
IMPORTANCE SAMPLING TO EVALUATE REAL-TIME SYSTEM
RELIABILITY: A CASE STUDY

G. Durairaj, I. Koren, C.M. Krishna
Dept. of Electrical and Computer Engineering

University of Massachusetts, Amherst
gopinathd@yahoo.com; {koren, krishna}@ecs.umass.edu

ABSTRACT

Real-time distributed computers are often used in life-critical applications. How-
ever, the complexity of such systems calls for extensive simulation studies to validate
their performance and reliability before a design can be accepted and a prototype
constructed. A simulator testbed has been built to model a variety of such systems
quickly from a few basic building blocks.

Life-critical applications require reliability levels so high that brute-force simu-
lation to validate these levels would take weeks of computer time. In this paper,
we present studies we have conducted into the use of importance sampling in sim-
ulating real-time systems. While many theoretical studies have been published on
this technique, not many practical studies are available in the literature. This paper
presents a interesting case-study of the use of importance sampling in an increasingly
important branch of computer engineering.

Importance sampling may not work for all cases and over all parameter ranges.
In this paper we are interested in finding out whether (and how well) this scheme
works for the case of distributed real-time systems and also the range of failure bias
values for which it works well. Specifically, we look at the implementation of two
heuristics called ‘forcing’ and ‘failure biasing’ in the testbed. This was validated
by comparing the reliability estimates with that of normal (very long) simulation.
The effect of the failure bias on the dynamics of the scheme are also investigated to
provide readers with some guidance on choosing appropriate bias values.

0
Acknowledgement: This work was partially supported by the Defense Advanced Projects Agency and

the Navy SPAWAR under contract N0039-94-C-0165. The views and conclusions contained herein are those of

the authors and should not be interpreted as necessarily representing the official policies or endorsements, either

expressed or implied, of the Defense Advanced Projects Agency, SPAWAR, or the US Government.

1

1 Introduction

Real-time, distributed, fault-tolerant computers are increasingly being used in critical applica-
tions like aircraft control, air traffic control, factory automation etc. Such computers need to
be highly reliable and are expected to deliver critical outputs in a timely fashion, even in the
presence of a few component failures.

Modeling the reliability of such computers is extremely complex. Reliability in real-time
systems is a dynamic, rather than a static, concept [17]. In other words, real-time reliability
translates into the system being able to avoid missing critical deadlines. The ability to meet
deadlines is often a complicated function of a number of parameters: the hardware, the operating
environment, the interconnection network and communication protocol, the executive software
(including the task assignment and scheduling algorithms), and the fault-tolerance procedures
used. It is practically impossible to obtain an analytical model that models reliability as a
function of all these parameters and their interactions to a sufficiently high degree of accuracy.
Thus, analytical models are used more as rough guides of system reliability than as definitive
predictors. Instead, a designer has often to turn to simulation for reliability evaluations that are
sufficiently accurate for fine-grain design decisions and prototype-building.

However, simulation has the drawback of requiring very long computation times, even with
today’s high-speed computers. This is especially true when unreliability levels of 10−5 or lower
must be validated: to obtain confidence intervals that are sufficiently small can require compu-
tational runs lasting many days or weeks. Several methods have been proposed in the simulation
literature to reduce such long runs (e.g., [24]). One fairly new method, which has been attracting
some attention, is importance sampling [10, 12, 13, 14, 20, 25].

A good analogy for understanding importance sampling is how processor lifetimes are often
obtained experimentally. Since these lifetimes are of the order of thousands of hours, it would
take a long time to obtain sufficient statistics on processor lifetime if we simply ran them to failure
under normal conditions. Instead, one might measure their lifetimes under high temperature.
The way in which failure is accelerated by high ambient temperature is fairly well known. Hence,
we can obtain high-temperature processor lifetimes by experiment, and then use the computed
acceleration factor to determine their lifetimes under room temperature.

Importance sampling has the same philosophy. Instead of simulating the system under
the specified parameters and then waiting a very long time before enough failure data can be
recorded, we simulate the system under stressful conditions, which increase the rate at which
failures happen. Once sufficient failure data have been recorded, we can then make a theoretical
computation to predict what the failure probability or rate would have been if the system had
been running under the specified parameter set (rather than the “stressed” parameters).

Importance sampling has great potential for speeding up rare-event simulation. However,
anecdotal evidence suggests that it is a somewhat temperamental technique, which can some-
times do quite badly in reducing the simulation variance. The purpose of this paper is to report

2

a case study of the use of importance sampling in the evaluation of real-time systems’ reliability.

The framework for our study is RAPIDS (Recovery Policies for Real-time Distributed
Systems), which is a simulator testbed for real-time systems [1, 2]. Our work consisted of
doing the following:

• Implementing importance sampling in the RAPIDS simulator.

• Analysing the expected behavior of such a scheme.

• Validating the implementation.

• Investigating the tunable parameters in the scheme and providing guidelines on their use.

We do not make any new theoretical innovations in this paper; rather, the contribution of this
paper is in the case-study it provides for the use of importance sampling in real-time systems.
The guidance provided in this paper on the choice of biasing parameters and when to use
importance sampling is likely to be of interest to other researchers.

2 Technical Background

2.1 The RAPIDS Simulator

RAPIDS [1, 2] is a simulator testbed that has extensive facilities to specify a distributed real-
time system completely and to observe its behavior. The system to be modeled can be viewed as
a collection of computing nodes that are connected by a communication network (see Figure 1).
RAPIDS provides facilities for the user to specify the system by giving detailed information
about the following:

• The computing nodes and their executive software (including the tasks scheduling algo-
rithm and the checkpointing scheme.).

• The real-time tasks that run on the nodes (modeled as periodic, aperiodic or sporadic
tasks).

• The algorithms to be used for task allocation.

• The messages that are exchanged by the nodes as part of the execution or maintenance
(modeled as data and control messages).

• The interconnection network.

• The fault recovery policy to be used when a fault is detected on one of the nodes [33].

3

Computing Node Computing Node

Computing Node Computing Node Computing Node

SensorsExternal devices

Computing Node

Communication Network

PVM

Console
Simulated System

Evt. Gen

User Intf

Comp. Node(s) Network ClockAnalyzer

A Typical Distributed Real-time System Simulator Implementation

Figure 1: A typical distributed real-time system and the RAPIDS Implementation.

The simulator models this system by having a set of processes that communicate with each other
by means of a portable message-passing library called PVM [9]. There is a process to model each
of the computing nodes, the network interconnect, the central clock and the console. The console
process controls the entire simulation run and its responsibilities include generating the events
for all the simulation entities (implemented as the ‘Event Generator’) and analyzing the results
of a simulation run (implemented as the ‘Analyzer’). Importance sampling implementation
will be done in this process. RAPIDS has a graphical user interface showing the status of the
simulated system including:

• Summaries about the tasks meeting or missing their deadlines.

• Run time graphical information about

– Task allocation

– Task scheduling

– Fault occurences

Additional implementation details of the simulator can be found in [1, 2] and at:
http://www.ecs.umass.edu/ece/realtime.

4

2.2 Importance Sampling

In importance sampling, we change the probabilistic dynamics of the system for simulation
purposes. The simulation is biased so that sample paths ending in system failure are generated
disproportionately often. We then make adjustments to the sample outputs to unbias (i.e., to
correct the biasing of) the estimator before computing it. A good reference for the mechanics
of this technique is Hammersley and Handscomb [14]. Generalizations to stochastic systems are
given by Glynn and Iglehart [10]. The heuristic of failure biasing, which we use in this paper,
was first proposed by Lewis and Bohm [20] in the reliability estimation of nuclear reactors. In
Goyal, Heidelberger and Shahabuddin [12] it was adapted to estimating the unavailability of
highly reliable Markovian systems. In Shahabuddin et al. [25], it was used for the estimation of
the MTTF using a regenerative method. Generalizations of these heuristics along with new ones
have been investigated in the unifying paper of Goyal et al. [13]. The reader is directed to these
references for a full description of the theory underlying the importance sampling technique. In
the remainder of this section, we provide the minimum background required to understand our
implementation of importance sampling in the RAPIDS simulator.

2.2.1 Introduction to Importance Sampling

Suppose X is a random variable with density function p(x). We are interested in estimating the
unreliability, θ, which is the probability that X is in the set of failed states, A. This quantity is
given by

θ =
∫ +∞

−∞
1{x∈A}p(x)dx = Ep[1{X∈A}]

where the subscript p denotes sampling from the density p(·) and 1x∈A is the indicator of
the set A. If we were using normal (i.e., traditional) simulation, we would draw n samples,
X1, X2, · · · , Xn, of X from the density p(x) and compute θ = (1/n)

∑n
i=1 1Xi∈A. Let σ be the

estimate of the standard deviation of these readings. From elementary probability, we have
σ =

√
θ(1− θ). We can find, for any given α ∈ [0, 1], the 100α% confidence intervals relating

to our estimate of θ. The half-width of these confidence intervals is given by zα/2σ/
√
n, where

zα/2 is the 100(1− α/2) percentile point of the standard normal distribution.

If α = 0.9, zα/2 = 1.282. If our goal was to keep the confidence interval width to about 10%
of the mean, we would have

1.282
√
θ(1− θ)/n ≤ 0.1θ

⇒ n ≈ 100× 1.2822 × (1/θ − 1)

n therefore grows very rapidly as θ decreases: for example, if θ = 10−6, n ∼ 108, which would
make for very long simulation runs. It is clear that normal simulation is not always practical
for highly reliable systems.

5

The idea of importance sampling is to pick another suitable density function p′(x) and then
write

θ =
∫

1{x∈A}
p(x)
p′(x)

p′(x)dx

= Ep′

[
1{X∈A}

p(X)
p′(X)

]
= Ep′ [1{X∈A}L(X)]

where L(x) = p(x)/p′(x) is called the likelihood ratio and the subscript p′ indicates that we are
taking the expectation over the density function p′(·). All this requires only that p′(x) > 0 for
all x ∈ A for which p(x) > 0.

The above equation is the key to the importance sampling technique. We pick a density,
p′(x), which has a greater chance of resulting in X ∈ A than the original density, p(x). Then, we
obtain n samples, X1, · · · , Xn, and estimate θ through the equation θ = (1/n)

∑n
i=1 1Xi∈AL(Xi).

2.2.2 Implementation Heuristics

In most of the simulations, it is easier to measure the unreliability (i.e., failure probability) of
the system (which is 1 − reliability) and we intend to use that for our discussions. Simulation
consists of constructing a state model of the system, and deciding when the system enters a
given state when the next state transition will occur, and what the next state will be. To speed
up the simulation, we use two techniques introduced by Lewis and Bohm [20] and Shahabuddin
[26]. The first, called forcing, increases the rate at which state transitions occur. The second,
called balanced failure biasing, biases the system towards more faults. Nakayama [21] provides
a study of this, and a related, biasing technique.

Each of these techniques has a likelihood ratio associated with it. The overall likelihood
ratio associated with using both of them is just the product of the individual ones.

Let us start by considering forced (or accelerated) state transitions. Let f(t|t′, k′) denote the
density function for the transition instant, t, given that in its last state transition, the system
entered state k′ at time t′. All times are absolute, global quantities. Forcing consists of replacing
f(·) in the simulation by another density function, f̃(·), which leads to more state transitions.
We now proceed to make this more concrete.

For each node i in the system, the Poisson fault arrival rate is denoted by λi. Permanently
failed nodes cannot be repaired; however, if node i suffered a transient fault, it does recover and
its recovery time is exponentially distributed with parameter µi. λ is the total failure rate out
of the current system state and is equal to the sum of the failure rates of all active, non-faulty,
nodes. µ is the total recovery rate out of the current state and is equal to the sum of the recovery
rates of all the nodes currently suffering a transient fault. Finally γ is the total transition rate

6

out of the current state, i.e., γ = λ+µ. As a node goes faulty or gets repaired, the system state
changes and these variables are updated.

Usually the failure rate of the nodes is very small when compared to the transient-failure
recovery rate. Therefore γ is small when no failed components are present. In such a case, the
transition rate is boosted by taking

f̃(t|t′, k′) =

{
f̃(t|t′,k′)

1−e−γ(T−t′) for t′ ≤ t ≤ T
0 otherwise

where T is the mission time of the system. This heuristic is applied only when γ is small,
γ(T − t′) � 1 and there is only a small chance that an additional transition will take place
before the end of mission time T.

The likelihood ratio associated with forced transitions is then given by

f(t|t′, k′)
f̃(t|t′, k′)

= 1− e−γ(T−t′)

The second acceleration technique is failure biasing. As mentioned previously, it consists of
artificially increasing the chance that the system will suffer more node failures.

Define the state-transition probability, πk′,k, as the probability that if the system is in state
k′, its next state will be k. We say that (k′, k) is a failure transition if the failure of some node
results in the system making the transition from k′ to k. Define F as the set of all the failure
transition pairs. Then, in the normal simulation (and in the actual system), the probability
that the system currently in state k′ makes a transition associated with a node failure is given
by Πk′ =

∑
(k′,k)∈F πk′,k. Failure biasing consists of boosting this transition probability for each

state k′. To implement failure biasing, pick some suitably large quantity, φ < 1, and define a
state-transition transition matrix π̃ = [π̃k′,k] such that∑

(k′,k)∈F

π̃k′,k = φ

Clearly, this results in ∑
(k′,k) 6∈F

π̃k′,k = 1− φ

The simulator determines which node is struck by a fault by maintaining an ordered list of
all the n eligible nodes and generating a random number i uniformly distributed between 0 and
n − 1. i is the index of the node experiencing the fault. The likelihood ratio associated with
this failure biasing is then given by

πk′,k
π̃k′,k

=
nλi
φγ

7

If it is a recovery, the simulator decides which node recovers from a transient by looking at the
repair rates of the nodes currently affected by a transient fault. For this we order the eligible
nodes and determine the particular node i by using the following formula

i∑
i′=1

µi′ <
µ(ε′ − φ)

1− φ
≤

i+1∑
i′=1

µi′

The likelihood ratio associated with the forcing is then given by

πk′,k
π̃k′,k

= (1− φ)−1µ

γ

The overall likelihood ratio associated with both failure biasing and forcing is just the product
of the individual likelihood ratios for failure biasing and forcing, respectively.

3 Implementation

To implement importance sampling in our model (recall Figure 1), we do not alter the simulated
system: we only need to modify the generation of the fault arrival/repair events and the way the
reports are analyzed. We measure the unreliability of the system by repeating the simulations
to get individual samples. The general approach to be followed is summarized in Figure 2.

The logical place to implement importance sampling is in the console module. To be more
precise, we can implement this in the event generator and the analyzer. The event generator
has the following responsibilities:

• Decide the time of the next system state transition. Implement forcing to accelerate the
state changes.

• Decide whether the next transition is a fault arrival or repair. Implement failure biasing
to push the system towards more component faults.

• Calculate the likelihood ratio associated with each ‘change of measure’ and store this value
along with the event.

The analyzer has the following responsibilities:

• Receive reports from the simulated system.

• If it corresponds to one of the above mentioned ‘change of measure,’ update the current
simulation weight.

• If the system fails within the mission time, set the simulation output to the current value
of the likelihood ratio; else set the simulation output to zero.

8

Terminate the simulation runs and output the results

Calculate the confidence inteval using the sample results
accumulated so far and check if it falls into the desired range.

Initialize the weight of the simulation output to 1.

Generate fault arrival/repair events using the heuristics
"Forcing" and "Failure Biasing". Store the associated
Likelihood Ratios in a central event queue.

Observe the simulation run and update the weight whenever
a ‘change of measure’ is performed. This is done by
multiplying the current weight with the likelihood ratio
associated with the event.

Output the current value of the
simulation weight.

Check if the simulation run has ended. This can be a ‘failure’
when the critical tasks miss their deadlines or a ‘sucess’
when the simulation has finished the simulation run period.

Start a simulation run.

Failure Success

Output zero.

Figure 2: Flowchart of the implementation.

3.1 Expected Behavior of Importance Sampling

Before we carry out the validation of the implementation, it is imperative to understand the
expected behavior of the importance sampling scheme. The question is for what regions of
unreliability values this approach works well. Intuitively we know that there should be some
range of the unreliability values beyond which normal simulation will be better than importance
sampling.

We will use the Relative Error (RE) defined below as the performance measure of the esti-
mation scheme (normal simulation and importance sampling). The notation was defined earlier,
in Section 2.2.1.

RE =
zα/2σ√
nθ

9

Cross Over

Normal Simulation

Ideal Importance Sampling

10

Importance Sampling performs poorer

Importance Sampling performs better

R
el

at
iv

e
E

rr
or

 (
R

E
)

of
 th

e
E

st
im

at
e

Unreliability

Figure 3: Relative error of normal simulation and importance sampling.

For the case of the normal simulation, this becomes

RE =
zα/2

√
θ(1− θ)
√
nθ

for a fixed number of samples, as the failure event becomes rarer (i.e., θ → 0) the RE ≈ zα/2/
√
nθ

becomes unbounded. Therefore, to obtain precise estimates, we need very large n.

In most cases, the failure rates of the system components are very small by comparison with
the transient-failure recovery rate. Let λmax > 0 be the maximum component failure rate in the
system. We call λmax the ‘rarity’ parameter of the system. λmax gives an idea of how rare the
events are that the simulation is interested in capturing. For importance sampling, Shahabuddin
[28] notes that the elements of the modified transition matrix, [π̃k′,k], should be independent of
the rarity of the failures. This is an ideal importance sampling scheme which will lead to RE
always being bounded. He also proves in this case that RE will have the form

RE =
zα/2√
n

√
a2 + o(1)

(a0 + o(1))

where a2 and a0 are positive constants depending on the implementation.

For a fixed number of samples, we can represent the behavior of RE as shown in Figure 3,
for the cases of normal simulation and importance sampling. This ideal importance sampling
scheme will be able to estimate the sample mean with a small, fixed number of samples. We also

10

observe that there is a certain region of unreliability values beyond which the normal simulation
will be better than the importance sampling.

In practice, techniques such as balanced failure biasing approximate the behavior of this ideal
case. They achieve variance reduction (and hence RE reduction) by pushing the system towards
more faults and hence reducing the reliability of the underlying system. They then unbias the
sample output to get the correct value of the sample mean.

The RE offered by such heuristics may not be constant but rather a complicated function of
the bias value and the type of the system under consideration. However, as the unreliability of
the system increases, the bias value has to be kept arbitrarily low in order to maintain the RE
close to that of the normal simulation. Hence, beyond a point, Importance sampling is not very
useful. It is important to experimentally determine this range of values so that the user can
switch whenever necessary to the normal simulation instead of the importance sampling scheme.

In the systems that we are interested in simulating, the most obvious failure path is the
one where the system is unable to meet its critical task deadlines. This obviously depends on
a variety of factors such as the number of computing nodes available, average task load on the
computing nodes, the recovery overheads etc. Consider a rather crude example: let a system
be composed of x computing nodes and to meet its critical task deadlines it needs at least
y of them. Increasing the failure bias has the effect of pushing the system towards complete
breakdown (in other words, more of the nodes are pushed towards failure). In many cases this
will be an overkill and the likelihood ratio associated with these sample runs will be very low.
Thus, most of the sample runs will have a likelihood ratio that is very small and a few of them
will have very large values. This effect causes the RE to blow up in cases where the bias value
is very high.

Because of these conflicting effects associated with the bias value, each system might have
a optimal bias value that pushes the system towards the failure path most of the time and still
does not make the RE blow up. Since it is not practical for us to locate this optimal value for
each configuration, it is enough if we are able to guess a bias value that gives good results over
a range of systems.

4 Experimental Results

4.1 Importance Sampling Evaluation

In this section, we consider four distinct and representative system configurations and compare
the system unreliability predicted by (a) normal (i.e., traditional) simulations (without any
bias), and by (b) importance sampling. We show that importance sampling performs poorest
when the system unreliability is high, i.e., when the events to be captured by simulation are
not very rare, and best when the system is highly reliable. Our experiments suggest that if

11

Parameter Configuration 1 Configuration 2 Configuration 3 Configuration 4

Number of nodes 6 7 8 8

Network interconnect Token Ring FDDI Rectangular mesh 3D hypercube

Transient processor failure 5 2 1 1
rate (per hour)

Permanent processor failure 1 0.2 0.1 0.1
rate (per hour)

Mission time (seconds) 1000 1500 2000 2000

Average node utilization 0.4 0.3 0.25 0.25

Table 1: System configurations.

Confi- Mean Variance No. of Samples HW 90 AF
guration NS IS NS IS NS IS NS IS

1 4.24E − 02 2.36E − 02 4.06E − 02 5.20E − 02 2, 500 2, 600 12.2% 24.3% undefined

2 3.20E − 03 3.42E − 03 3.19E − 03 9.90E − 04 5, 000 1, 400 32.0% 31.6% 3.57

3 7.00E − 04 6.46E − 04 6.99E − 04 5.65E − 05 20, 000 1, 938 34.3% 33.9% 10.32

4 3.00E − 04 2.98E − 04 2.99E − 04 1.74E − 05 40, 000 2, 430 37.9% 36.4% 16.46

NS=Normal simulation; IS=Importance sampling;
HW 90= half width of confidence interval as percentage of mean

Acceleration Factor, AF = Number of samples under normal simulation
Number of samples under importance sampling

Table 2: Normal simulation vs. importance sampling with a bias of 0.3.

the unreliability of the system is of the order of 0.01 or higher, importance sampling may give
misleading results. On the other hand, when it is of the order of 10−3 or lower, the results of
importance sampling agree very well with those of traditional simulation.

The four system configurations are shown in Table 1. The output of each simulation was
a single number: 0 if the system was still functional at the end of the mission duration, and
1 if it failed before the specified mission duration ended. The simulations were repeated until
the width of the 90% confidence interval was about 30% of the sample mean. The results are
shown in Table 2. Apart from the observations we have already made regarding the accuracy
of the sample mean, the difference in the required number of samples (which translates into the
number of simulation runs needed) is striking when the unreliability is of the order of 10−3 or
lower. Indeed, the acceleration factor1 (defined in Table 2) varies from 3.57 for configuration 2
to over 16 for configuration 4. As the system reliability increases, so too does the acceleration
factor.

1AF is undefined for Configuration 1 because importance sampling fails to provide an accurate result.

12

Confi- Failure Variance when Bias Value =
guration Probability 0.2 0.3 0.4 0.5 0.6

1 4.24E − 02 4.80E−02 5.20E − 02 5.50E−02 5.86E−02 -
2 3.20E − 03 9.40E−04 9.90E−04 1.02E−03 1.37E−03 -
3 7.00E − 04 6.04E−05 5.65E−05 6.21E−05 6.27E−05 7.83E−05
4 3.00E − 04 3.20E−05 1.74E−05 1.69E−05 1.83E−05 2.92E−05
5 2.10E−05 4.70E−07 2.30E−07 1.90E−07 1.98E−07 2.53E−07
6 5.02E−07 - 3.07E − 09 2.93E − 09 2.64E−09 2.86E−09

Table 3: Sample variance for different failure bias values.

4.2 Selecting the Bias Parameter

As mentioned earlier, failure bias is an important parameter that alters the dynamics of the
sample output. If it is too low, we don’t push the system towards additional component failures
fast enough. Because of this only a small percentage of the sample runs result in a system failure
and the sample variance is high. If the failure bias is too high, the distortion that this causes
affects the accuracy of the simulation output, and the sample variance is high. There is usually
some optimal value of the failure bias that pushes the system towards additional faults but is
not too high to result in inaccuracies.

Since the simulator has to work with a large variety of systems with varying unreliabilities,
we want to identify nominal values of failure bias that result in a low sample variance for system
configurations with different ranges of unreliability values. Intuitively, if the sample variance
is low, the estimates converge faster and we need fewer samples to get the desired confidence
intervals.

We expect the user to choose some nominal bias depending on the ‘guessed’ range of system
unreliabilities. This will serve as a starting point and the failure bias can be tuned if repeated
sample runs or experiments are needed.

We want to use the above mentioned system configurations (with varying unreliability val-
ues) and observe how the sample variance changes when we vary the failure bias values. We add
two more system configurations (with decreasing unreliabilities) to extend the range of the unre-
liabilities. Configurations 5 and 6 are identical to Configuration 4, except that for configuration
5 the transient and permanent failure rates per hour are 0.5 and 0.05, and for configuration 6
they are 0.2 and 0.02, respectively. For this experiment, we vary the failure bias over a range
from 0.2 to 0.6 in steps of 0.1 and observe how the sample variance changes in response. The
results are tabulated in Table 3.

From Table 3, we observe that the optimal bias value (the one that produces the least
sample variance) is different for each configuration and in general, the lower the unreliability of
the system, the higher the value of this optimal bias. This is as expected.

13

Configuration Fixed Recovery Action RAMP Algorithm
2 3.42E−03 3.36E−03
3 6.46E−04 2.84E−04
4 2.98E−04 1.74E−04
5 2.10E−05 1.30E−05

Table 4: Unreliability estimates of systems using different recovery policies.

For Configuration 1, the normal simulation is the best choice. For all the failure bias values,
the sample variance is substantially above that for the normal simulation. Configuration 2 seems
to have an optimal value around 0.2, Configuration 3 around 0.3, both Configurations 4 and 5
an optimal value around 0.4, and Configuration 6 around 0.5. It seems to stabilize around 0.5
for configurations with higher reliabilities.

A bias value of around 0.4 seems to work well for most of the configurations. If the guessed
unreliability of the system is quite high (on the order of 10−3), we are better off by choosing a
bias of around 0.2− 0.3.

4.3 Comparing Recovery Policies

Here, we present a small example of the use of importance sampling in selecting suitable recovery
policies in a real-time system.

When a fault is detected on a node, the system has a choice of three basic recovery actions.
They are Retry (Restart execution on the same node using the last checkpoint), Replace (Replace
the faulty node with a spare, if one exists) and Disconnect (Distribute the tasks that were running
on the faulty node among the other active nodes).

RAMP is a dynamic resource management algorithm [32] that suggests the optimal recovery
action to be used whenever there is a fault in the system and a decision has to be made regarding
the choice of the recovery actions. We want to compare the reliability of a system using RAMP
against another that uses a fixed recovery policy. To compare the two, we use simulation
accelerated by importance sampling.

An intuitive fixed recovery action can be formulated such as the following:

• When the node fails, try a Retry first.

• If the Retry failed, then try to Replace the faulty node by a spare node.

• If a spare does not exist, then as a final resort, Disconnect the faulty node and distribute
its load to the other active nodes.

We used such a fixed recovery action in Configurations 2 to 5.

14

Table 4 shows the unreliability of the system when either a fixed recovery action or the RAMP
recovery policy are used. From this we can quantify the extent to which the RAMP algorithm
outperforms the intuitive fixed recovery action for all of the considered configurations. In cases
like these, using normal simulation would have taken a prohibitively long time to yield the same
result.

5 Conclusion

This paper has discussed the implementation of an efficient variance reduction technique called
importance sampling in a simulator testbed.

Importance sampling was successfully implemented on the RAPIDS testbed. It was validated
by running a series of simulations for different configurations and comparing the results with
that of a normal simulation.

We observed the behavior of the scheme and its performance (reduction in sample variance)
by varying the failure bias. Increasing the failure bias causes the sample variance to reduce faster
but only upto a limit. Beyond this limit (which is specific to the system under observation) an
increase in failure bias causes unstability. This knowledge is used to provide some guidelines in
choosing a good failure bias probability for a given system.

Our experiments indicate that importance sampling is a powerful mechanism to accelerate
the simulation of highly reliable real-time systems. It must, however, not be used for less reliable
systems.

References

[1] M. Allalouf, J. Chang, G. Durairaj, V.R. Lakamraju, O.S. Unsal, I. Koren and C.M. Kr-
ishna, “RAPIDS: A Simulator Testbed for Fault-Tolerant Real-Time Systems,” Proc. of
HPC’98, Grand Challenges in Computer Simulation, pp. 191-196, Boston, April 1998.

[2] M. Allalouf, J. Chang, G. Durairaj, J. Haines, V.R. Lakamraju, K. Toutireddy, O.S. Unsal,
K. Yu, I. Koren and C.M. Krishna, “The RAPIDS Simulator: A Testbed for Evaluating
Scheduling. Allocation, and Fault-Recovery in Distributed Real-Time Systems,” Dependable
Network Computing, D. Avresky (Editor), pp. 413-431, Kluwer Academic Publishers, MA,
2000.

[3] S. Andradottir, D. Heyman and T. Ott, “On the Choice of Alternative Measures in Im-
portance Sampling with Markov Chains,” Operations Research vol.43, no.3, pp.509-519,
1995.

[4] M. Berg and I. Koren, “On Switching Policies for Modular Fault-Tolerant Computing Sys-
tems,” IEEE Trans. Computers, Vol. C-36, pp. 1052-1062, Sept. 1987.

15

[5] M. Boyd and S. Bavuso, “Simulation Modeling for Long Duration Spacecraft Control Sys-
tems,” 1993 Proc. Annual Reliability and Maintainability Symposium,” pp 106-113, 1993.

[6] J. Carrasco, “Failure distance based simulation of repairable fault-tolerant systems,” Proc.
of 5th International Conf. on Modeling Techniques and Tools for Computer Performance
Evaluation, pp 337-351, 1991.

[7] J. Carrasco, “Efficient Transient Simulation of Failure/Repair Markovian Models,” Proc.
of 10th Symposium on Reliable and Distributed Computing, IEEE Computer Society Press,
pp 152-161, 1991.

[8] P. L‘Ecuyer, “Efficiency Improvement and Variance Reduction,” Proc. of the 1994 Winter
Simulation Conf., pp. 122-132, 1994.

[9] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, PVM: Parallel
Virtual Machine, MIT Press, 1994.

[10] P. Glynn and D. Iglehart, “Importance Sampling for Stochastic Simulations,” Management
Science, vol. 35, no. 11, pp. 1367-1393, 1989.

[11] A. Goyal and S.S. Lavenberg, “Modeling and analysis of computer system availability,”
IBM J. Res. Develop., vol.31, pp.651-664, 1987.

[12] A. Goyal, P. Heidelberger, P. Shahabuddin, “Measure Specific Dynamic Importance Sam-
pling for Availability Simulations,” 1987 Winter Simulation Conference Proceedings, IEEE
Press, 1987.

[13] A. Goyal, P. Shahabuddin, P. Heidelberger, V.F. Nicola and P.W. Glynn, “A Unified Frame-
work for Simulating Markovian Models of Highly Dependable Systems,” IEEE Transactions
on Computers, vol.41, no.1, pp. 36-51, 1992.

[14] J.M. Hammersley and D.C. Handscomb, Monte Carlo Methods, Meuthen, London, 1964.

[15] P. Heidelberger, “Fast Simulation of Rare Events in Queueing and Reliability Models,”
ACM Transactions on Modeling and Computer Simulation, Vol. 5, No. 1, 1995.

[16] R. Jain, FDDI Handbook, Addison-Wesley, 1994.

[17] C. M. Krishna and K. G. Shin, “Performance Measures for Multiprocessor Controllers,”
Performance ’83, pp. 229-250, May 1983.

[18] C.M. Krishna and K.G. Shin, Real-Time Systems, McGraw-Hill, 1997.

[19] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System,” Com-
munications of the ACM, Volume 21, 7, 1978.

[20] E.E. Lewis and F. Bohm, “Monte Carlo simulation of Markov unreliability models,” Nuclear
Engineering and Design, Vol. 77, pp. 49-62, 1984.

[21] M. Nakayama, “A Characterization of the simple failure biasing method for simulations of
highly reliable Markovian Systems,” ACM Trans. Model. Comput. Simul. vol. 4, no. 1, pp
52-88, 1994.

16

[22] M.L. Puterman, Markov Decision Processes, John Wiley & Sons Inc., 1994.

[23] S.M. Ross, Applied Probability Models with Optimization Applications, San Fransisco:
Holden-Day, 1970.

[24] S.M. Ross, Simulation, Academic Press, 1997.

[25] P. Shahabuddin, V. Nicola, P. Heidelberger, A. Goyal and P. Glynn, “Variance Reduction
in Mean Time to Failure Simulations,” 1988 Winter Simulation Conference Proceedings,
IEEE Press, 1988.

[26] P. Shahabuddin, “Simulation and Analysis of Highly Reliable Systems,” Ph.D. Thesis,
Department of Operations Research, Stanford University, Palo Alto, California, 1990.

[27] P. Shahabuddin and M. Nakayama “Estimation of Reliability and its Derivatives for Large
Time Horizons in Markovian Systems”, 1993 Winter Simulation Conference Proceedings,
IEEE Press, pp 491-499, 1993.

[28] P. Shahabuddin, “Simulation of Highly Reliable Markovian Systems,” Management Science,
vol. 40, pp 333-352, 1994.

[29] W. Stallings, Handbook of Computer-Communications Standards, Howard W. Sams & Co.,
1988.

[30] J.S. Steinman, “Breathing Time Warp,” Proceedings of the 1993 Workshop on Parallel and
Distributed Simulation, 1993.

[31] K.K. Toutireddy, “A Testbed for Fault Tolerant Real-Time Systems,” M.S. Thesis, Univer-
sity of Massachusetts, Amherst, 1996.

[32] K. Yu, “RAMP and the Dynamic Recovery and Reconfiguration of a Distributed Real-Time
System,” Ph.D. Thesis, University of Massachusetts, Amherst, 1996.

[33] K. Yu and I. Koren, “Reliability Enhancement of Real-Time Multiprocessor Systems
through Dynamic Reconfiguration,” Fault-Tolerant Parallel and Distributed Systems, D.
Pradhan and D. Avresky (Editors), pp. 161-168, IEEE Computer Society Press, Los Alami-
tos, CA, 1995.

17

