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Abstract

Cederbaum, 1., 1. Koren and 5. Wimer, Balanced block spacing for VLSI layout, Discrete Applied
Mathematics 40 (1992) 303-318.

Placement algorithms for VLSI layout tend to stick the building blocks together. This results in the need
to increase the space between adjacent blocks to allow the routing of interconnecting wires. The above
problem is called the biock spacing problem. This paper presents a model for spreading the blocks
uniformly over the chip area, to accommodate the routing requirements, such that the desired adjacen-
cy relations between the blocks are retained. The block spacing problem is solved via a graph model,
whose vertices represent the building blocks, and its arcs represent the space between adjacent blocks.
Then, the desired uniform spacing can be presented as a space balancing problem. In this paper the
existence and uniqueness of a solution to the one dimensional space balancing problem are proved, and
an iterative algorithm which converges rapidly to the solution is presented. It is shown that in peneral,
the rwo dimensional problem may have no solution.

1. Introduction

The layout of VLSI chips is usually carried out in two steps: first, the building
blocks are placed within the area of the chip, a step called placement, and then the
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interconnections between them are completed, a step called routing. Many place-
ment algorithms have been published in the literature and in most of those which
are based on energy minimization the blocks tend to stick together (e.g. [3]), thus
resulting in blockages for the routing phase. The outcome may be a chip having ex-
cessively long interconnections, and consequently, degraded performance, or even
a nonfeasible layout in which the routing cannot be completed due to blockages.

Similar to placement, routing of VLSI chips have been studied intensively, and
there are many well-known algorithms such as maze routing (e.g. [2]) and global
routing algorithms (e.g. [1]). Both of them require some open space, sometimes cal-
led channel, between adjacent blocks. To satisfy this requirement the placed blocks
must be spread out over the area of the chip to allow enough room for the intercon-
nections while retaining the adjacency relationships (left-right and up-down) be-
tween blocks.

In this paper we address the problem of block spacing in VLSI layouts. The
blocks within a VLSI module are interconnected by wires connected to ports located
within their area. Thus, the area of a rectangular VLSI module is occupied by two
types of entities: its rectangular constituting blocks and the interconnecting wires
that run between the blocks. The wires running in the neighborhood of a certain
block result from two origins: those that are connected to this block, and those that
are passing through, on their way to other blocks. The block spacing problem does
not really involve the wires that terminate in the block. The spacing for these is
almost independent of the placement configuration and the routing algorithm.
Therefore, the spacing for these wires can be estimated prior to the placement phase
and the block can be expanded to account for this. However, the spacing for the
passing through wires cannot be predicted before the placement phase since the
amount of space needed depends upon the relative placement of the blocks and the
particular routing algorithm which is employed later. Consequently, a reasonable
way to space the blocks (which have already been expanded to account for the wires
terminating in the block) is to spread them ‘‘uniformly’’ over the chip area. Of
course, uniformity must be well defined.

The rest of the paper is organized as follows. In Section 2 we define the problem
of one and two dimensional block spacing. In Section 3 we prove the existence and
uniqueness of the solution for the one dimensional problem. Section 4 presents an
iterative algorithm to find the one dimensional ‘‘uniformly” spaced placement and
proves that the proposed algorithm converges to the unique solution of the one
dimensional problem. Conclusions and problems for further research are presented
in Section 3.

2. The space balancing problem

Let R;, 1 =i<h, be the rectangles corresponding to the building blocks of the
layout, which are all placed within the area of the father block whose rectangular



Balanced block spacing for VLSI layout 305

area is denoted by R,. A placement is said to be fegal if the building blocks do not
overlap. Let Cﬁr x.gv and (x{,»") be the coordinates of the lower left and upper
right corners of R;, in R; coordinate mzm::: Hmmvmn?..w:\ A nmnﬁm:m_n. R; is said to
be feft adjacent to the rectangle R, if x; AH m:n_ { .x , .x a1all k_ R & '1+8, m:a if there
exists no Ry, k=#1i,f such that x; A.ﬁ_ﬂ H» k and C Q:D_E»QLDCHQ:_HQ
Right adjacency is defined similarly. In Fig. H the blocks R, and R, are left adja-
cent to Rs, while R; and Ry are its right adjacent blocks, whereas R| and Ry, e.g.,
are not a pair of adjacent blocks.

The horizontal adjacency graph G(U, E) corresponding to the placement is defin-
ed as follows: Every rectangle R; is represented by a vertex u;, whose weight w(u;)
is defined to be the width of the rectangle R;, i.e., i:buhl\ﬁ_ . The vertex
represents the left edge of Ry, u, . represents the right edge of R, and we define
w(ug) = wlu,, ) =0. Two vertices »; and «; are connected by an arc e directed from
u; to u; if the rectangle R; is left adjacent to the rectangle R;. To every arc
e =(u;, u;) we assign a length s(e) equal to the space (horizontal distance) between
the rectangles corresponding to its end vertices, namely, mnx‘“ —x;. The digraph G
thus defined is acyclic and has one source u#; and one sink wu, ;. The vertical
adjacency graph K(V,F) is defined similarly. Figure 2 illustrates the horizontal
adjacency and vertical adjacency graphs corresponding to the placement given in
Fig. 1.

Define the space along a path @ in G, denoted by s(€2), to be the total sum of
the arc lengths (representing space between adjacent blocks) along the path. The
width of the path, w(€), is the total sum of vertex weights (representing block
widths) along @, including its end vertices (whose corresponding weight is zero).
Finally, define the length /(£2) of the path & to be the total sum of block widths
and spaces between adjacent blocks along 2, i.e., /(£2)=s5(2)+ w(Q2). Obviously,
all the paths connecting a pair of vertices &; and u; have the same length, where the
length of those connecting u, to u,,, equals the width of Ry which is denoted
by wy.

[Rp

R, Rg

R
Rs &

Fig. 1. Initial placement.
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Fig. 2. Horizontal and vertical adjacency graphs.

rmﬂ h.i m:ﬁ h.os nmnoﬁm:ﬁmmﬁmommanmmsﬁazmmsa_omizm:Tammvmﬁ?_n_%ww
definition, I';™ and I correspond to the spaces between R; and the left adjacent
and right adjacent rectangles of R;, respectively. Let «; and f; denote the minimal
horizontal space (distance) between R; and any of its left adjacent and right adja-

cent rectangles, respectively, i.e;,
a=min{s(e) | ee}"},  B=min{se) | ecs"}. (1

We define y, = 8;~ a; to be the horizontal imbalance of R;. Vertical imbalance is
defined similarly. The placement is said to be horizontally balanced if

=0, 1=i=h. 2)

An interesting question is whether for every given initial placement there exists
a horizontal displacement of the rectangles which preserves the horizontal adjacency
relations between them, and the resulting placement is horizontally balanced. This
problem is called the one dimensional space balancing problem. Figure 3 illustrates
a horizontally balanced placement obtained from the placement in Fig. 1.

Evidently, a horizontal (vertical) displacement of the rectangles does not neces-
sarily preserve the vertical (horizontal) adjacency relations, as can be observed by
comparing Fig. 3 to Fig. 1. Given an initial placement, the fwo dimensional space
balancing problem is to find a horizontal and a vertical displacement of the rec-
tangles which preserve both the horizontal and vertical adjacency relations between
them, and the resulting placement is balanced in both directions. In general, this
problem may have no soiution as shown in Fig. 4. When the requirement to preserve
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Ry

Rg

R3

Fig. 3. Horizontally balanced placement.

the adjacency relations is relaxed, the solution might be not unigque as shown in
Fig. 4.

3. Existence and uniqueness of one dimensional space balancing

As will be demonstrated by construction, for every initial placement there exists

initia! placement 3
1
(a) DQM i 2
2
0

space balonced placement 3
1
] i
{b) - 0 3 5
0
3

space balonced plocement

(c) B - miw'vlw 1 z

Fig. 4. Different balanced placements for the same initial placement,
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a unique horizontally balanced placement. We present the existence proof first. It
consists of three parts: a procedure which constructs a new weighted graph G’
isomorphic to the original adjacency graph G, a proof that the new graph G’
presents a feasible adjacency graph, and finally, a proof that G’ presents a horizon-
tally balanced configuration, In the following we present each part separately and
then conclude by stating the existence theorem.

3.1. Construction procedure for G’

We construct a new graph ' isomorphic to G in an incremental manner. After
an initialization step, the construction proceeds iteratively, where in every iteration
some path from G is copied into G’ with new arc lengths. The procedure terminates
when G is completely copied into G”.

Step 0: Initialization. ' is empty. All the vertices and all the arcs of G are un-
marked. Add the vertices #, and w;, to G’. Mark the vertices ¥y and u,,, of G
(corresponding to the left and right edges of R, respectively).

The following steps are repeated until G is completely copied into G’,

Step 1: Find a new path in G. For every path £ between any two marked vertices
of G whose remaining vertices are unmarked (and hence its arcs too) do the follow-
ing: Let u; and u; be the tail and head vertices of the path £, respectively (in the
first invocation of Step 1 these are the source and the sink). Let 2 be any path in
G’ from u, to u; and let Y be any path in G’ from u; to 1y, . Notice that such
paths in G’ must exist since #; and u; are marked. Assume for the moment that we
wish to augment ' with the path £2 such that the feasibility and the adjacency rela-
tions in the placement resulting from this augmentation are retained. To this end
we first calculate the lengths /(£2) and /(£2”) in G”, and then calculate the desirable
average space between adjacent rectangles along the path £ in G’. This average
space is given by the ratio

wo— (R —1(2;) — w(Q) + w(u;) + wlu))

3)
12|

where |2 is the number of arcs along Q (in the first invocation (3) is equal to
5(82)/]82| since {(Q)=1(2/)=0). The terms w(x;) and w(u,) are added to the
numerator of (3) since u; is included both in 27 and £, while ; is included both in
£2; and €. Let 2, be a path in G which minimizes the ratio in (3) (if there are
several, choose one arbitrarily).

Step 2: Augmentation of G'. Add the arcs and unmarked vertices of Q, to G’
{the two marked end vertices are already in G’), To every arc added to G’ assign
a length equal to the average space of an arc along @, as given by (3). To every
vertex added to G’ assign the width of the corresponding vertex in G.

Step 3: Updaiing G. Mark the unmarked arcs and vertices along €2, in G (ob-
viously, except the end vertices the entire path is unmarked in G).
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Step 4: Termination test. If all the vertices of G are marked (and hence the arcs
too) then stop, else go back to Step 1.

Notice that the way G’ is augmented in Step 2, G’ retains the property that all
the paths between any two vertices in the horizontally adjacency graph have the
same length. For the example given in Fig. 1, the first iteration of the above pro-
cedure augments G’ with the path wu,— u; — 1y — 1g — 1 — 4 — Uy;. The resulting
' represents the portion of the placement in Fig. 3 that counsists of the blocks B,
By, By, By and By, in their new locations. The second iteration augments G’ with
the path wug — ug — 14),, the third iteration with the path u; —us— 1, the fourth
iteration with the path u, — u; — us, the fifth iteration with the path w5 — 17 - 1y,
and the sixth (and final) iteration with the path uy— 1y — g — 1.

3.2. Feasibility of the new adjacency graph

In the following we show that the minimal average space as calculated in every
iteration of the above procedure is nondecreasing. This will prove that the expres-
sion in (3} is always nonnegative, Qtherwise, the assignment of arc lengths in Step
2 of the above procedure may yield negative arc lengths, which in turn will result
in an illegal placement in which blocks overlap. Also, the balancing property which
is proved later in Lemma 3.2, stems from the monotony of the length assigned to
the arcs of G

Lemma 3.1. The length assigned to the arcs of the new adjacency graph is non-
decreasing.

Proof. The proof proceeds inductively on the order of the augmentation of G*. Let
02" n=1,2,..., denote the path added to G’ in the nth iteration of the construction
procedure and let s” be its corresponding average space (which is the length assign-
ed to its arcs in G’). The average space s' calculated in Step 1 is nonnegative by
definition. Let us first show that s=s! by demonstrating that if this was not the
case, then one could find a path in G from g, to ;| along which the average arc
length is smaller than s'. This will contradict the selection of €' as the path whose
average arc length is minimal. From Step 2 of the procedure it follows that the end
vertices #; and u; of 02 must lie on . Figure 5 illustrates the relation between Q'
and Q2. Let b“, bm and bw_ be the portions of Q' between the vertex pairs #, and
t;, u; and u;, and u; and u, ., respectively. Let p;, p; and p3, be the average
length of the arcs along b”. Ew and bw, respectively, in G. Then, the length s! of
every arc along 2' in G’ is given by:

h_

lﬁ__b“_ +hu_b“_~_ +hu_bw_

_ @
|211+123] +2;]

The average length of an arc along Q72 in G’ is obtained from (3),
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Fig. 5. Proof of Lemma 3.1: the first induction step.

, W= l(QD) —1(QD—w(@D) + wlu) + wlw))
T 7] ®

_we=s'|Ql = we)) - s' Q) |- wRl) — w@) + wiu) + wy)
|27 .
From the contradictory assumption that s2<s!, and equations (4) and (5), we ob-
tain after some algebraic operations

1271+ |22 + | 231> (wy ~ w( ) — w(Q%) — w(Q )+ w(t,) + w(u,))
Q1]+ Q31+,
h__b:+hm_bw_+ﬁw_bw_

X (6)
The average length 5 of an arc along the path in G consisting of @', 22 and bw is
given by | :

. Wy — ib_vlibwulibt+ wiu;) + wing) o

211+ 127+ Q3] .

Substituting inequality (6) into (7) yields s<s' which contradicts the selection of
@' among all the paths from Uy to ., as the one along which the average arc
length is minimal.

Let sl<s?<...<s"7! and assume to the contrary that s"<s"~'. Let #/ ' and
:;..T_ be the end vertices of 277!, and let u] and u; be the end vertices of ', There
are nine possibilities for the relation between Q" ! and @7, three of which are illus-
trated in Fig. 6. Let us consider each one of them. Assume first that #/ and u] do
not lie on any path from u, to u,, |, containing "=, as shown in Fig. 6(a). Then,
0" had to be selected prior to 277! in Step 2 of the iterative construction pro-
cedure, which is a contradiction. A second possibility is that &/ and z‘,.ﬁ lie on 27!
as shown in Fig. 6(b). Arguments similar to those used for the first induction step
prove that such a situation is impossible. A third possibility is that #] lies on some
path from g to /="' and that u; lies on some path from u; “1to u,, |, as illustrated
in Fig. 6(c). This however, results in a contradiction since 27! was selected as an
unmarked path between two marked vertices that minimizes (3), when the vertices u;
and xm were already marked. Therefore, there was another unmarked path between
uf and xm (£2") for which the ratio in (3) was smaller. The remaining six possibilities
are combinations of the above three and similar arguments lead to c¢ontradic-

tions. O
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Uo ur -t Cmi Uy
0—>0— »0—50—30— £ —so—s0l w0 ->0—30
(a) v
>0—30—>0— S>0—30—>0—
- Q ;
[TH uj
Ug Y - uy T
30— |9 =0—30
(b} ,
Uy u' uy” u u’ Ugey

0—30— Q —>0—>0
(c) H
o

Fig. 6. Proof of Lemma 3.1: the general induction step.

From the construction procedure in Section 3.1 and from Lemma 3.1 we conclude
that G’ is a new horizontal adjacency graph isomorphic to the original G. We now
prove that:

Lemma 3.2. The horizontal adjacency graph G’ represents a horizontally balanced
placement.

Proof. We have to show that for every vertex of G’ (except u, and u,_ ;) the length
of the shortest entering arc equals the length of the shortest leaving arc. This follows
immediately from two facts: First, whenever an unmarked vertex is added to G, one
entering and one leaving arc of equal length are added too. Second, the series of
arc lengths along the augmenting paths is monotonically nondecreasing as was prov-
ed in Lemma 3,1, Consequently, the equal left and right spaces determined when
an unmarked vertex u is added to G’ cannot be decreased by any later entering or
leaving arc {cases where # can only be an end vertex of the augmenting path). O

We conclude with the following theorem:
Theorem 3.3 (existence). Given an initial placement, its rectangles can always be
horizontally displaced so that the resulting placement is legal, the horizontal ad-

Jacency relations are preserved and if is horizontally balanced.

It occurs very often in VLSI layout that the location of some of the rectangles
is predetermined so they are not movable. For example, the small rectangles along
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the top and the bottom boundaries of the layout in Fig. 7 are the I/Q ports whose
position is predetermined and cannot be changed. The above entities can be modeled
as unmovable rectangles, and we say that the placement is balanced if only all its
movable rectangles are balanced since we cannot require the fixed rectangles to be
balanced too. The existence of some fixed rectangles does not restrict the validity
of Theorem 3.3 and all the other results which follow. Let R, ..., R, be the un-
movable rectangles. To model them we supplement G by a pair of arcs for every
vertex u,,; corresponding to an unmovable rectangle R;, 1 <i<k. One arc con-
nects uy with u,,,; and its length is equal to the distance of the left edge of R,,; from
the left edge of Ry. The other arc connects ,,; with u,,, and its length is defined
similarly for the right edges. Then, in the initialization step of the construction pro-
cedure we add u,,, ..., #,,; and their associated arc pairs to ¢’ and mark them in
G, in addition to #, and uy,, . The outcome of the construction procedure will be
a configuration in which all the movable rectangles are balanced, while the un-
movable ones remain in their initial location.

3.3. Uniqueness of the one dimensional balanced placement

Theorem 3.3 proves that for every given placement it is always possible to displace
horizontally its rectangles to obtain a horizontally balanced placement. The ques-
tion whether the horizontally balanced placement is unique is addressed in the
following theorem,

Theorem 3.4 {uniqueness). The horizontally balanced placement of a given initial
placement is unique.

Proof. Assume to the contrary that the balancing is not unique. Let G and H be
two isomorphic horizontal adjacency graphs, representing two different horizontal
balancings of the same initial placement. Let & be obtained by the construction pro-
cedure of Section 3.1. Consider the paths 27 and their corresponding arc lengths
s", n=1,2,..., in the same order as they were obtained by the construction pro-
cedure. 71" denotes the path isomorphic to 2" in H. We next prove by induction
on the order of 7 that the supposition of nonuniqueness leads to a contradiction.
Recall that the lengths of all the paths from u, to u, ., are equal to w, and that by
definition the weights of isomorphic vertices are identical in G and H and equal to
the width of the rectangle they represent.

Assume first that the arc lengths along Q' are different from those along I7 I
There exist two possibilities:

(1) The arc lengths along /7" are not smaller than s', and there exists an arc f
whose length in H is greater than s!, namely,

sHe)=s', VYeell'; s (f)=p>s'=s°(/). (8)

The superscripts G and H are used to distinguish between spaces (and similarly,
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lengths and weights) in the G and H graphs. Calculating the length of /7, we ob-
tain from (8)

wo =TT =0T + wH Ty =s7(T Y + wE(QY)
>s9QHY +wlQ Y =190 Y = w,, ©)

which is impossible.

(2) There is an arc f along /7" satisfying s¥(f)=p<s'. Let u; and u; be the end
vertices of f. If u;#u, then there exists an arc g entering ; satisfying s™(g)<p,
since H represents a balanced placement. Applying this argument repetitively, we
can find in ff a path f7° from u, to »; whose arc lengths do not exceed p. Similarly,
if u;#u,,, we can find in £ a path [7” from u; to u,,, whose arc lengths do not
exceed p. All in all, we have found a path I7 from u, to 1, |, consisting of 7', f
and f7” along which the arc lengths are not greater than p and therefore, the average
arc length along 77 is also not greater than p. Since horizontal displacement of rec-
tangles preserves the average arc length along any path from wuy to #,,,, the
average arc length along any two isomorphic paths in G and H must be identical.
This however contradicts s' being the minimal average arc length along any path
from source to sink in the graph corresponding to the initial placement.

Assume now that 27 and f1", 1=n=r—1, have identical arc lengths, while £27
and I7" have not. Again, there exist two possibilities:

(1} The arc lengths along f7" are not smaller than 5", and there exists an arc f
whose length in A is greater than 57, namely,

sfey=s’, Veell, s(fH=p>s"=s°(). (10)

According to the definition of £2” in the construction procedure, its end vertices u;
and u; are Iying on earlier paths and consequently, there exists a path Q' from u,
to u; and a path 2" from u; to u,,, consisting of arcs belonging omnly to 27,
l<n=<r—1. Let 2 be the path from u; to u, . consisting of ', 2" and Q27, and
let I, IT’, IT, IT" be their isomorphic paths in H, respectively. According to the
induction hypothesis, there is:

Hury=19@9;  Haan =@, (1)
Let us calculate the length of I7 by combining (10} and (11).

wo =8Iy =171y + 17aT + 17Ty — wh(u) - wiu))
=0Ty + s 72T + wh Iy + 1471017 - whu) - wh)
=19(Q) +s7UTY+ wE @ +19(R27) - wO () — wO (k)
>19(Q0)+59Q)+ wé(Q) +19(R") - wO(u) - wo(u))
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=19V +1°(QN+1°(0") - wC(u;) - EQ?@MNQAEVH wg, (12)

which is a contradiction.

(2) There exists an arc f along f77 satisfying s™(f)=p <s". Since H represents a
horizontally balanced placement, we can find (in the same manner as we did for the
first induction step) a path I7 in H whose arc lengths do not exceed p. Let £2 be the
path in & isomorphic to 77, Divide the arcs along I7 into two sets: E” contains the
arcs belonging to 2", 1 <p=<r—1, and E” are the remaining arcs. According to the
induction hypothesis and the definition of the paths €27 in the construction pro-
cedure, there is:

s%(e)=s"(e), VeeE’; se)=s">p=s"e), VeckE". (13)
Let us calculate the length o_.i. Il
wo=(ID =wi(ID+sTUN=wiiD+ ¥ s+ ¥ se)

ecE’ ecE”

=wo )+ ¥ s%e)+p|E”|

eckF’
<wl(@)+ ¥ s% e+ ¥ s%e)=i9Q)=w,, (14)
ecE’ eckE”

which is a contradiction.
In conclusion, the contradiction originated from the assumption that the arc
lengths along JT" are not identical to those along Q'. [

4. Herative algorithm for one dimensional space balancing

Given a placement, the construction procedure in Section 3.1 does not provide a
practical way to find its corresponding horizontally balanced configuration. In the
following we suggest an iterative algorithm which converges rapidly to the desired
balanced placement and involves very simple calculations. Let g be the maximal
number of vertices along a path in G (excluding 4, and . }. As shown below, the
imbalance of any vertex after n iterations is bounded by wy¥", where w, is the
width of B, and y is a constant factor satisfying y=<1—($)7.

Given a placement, let us displace horizontally a rectangle R to the right in {u
distance if #=0 and to the left in 4u distance if ¢ < 0, where 4 denotes the imbalance
of R. We apply this displacement transformation to all rectangles one by one and
call this procedure a balancing cycle. Without loss of generality assume that the rec-
tangles are displaced in the order of their indices. Usually, a balancing cycle does
not result in a balanced placement since a balanced rectangle R; may become un-
balanced when an adjacent rectangle R;, i<, is displaced. However, by applying
the balancing cycle iteratively, the resulting placements converge to the (unique)
balanced placement, as stated in the following theorem.
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Theorem 4.1. The series of placements resulting from the iferative application of
balancing cycles converges to the balanced placement.

Proof. Let x! denote the imbalance of R; at the end of the nth balancing cycle,
l=<i=b, n=0,1,2,.... Define

u"=max{|uf| |1 <i=<b}. (15)
We show next that there exists a real nonnegative number 0=y =<1 —(1)7 such that
ey n=0,1,2,.... (16)

If (16) is true then Theorem 4.1 is proved since "' '<y"u°, implying that the im-
balance of each rectangle uniformly converges to zero.

To prove (16) recall that in the horizontal adjacency graph, the displacing of a
rectangle equally shortens (lengthens) the Iength of every arc entering its correspon-
ding vertex, and equally lengthens (shortens) the length of every leaving arc. Also,
recall that during a balancing cycle the imbalance of every rectangle is reset to zero
once, and later on in this cycle it may become unbalanced when its adjacent rec-
tangles are balanced. In principle, the displacing of a rectangle R; may affect only
the imbalance of its adjacent rectangles, which in the worst case may increase by
the magnitude of the displacement, i.e., by half of R;’s imbalance. Let R; be adja-
cent to R;. Then, the imbalance of R; immediately after the balancing of R; takes
place, is increased by at most 1u”, i.e., its imbalance is bounded by p"+ 4u" =

1u”. Let the rectangle R; be adjacent to R;. Then, the imbalance of R, imme-
diately after the balancing of R; takes place, is increased by at most $u”", i.e., it is
bounded by y"+ $(u" ++u")=13u". The effect of balancing a rectangle on the re-
maining rectangles propagates along the paths passing through its corresponding
vertex in the adjacency graph. Consequently, only those rectangles corresponding
to vertices lying on paths passing through u; (the vertex corresponding to R;) may
be affected by the displacement of R;. Moreover, this effect is decreased in integral
powers of 4 with the arc distance from u;.

When the imbalance of a rectangle R is considered, one entering and one leaving
arc are determined (see¢ equation (1)). Let ¢ be the maximal number of vertices along
a path from u; to w,., (excluding u; and u,,,) and suppose that they are
numbered uy, u, ..., #,. Then, the maximal number of balancing operations during
a balancing cycle that may affect the imbalance of u, is g — 1. Therefore, the max-
imal quantity that can be added to the imbalance of u, during cycle n+1 is

HE+ e+ D =p" -3,
and the total imbalance of u, prior to the (n+ 1)th displacement of its correspon-
ding rectangle is bounded by #"(2 — (2}~ '). Thus, after the imbalance of R, was

reset to zero in this cycle, the imbalance of u,_, is bounded by (1 — (})?)#". Setting
y=(01-4)9), we get (16). U



Balanced block spacing for VLS lavout 37
A direct consequence from the proof of Theorem 4.1 is;

Corollary 4.2. The series of adjacency graphs resulting from the balancing cycles
converges to the space balanced adjacency graph, independent of the order of balan-
cing steps during a cycle (this order could vary from cycle to cycle), as long as each
rectangle is balunced once in every cycle,

In general, convergence is guaranteed for an arbitrary balancing sequence, as long
as the period between two consecutive treatments of a rectangle is bounded. A sim-
ple, but illustrative, example is depicted in Fig. 8. There, the balancing during a
cycle proceeded in the order of the rectangle indices. Notice that a faster con-
vergence could be obtained if the order would be reversed.

_mmm initial placement
_mm E end of 1st cycle
M“ m H end of Znd cycle
1 m m H end of 3rd cycle
E m m “ end of 4th cycle

o]

QC

_M_ m H herizontally balanced
m placement

Fig. 8. An example illustrating the convergence of the balancing cycles.

5. Conclusions and further research

This paper addressed the block spacing problem whose objective is to provide
enough room between the building blocks in VLSI layouts, so that the interconnec-
ting wires can be routed successfully, We proposed a model for spreading the blocks
uniformly over the chip area, to accommodate the routing requirements, while re-
taining their adjacency relations. The block spacing problem was solved via a
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weighted digraph model, on which a space balancing problem was defined. The ex-
istence and unigueness of a solution to the one dimensional problem was proved,
and an iterative algorithm which converges rapidly io the solution was presented.

Two alternatives for the solution of the dimensional space balancing problem
were discussed. One is a byproduct of the existence proof, but as pointed out
formerly, is impractical. The second solution is an efficient iterative algorithm
which results in an infinite, but rapidly converging series. Still, we may look for a
finite and efficient (polynomial) combinatorial solution to the space balancing prob-
lem and an algorithm for finding the path between two vertices along which the
average arc length is minimized.

As we have already seen, the two dimensional space balancing problem may have
no solution, but if the requirement to retain the isomorphism of the adjacency
graphs is relaxed, solutions may exist {see Fig. 4). Since the two dimensional space
balancing and the preservation of the isomorphism in both directions are sometimes
conflicting requirements, we have in some instances to compromise. The question
of how to trade off the conflicting requirements is a matter of further research.
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