 shows the frequency of a
given percentage of INT instructions within a window of a
certain size, for two window sizes, namely 200 and 1000. For
both curves, the total number of APPLU instructions executed
is 10 millions. The average percentage of INT instructions for
APPLU during the execution of all its 10 million instructions
is 48%, but it can be seen that when the window size is
reduced, the variance increases considerably. This means that
for several narrow windows of execution the percentage of INT
is much higher than the global average and in such situations
the performance provided by the weak INT unit is no longer
adequate and a strong INT unit can be very beneficial. We have
similarly analyzed the temporal distribution of the frequency
of INT instructions for the ART benchmark that has a similar
overall average frequency of INT instructions. The variance
changes very little when the window size is reduced and as
a result, ART does not benefit significantly from morphing.
Similar behavior has been observed for MGRID and SWIM.

B. IPC of multithreaded workloads

In this set of experiments, we considered parallel threads of
two benchmarks and measured the performance improvement
in the uni-processor mode over the segregated mode. The
results are presented for 100 million cycles of execution. In
the segregated mode of operation, one of the benchmarks goes
through all its 100 million cycles while the runtime for the

Fig. 5. Percentage distribution of INT instructions for APPLU

other benchmark varies from 0 to 100 million cycles (in steps
of 10 million cycles). Thus, the overall runtime is 100 million
cycles. In the uni-processor mode, the benchmarks execute on
the morphed core in an interleaved manner. The runtime of
one of the benchmarks varies from 0 to 100 million cycles
(in steps of 10 million cycles) while the runtime of the other
benchmark varies from 100 million cycles to 0 (in steps of 10
million cycles). The total execution time remains 100 million
cycles.
Fig 6 shows the results for one such multithreaded workload
consisting of the benchmarks FFT (integer intensive) and
MGRID (floating-point intensive). In the segregated mode,
MGRID is executed for 100 million cycles and the load of
FFT is varied. In the uni-processor mode, FFT and MGRID are
executed in an interleaved manner. The execution time of FFT
increases from 0 to 100 million cycles while the execution time
of MGRID decreases from 100 million cycles to 0 with the
same step so as to keep the total execution time constant and
equal to 100 million cycles. The results for the two modes are
shown as two separate curves in Fig 6. The curves cross each
other at around 60%. This implies that if the execution time
of FFT is below 60% of the total execution time, morphing
will result in a higher total number of instructions executed.
If, on the other hand, the execution time of FFT is more than
60% of the total execution time, a segregated mode will have
more instructions executed.
Similar experiments were performed for all combinations of
benchmarks from the three different classes A, B & C. For
benchmark combinations where both prefer to run on the same
core, a judicious decision was taken. For example, for the
combination of MGRID and APPLU (both of Class A), where
both are floating-point intensive benchmarks preferring the
strongFPU core, in the segregated mode of operation, APPLU
was mapped onto the strongFPU core and MGRID onto the
strongALU core. This was done because mapping APPLU
on the strongALU will degrade the IPC by 82% whereas
mapping MGRID on the strongALU will degrade the IPC
by only 31%. The results of some of the combinations of
benchmarks are presented in Fig 7. For a combination like

21

Fig. 6. Multithreaded workload of MGRID and varying load of FFT

MGRID + % APPLU, it is always beneficial to interleave
the two threads and run them on the morphed core as the
speedup is greater than one even for 100% execution time
of APPLU. For combinations like SHA + % AMMP, the
speedup is less than one for any variation of the execution
time of AMMP. Thus, for a multithreaded workload consisting
of SHA and AMMP, core morphing will not be beneficial.
For other combinations, the curve crosses a speedup of one
at some % of the execution time of the second benchmark.
Therefore, for workloads that deliver higher IPC on a morphed
core, thread interleaving on the morphed core outperforms the
parallel execution of the two threads on the individual cores.

Fig. 7. Speedup for various combinations of benchmarks running on the
morphed and segregated cores

VII. CONCLUSIONS

We conducted a study on the possible performance benefits of
core morphing in an ACMP. A dual-core system was used
for experimentation in which the cores were chosen such
that one of them supports FP operations while the other
ALU operations. The design of each core and the necessary
hardware support have been discussed. Our results indicate
that significant performance benefits (up to 100%) are possible
in some cases while operating in the uni-processor mode.

The benefits of the proposed architecture are evident from
the experiments where the workload was varied showing that
the morphed core (running the two threads back to back)
outperforms the parallel execution of the two threads on the
separate cores. We conclude that a reconfigurable ACMP can
achieve higher performance for sequential/parallel workloads
of various flavors.

ACKNOWLEDGMENT

This work has been supported in part by a grant from SRC
(Grant no. 1985.001) and NSF (Grant no. 0903191).

REFERENCES

[1] S. Ghiasi and D. Grunwald, “Aide de camp: Asymmetric dual core de-
sign for power and energy reduction,” University of Colorado Technical
Report CU-CS-964-03, 2003

[2] P. Salverda and C. Zilles, “Fundamental performance constraints in hor-
izontal fusion of in-order cores,” In Proceedings of the Int’l Symposium
on High Performance Computer Architecture (HPCA), 2008.

[3] R. Kumar et al., “Single-ISA Heterogeneous Multi-Core Architectures:
The Potential for Processor Power Reduction,” In Proceedings of the
36th Annual IEEE/ACM international Symposium on Microarchitecture,
December 2003.

[4] R. Kumar et al., “Single-ISA Heterogeneous Multi-Core Architectures
for Multithreaded Workload Performance,” In Proceedings of the 31st
Annual International Symposium on Computer Architecture, June 2004.

[5] S. Balakrishnan et al., “The Impact of Performance Asymmetry in
Emerging Multicore Architectures,” SIGARCH Comput. Archit. News
33, 2, May 2005, pp. 506-517.

[6] E. Grochowski et al., “Best of Both Latency and Throughput,” In
Proceedings of the IEEE international Conference on Computer Design
(ICCD), October 2004, pp. 236-243.

[7] The standard Performance Evaluation Corporation. Spec CPI2000 suite.
http://www/specbench.org/osg/cpu2000.

[8] E. Ipek et al., “Core fusion: accommodating software diversity in
chip multiprocessors,” In Proceedings of the 34th Annual international
Symposium on Computer Architecture (ISCA ’07), June 2007, pp. 186-
197.

[9] H. H. Najaf-abadi et al., “Core-Selectability in Chip Multiprocessors,”
18th International Conference on Parallel Architectures and Compilation
Techniques, 2009, pp. 113-122.

[10] C. Kim, Sethumadhavan et al., “Composable Lightweight Processors,”
In Proceedings of the 40th Annual IEEE/ACM international Symposium
on Microarchitecture, December 2007.

[11] R. Kumar et al, “Conjoined-Core Chip Multiprocessing,” In Proceedings
of the 37th IEEE/ACM international Symposium on Microarchitecture,
December 2004, pp. 195-206.

[12] T. Morad et al., “ACCMP - asymmetric cluster chip-multiprocessing,”
In CCIT Technical Report 488, 2004.

[13] R. Kumar et al., “Core architecture optimization for heterogeneous chip
multiprocessors.,” In Proceedings of the 15th international Conference
on Parallel Architectures and Compilation Techniques, September 2006,
PACT ’06.

[14] C. Lee et al., “MediaBench: a tool for evaluating and synthesizing multi-
media and communications systems,” In Proceedings of the 30th Annual
ACM/IEEE international Symposium on Microarchitecture, December
1997.

[15] M. R. Guthaus et al., “MiBench: A free, commercially representative
embedded benchmark suite,” In Proceedings of the IEEE Workload
Characterization, December 2001.

[16] D. Burger, and T. Austin, “The SimpleScalar tool set,” version 2.0.
SIGARCH Comput. Archit. News 25, 3, June 1997, pp. 13-25.

[17] D. Wall, “Limits of instruction-level parallelism,” SIGARCH Comput.
Archit. News 19, 2, Apr. 1991, pp. 176-188.

22

