Determining Acceptance Tests For
Application-Level Fault Detection

Eric Ciocca, Israel Koren, C. Mani Krishna

Abstract— Faults are often difficult to detect, especially
when the detection algorithm does not understand the se-
mantic context of the faulty data. By allowing the applica-
tion itself to take on the responsibility of detecting faults,
significant savings can be made in incurred error penalty.
However, such an approach to fault detection is inherently
bound to be inaccurate sometimes. Inaccuracies may be the
result of either faulty elements which were not detected,
or nonfaulty elements which were wrongly considered to
be faulty. The end user must consider not only the error
penalty of missed faults, but also the extra runtime which
may come with a false alarm.

Our approach to software level fault tolerance allows for
levels of customization within each acceptance test. As such,
the correct configuration of these error bounds is a matter
left to the end user. The end user must also determine a
balance among the acceptance tests, such that the serial-
ization of multiple tests results in not only the best fault
detection, but also a low overhead. We demonstrate these
principles as applied to NASA’s Orbital Thermal Imaging
Spectrometer (OTIS) application.

I. INTRODUCTION

Faults that occur in a system may manifest themselves
as various types of errors. Faults may be destructive and
obvious enough to disable entire nodes and render the hard-
ware useless, or may be as localized as to only flip a single
bit in the memory. Faults of the latter type are very dif-
ficult to detect, yet the consequences may be more severe
than those of a hardware fault. While hardware-disabling
faults can be instantly detected by any number of watch-
dog devices, faulty data may slip by undetected and pose
as valid data. The end user, trusting that this data is fault-
free, will go on to use it, never suspecting that it is in fact
erroneous.

To prevent this, robust systems may incorporate mea-
sures of fault detection. This fault detection may come via
custom hardware or low-level modifications, but will most
likely involve some sort of redundancy. This redundancy
may be as simple as the information redundancy of a par-
ity bit, or it may be more complicated, such as the use of
multiple versions of software to validate results. Not all
techniques can be applied to all applications, so the entire
system and the operating environment must be considered
before determining the best option. It may help to use
application-specific approaches to fault detection.

Using application-specific characteristics for fault detec-
tion is a straightforward way of weeding out erroneous data.
An application (or the developer of an application) knows
the format, range, and other subtleties of input, output,
and intermediate data. By knowing what is expected, a

This research was supported in part by NASA, JPL contract num-
ber 1223474, and by NSF grant number CCR-0104482.

program can rule out unexpected data as the product of a
fault. Such an acceptance test can be as simple as a logi-
cal sanity check, or as complicated as a transformation of
the data to test its feasibility in another domain. By mak-
ing the acceptance test as simple as possible, the overall
cost for fault detection can be lessened. While this may
not serve as a completely accurate fault detector, it can be
used to supplement and reduce the overhead of other fault
detection schemes.

II. DESCRIPTION OF PROBLEM

The backbone of application-level fault detection re-
lies on having regular and predictable data characteristics.
Finding the domains in which data is predictable requires
knowledge of what the input and output data represent,
and the characteristics inherent to that set. If, for exam-
ple, we are considering a set of input and output that deals
solely with natural phenomena, a series of restrictive rules
can be created based on the environment of the experi-
ment and the physical laws associated with the readings.
Any test that holds data to any criteria to determine its
validity is in this context called a fault “filter.”

Often when attempting to detect faults, there arises a
tradeoff between detection accuracy of faults, and detec-
tion mistakes via genuinely nonfaulty data. By creating
filters which are too lax, faulty data will slip “under the
wire,” and not be detected. By creating filters which are
too strict, many nonfaulty data elements will be incorrectly
identified. The tradeoff between these may manifest itself
as error (missed faults) versus extra runtime (false alarms),
but this may change from application to application. Ulti-
mately, the tradeoff must be balanced by the end user.

Unfortunately, finding the optimal calibration for any fil-
ter or set of filters is often too complex to solve numerically,
even if the tradeoffs can be expressed in a formulaic fash-
ion. Another method for calibrating the filters relies on
trial and error, refining and retrying different values until
the best ones are found. The presence of multiple filters
further complicates this process, making the discovery of
optimal filters akin to shooting in the dark. The method
proposed in this paper is a form of intelligent trial and
error, which attempts to use observed trends in data to
reduce the areas where trials are required.

The application considered in this paper for fault detec-
tion makes use of the natural characteristics of tempera-
ture. OTIS, the Orbital Thermal Imaging Spectrometer, is
an application run in orbiting satellites to collect thermal
information from planets. OTIS is part of NASA’s REE
application group [1], a collection of applications intended



to run in orbital, spacebound, and extraterrestrial environ-
ments.

Temperature has two immediately straightforward char-
acteristics:
o Natural Bounds - The data represents a natural phe-
nomenon within a small region, so it will fall within a pre-
dictable range. For example, while doing a temperature
survey of the Earth, we should not expect to find anything
too far below freezing, nor exceeding the boiling point of
water (with the exception of “hot spots” like volcanoes).
When surveying a localized geographic area of only a few
meters or kilometers, as a satellite would do, the cutoff val-
ues can be placed even tighter. Bounds could be described
by the target area, such as “tropical” or “arctic” bounds.
« Spatial Locality - The data within a small geographic
area will not only fall within a certain range, but also
change gradually. While dramatic sudden changes (hot or
cold spots), are not unheard of, heat dispersion tends to
average the spots into their surrounding area. Even so, the
temperature within the spot is usually locally consistent,
so the only inconsistent data will be along the spot’s edges.

By leveraging on these characteristics, we hope to be
able to rule out any data which is altered by faults. The
exact method of discovering the characteristics of particu-
larly adjusted filters, as well as the associated trade offs,
will be discussed below.

III. RELATED WORK

Application-specific fault detection is a prerequisite for
our approach to Application-Level Fault Tolerance (and
Detection), ALFTD [2]. This scheme is a general approach
to application modification that allows for an application to
also compensate for faults it has detected. The method of
tolerance varies from application to application, but OTIS
and previous applications have accomplished this through
scaled software redundancy. In this, processors are respon-
sible not only for their own work (at full resolution), but
also a redundant scaled copy of a neighboring processor.
Scaling may be performed by reducing the input dataset,
the accuracy of functions, or in any other way restricting
the amount of work done while still producing acceptable
results.

Further advantage comes when considering applications
where it is possible to make the redundant copies optional.
If faults are statistically infrequent, using a method which
is reactive to fault detection may have a lower overhead
than proactive application or algorithmic [3] fault toler-
ance. If possible, we would also like to single out partic-
ular segments of data that are potentially faulty and tar-
get them for redundant calculation. At the same time, we
would also like to concretely identify as many nonfaulty
data segments, so as not to do unnecessary redundant cal-
culations on them.

Application-level fault detection allows for implementa-
tion of application-level fault tolerance without reliance
on system-level fault detection hardware. It also allows
for redundant verification through processes within a sin-
gle software, instead of relying on multiple software ver-

sions [4]. Previous forms of Application-Level Fault Toler-
ance [5] only compensated for faults which were destruc-
tive enough to prevent processors from producing output.
However, in particular environments this may be insuffi-
cient. The nature of space-bound systems exposes them
to a greater number of charged particles, which may man-
ifest themselves as very discrete faults [6]. Inclusion of
application-level, semantically guided fault detection is in-
tended to supplement existing system and hardware level
fault tolerance, and compensate in cases where lower-level
fault tolerance breaks down. The application semantic ba-
sis for ALFTD’s fault detection enables it to pick up on
faulty hardware passing off erroneous data as valid, as well
as data which has become corrupt by other means. Actu-
ally tolerating these types of failures requires a redundant
source to provide the valid data, but in cases where redun-
dancy isn’t possible it is still possible to at least signal the
presence of a suspected fault.

IV. APPROACH

Our goal is to find the cutoff values beyond which data
is most likely faulty. To begin with, the data itself must be
investigated in order to find the typical values of nonfaulty
data. By finding the characteristics of nonfaulty data, it
can be decided which data ranges should be “inside” the fil-
ter boundaries. OTIS filters utilize two data domains, the
temperature (measured in Kelvin) and “spatial locality” -
measured as the difference in temperature between adja-
cent pixels. The ranges of three different datasets (named
Blob, Spots, and Stripe) are illustrated as a frequency plot
in Figure 1.

These plots show that the data falls within a fairly nar-
row data range. Being able to detect faults is now a mat-
ter of detecting any data which falls outside these narrow
ranges. The potency of this approach, however, depends
on the type and intensity of faults which are to be detected.

If, for example, faults manifest themselves by resetting
portions of memory to zero, or to gibberish values, the
chances of the faulty data falling inside the relatively slim
filter range is negligible. If faults are occurring because of
charged particles flipping single bits in memory, the error
may manifest as a small offset in value. In some cases the
error may be small enough to be negligible (such as hitting
the least significant bits), or may be large enough to be
immediately apparent (increasing the values by orders of
magnitude). We concern ourselves with the intermediate
intensities of faults, those which create some noticeable -
yet not outrageous - offset to existing values. With an off-
set range of plus or minus 10%-30%, it is possible for values
to both fall outside the existing acceptable data range, or
to still remain “inside.” While errors themselves are statis-
tically infrequent, and the chances of an intermediate er-
ror such as this even more so, this is an extreme fault case
used to exercise the worst-cast scenario for application-level
fault detection.

As there is the chance for data with errors of this in-
tensity to be even within the typical range of fault-free
data, a strict (numerically narrow) filter would result in



Frequency of Values in Output Data

45 T T T T T
40 t Blob ——— , /! 4
Stripe - 1
> 35 Spots e A g
c oo B
g 30 P 1
I 251 q
[}
g 20 B
5
o 15 ¢ 1
&
10 + B
5t P ,
0 3Ll

300 305 310 315 320 325 330 335 340 345 350
Output Value (K)

(a) Data Value Frequency

Frequency of Values in Output Data (Spatial Locality Filter)
45

*
40 Blob —+— A g
Stripe - S
> 35 [  Spots ---e- i R
[=
g 30t 1
g
I 251 q
[
220 r 1
5
o 15 ¢ 1
&
10 + B
5| ]
o -

-15

Difference Between Neighboring Values

(b) Data Locality Frequency

Fig. 1. Frequency Plots of Three Sample OTIS Outputs

the most faults detected. But a tradeoff must be made be-
tween faulty data being detected, and nonfaulty data “false
alarming” the filters. To study this case, a set of results
was generated using moderately faulty input data (adding
or subtracting 10%-30% to the existing values). The output
is in a 50 x 50 array of floating point values. Each “pixel”
had approximately a 25% chance of being erroneous, and
the intensity of each fault was randomly determined. The
results discussed in this article are the averaged values over
ten such experimental repetitions.

Each filter has two boundary values, the lower (left)
bounds and the upper (right) bound. Data outside these
bounds is suspected to be faulty. Each boundary value can
be set independently. Different settings for each will incur
different amounts of successful fault detections and false
alarms from the fault-injected data. The effect of each filter
bound is cumulative - the total number of faults detected
in a system is the sum of faults detected by the lower and
upper bounds. Likewise, the total number of false alarms
is the sum of the false alarms incurred by the upper and
lower bounds. The effects of the lower and upper bound
can be seen in Figures 2a and 2b, respectively.

There are approximately 700 randomly placed faults to
be detected in each dataset, and 2500 pixels in the en-
tire field. The left y-axis ticks give the percent of false

LEFT Bounds Filter Parameter vs. Fault Detection, Blob
100 T T e F T ¥ T *

80
60 -

Left - Fault Detections —+—

40 ¥
/ Left - False Alarms - 4 100

Percent of False Alarms

20 150

Percent of Possible Fault Detections

0 v L L L L L L L L 0
300 310 320 330 340 350 360 370 380 390 400
Filter Cutoff Value

(a) Bounds Filter (Left Cutoff)

RIGHT Bounds Filter Parameters vs. Fault Detection, Blob

100 ~
\ 2
Y S
g %7 P s
£ \ j}
g <
< \ =
o 60 % 3
@ 4 w
g , 2
] 4 : ! @
= 40 “'. Right - Fault Detections —— 4
2 X Right - False Alarms ----x--- 1100 &
3 h S
a €
r 4 @
20 150 ¢
7
a

e ek

0 . . . 0
300 310 320 330 340 350 360 370 380 390 400
Filter Cutoff Value

(b) Bounds Filter (Right Cutoff)

Fig. 2. Various Side-Specific Filter Values for the Bounds Filter

alarms out of the maximum number of false alarms. The
maximum number of false alarms in this example is ap-
proximately 1800, the number of pixels without randomly
placed faults in them. The right y-axis shows the fault
hit tally as it is relative to the total number of pixels with
randomly assigned faults. This allows us to see how the
number of false alarms and fault hits scale for a particular
cutoff, while still allowing us to determine at which points
100% fault detection is being achieved. Using a plot such
as this, a cap could be placed on the number of fault misses
or false alarms (per side), and the optimal placement of the
left and right filter bounds can be determined.

By overlaying the graphs of the two side-specific filter
boundaries, more general trends can be observed, as seen
in Figure 3. Noting that the intersection of the “Hit Faults”
graphs occurs to the right of the intersection of the “False
Alarms” graph, the conclusion can be drawn that despite
the uniform distribution of faults, the associated errors
manifest themselves mostly by increasing the data values.
This is a peculiar quality unique to OTIS, but demonstrates
an important part of filter determination. If a system-wide
fault detection rate of a particular accuracy is desired, we
cannot assume that each side of the filter will be equally
responsible for detecting those faults. With the particular
type of fault in the given application, the right side of the



Complete Bounds Filter Fault Hits
Cols = Left Side, Rows = Right Side
302 304 306 308 310 312 314 316 318
315 | 98.9% 98.9% 99.1% 99.1% 99.1% 99.1% 99.2% - -
317 | 96.0% 96.0% 96.1% 96.1% 96.1% 96.1% 96.3% 99.4% -
319 | 92.7% 92.7% 92.9% 92.9% 92.9% 92.9% 93.0% 96.1% 98.0%
321 | 90.6% 90.6% 90.8% 90.8% 90.8% 90.8% 90.9% 94.0% 96.0%
323 | 88.1% 88.1% 88.3% 883% 883% 883% 884% 91.5% 93.5%
325 | 82.7% 82.7% 82.8% 828% 82.8% 82.8% 83.0% 86.1% 88.0%
327 | 77.9% T7.9% 781% 781% 781% 781% 782% 81.3% 83.3%
329 | 69.7% 69.7% 69.8% 69.8% 69.8% 69.8% 70.0% 73.1% 75.0%
331 | 62.0% 62.0% 62.1% 62.1% 62.1% 62.1% 62.3% 654% 67.3%
333 | 59.0% 59.0% 59.2% 59.2% 59.2% 59.2% 59.3% 62.4% 64.4%
TABLE I
PERCENT OF FAULT HITS BY LEFT AND RIGHT SIDE FILTERS
Complete Bounds Filter False Alarms
Cols = Left Side, Rows = Right Side
302 304 306 308 310 312 314 316 318
315 | 92.6% 92.6% 92.6% 92.6% 92.6% 93.0% 96.5% - -
317 | 84.6% 84.6% 84.6% 84.6% 84.6% 85.0% 88.6% 95.7% -
319 | 783% 783% 783% 783% 783% 787% 823% 89.4% 97.0%
321 | 72.0% 72.0% 72.0% 72.0% T72.0% 72.4% 75.9% 83.1% 90.6%
323 | 64.2% 64.2% 64.2% 64.2% 64.2% 64.6% 68.1% 75.3% 82.8%
325 | 53.7% 53.7"% 53.7% 53.7% 53.7% 54.0% 57.6% 64.7% 72.3%
327 | 40.7% 40.7% 40.7% 40.7% 40.7% 41.0% 44.6% 51.7% 59.3%
329 | 24.2% 24.2% 24.2% 24.2% 24.2% 24.6% 28.1% 353% 42.8%
331 | 5.0% 5.0% 50% 5.0% 50% 54% 89% 16.1% 23.6%
333 | 0.1% 01% 0.1% 01% 0.1% 0.4% 4% 11.1%  18.7%
TABLE II

PERCENT OF FALSE ALARMS DETECTED BY LEFT AND RIGHT SIDE FILTERS

Bounds Filter Parameters vs. Fault Detection, Blob

=
o
=]

o T TR

2}

®
=]

Left - Fault Detections —+—
Left - False Alarms -—--x---
Right - Fault Detections -
Right - False Alarms &

Percent of False Alarms
B (o2}
o o
T
o

N
=]

Percent of Possible Fault Detections

ol
300

340 360
Filter Cutoff Value

Fig. 3. Various Filter Values for the Bounds Filter

320

filter is more important than the left side of the filter.

If we were expecting to see only these kinds of faults,
then the filters could be further refined to reflect this. By
looking at Tables I and II, which tabulate the total system-
wide fault detections and false alarms, and then looking
back at Tables III and IV, the rate of detection per side
can be further quantified.

The balance between dependence on the left and right
sides of the filter would be difficult to determine math-
ematically. Even if we could reduce the curves to their
component formulae, the number of variable factors makes
finding an optimal point a laborious task. At this point, it
is easier to narrow the curve to an approximate area where
we suspect the optimal balance would occur, and search for
the desired tradeoff between false alarms and misses. If we
want a minimum of some percentage of fault hits, we could
look at a table such as Table I, and find the configuration
of left and right filters at which this happens. We can then
use a table (such as Table II) to find which of these points
has the least number of associated false alarms. Once we
determine the best point, Tables III and IV can be used to
find which side of the filter is producing which percentage
of the false alarms and hits.

As an example, if an 80% fault detection rate is desired,
we would first consult Table I. We would like the configura-
tion of the left and right filters where an 80% detection rate
is achieved. Because detection sensitivity and false alarm
rate are directly proportional, finding the minimal config-



PERCENT OF FAULT HITS BY SIDE-PARTICULAR BOUNDS FILTERS

Cutoff | Left Only Right Only

Hits Hits
302 8.7% 91.2%
304 8.7% 91.2%
306 8.8% 91.1%
308 8.8% 91.1%
310 8.8% 91.1%
312 8.8% 91.1%
314 9.0% 90.9%
316 12.1% 87.8%
318 14.0% 85.9%
320 16.6% 83.3%
322 18.9% 81.0%
324 23.0% 76.9%
326 28.3% 71.6%
328 34.7% 65.2%
330 43.1% 56.8%
332 48.5% 51.4%
334 50.0% 49.9%

TABLE IIT

PERCENT OF FALSE ALARMS DETECTED BY SIDE-PARTICULAR

Bounps FILTERS

Cutoff Left Only Right Only
False Alarms False Alarms
302 0.0% 100.0%
304 0.0% 100.0%
306 0.0% 100.0%
308 0.0% 100.0%
310 0.0% 100.0%
312 0.3% 99.6%
314 3.9% 96.0%
316 11.0% 88.9%
318 18.6% 81.3%
320 24.1% 75.8%
322 31.7% 68.2%
324 41.0% 58.9%
326 51.3% 48.6%
328 67.3% 32.6%
330 87.9% 12.0%
332 98.5% 1.4%
334 100.0% 0.0%
TABLE IV

LEFT Locality Filter Parameters vs. Fault Detection, Blob

100 T T T
oo R R K

«

80

60 -

Left - Hits ——

Left - False Alarms ----x--- i
40 i 4
X 1 100

Percent of False Alarms
Percent of Faulty Pixels

20 150

0 1 1 1 1 1 1 1 1 1 0
25 -20 -15 -10 -5 0 5 10 15 20 25

Filter Cutoff Value

(a) Locality Filter (Left Cutoff)

RIGHT Locality Filter Parameters vs. Fault Detection, Blob

100
KR
80 | "

60 -

Right - Hits ——
\;Right - False Alarms -—-x—-

40 -
4 100

Percent of False Alarms
Percent of Faulty Pixels

20 150

25 -20 -15 -10 -5 0 5 10 15 20 25

Filter Cutoff Value

(b) Locality Filter (Right Cutoff)

Fig. 4. Various Filter Values for the Locality Filter

uration which satisfies our fault detection criteria should
also yield the least false alarms. Some example points
of this in Table I happen with the left and right filters
at (302K,325K), (304K,325K), (306K,325K), (316K,327K),
and (318K,327K). Referencing these same points in Table
II, we find that these points have associated false alarm
rates of 53.7%, 53.7%, 53.7%, 51.7%, and 59.3% respec-
tively. Among these, we find that the minimum false alarm
rate happens with the left filter at 316K and the right filter
at 327K. Referencing Table III we see that with this config-
uration the left filter is detecting 12.1% of the total faults,
and right side is detecting approximately 73%. Referenc-
ing Table IV we also find that the left filter is responsible
for 11% of the maximum possible false alarms, while the
right side is yielding approximately 40%. If our goal was
to minimize false alarms, we may have to be a little more
lax on our expectation of fault detection with this filter.

We now have an approximate setting for which we can
use this filter. Looking at the results, we can see that while
the detection rates are acceptable, our false alarm rate is
too high. If we had only this filter, it would have to be
accepted as the price of such high fault detection. Luckily,
the process is not yet complete - there is still the locality
filter to apply. The locality filter itself will detect some of
the same faults of the bounds filter, as well as having the



Filter Parameters vs. Fault Detection, Blob
100

ggggggggg
o

®

=]
T

g

@
=]

i Left - Hits ——
i Left- False Alarms -
i Right - Hits -
. - Right - False Alarms ~—&--4 100

IS
o
Percent of Faulty Pixels

Percent of False Alarms

N
=]

{50

L L L L L L L Ll
-25 -20 -15 -10 -5 0 5 10 15 20 25
Filter Cutoff Value

Fig. 5. Various Filter Values for the Locality Filter

potential to detect faults which have been missed. With the
union of the two filters, we can achieve good fault detection
with few false alarms. The detection characteristics of each
side of the locality filter can be seen in Figure 4. The union
of the two sides of the locality filter is seen in Figure 5

The above results reflect only one set of output, the
“Blob” dataset. As this is typical data in both bounds
and locality, the filter settings should be equally efficient
for any moderate case. Applying this exact configuration
to the “Stripe” dataset affords an 80.6% detection rate for
faults, but also incorrectly identifies 45.7% of possible false
alarms. These results are approximately the same as those
returned from the “Blob” dataset. If the filters are applied
to the “Spots” dataset, it is found they will only result in
a 69.5% fault detection. While this is a drop from the de-
sired 80%, the false alarm overhead associated with this is
only 18%. In order to achieve the fault detection desired,
the filters for “Spots” need to be set at 318K and 323K.
The reason for this can be seen when inspecting Figure
1(a); The most frequent data values for the “Spots” are
slightly less than those in the other two datasets. This is
a shortcoming of the simple absolute bounds filter - even
a constant deviation in range will result in many incorrect
identifications. This is also a good reason why a single ap-
plication shouldn’t rely solely on one filter for all of its fault
detection. While the bounds filter does a good job for the
average case, it may fail in extreme cases. By expecting
less coverage from a single filter and relying on the cumu-
lative effects of many filters, a wider spectrum of datasets
can be tolerated.

The question remains, however, as to what degree of er-
ror detection can be expected from each filter. Just as the
left and right bounds of each filter have unique character-
istics, so do each of the two filters. A particular filter may
increase in effectiveness consistently as its span is increased,
or may only be increasingly effective for some initial range.
Unfortunately, these filters do not combine in a cumulative
fashion, as the left and right boundary filters do. Both
filters may detect all of the same faults, or distinct faults,
depending on the type and magnitude of the faults. The
only way to determine the optimal balance between these
filters is to repeat the method previously described for each
filter, and find the best point of balance between those con-

Union of Filters, False Alarms
Cols = Spatial Locality Filter
Rows = Bounds Filter

60% T0% 90%
40% | 15.7"% 22.6% 76.0%
50% | 15.7% 22.6% 76.0%
60% | 15.7% 22.6% 76.0%
70% | 36.3% 42.2% 84.2%
80% | 59.9% 64.6% 90.5%
90% | 77.1% 79.0% 94.5%

TABLE V

FALSE ALARMS WITH A UNION OF FILTERS

Union of Filters, Fault Hits
Cols = Spatial Locality Filter
Rows = Bounds Filter

60% T0% 90%
40% | 63.7% T71.9% 89.6%
50% | 64.0% 72.1% 89.7%
60% | 67.5% 72.7% 90.2%
70% | 76.3% 80.1% 94.2%
80% | 84.1% 87.4% 96.8%
90% | 93.0% 94.3% 98.7%

TABLE VI

Faurr Hits wiTH A UNION OF FILTERS

figurations.

For each filter, the “optimal” configurations for various
levels of detection accuracy were configured. The spatial
locality filter, with 60%, 70%, and 90% detection accu-
racy, was run alongside the bounds filter from 40% to 90%
accuracy. The union of these two filters, with some con-
figurations, allowed for detection greater than each of the
individual filters - showing that some errors were unique to
each filter’s criteria. It was observed, though, that many
of the faults were identified by both filters. Finding filters
which are more strongly disjoint would be beneficial in this
case. The detection attributes of the union of filters are
similar for both other data sets as well, with the same rela-
tive results as the single bounds filter. Where the “Stripe”
data set has approximately the same fault detection and
false alarm characteristics of the “Blob” set, the “Spots”
set tends to have lower fault detection success, but also
significantly lower false alarm occurrences.

By using Tables V and VI, the tradeoffs between de-
tection accuracy and false alarms can be analyzed for the
“Blob” dataset. These tables show the percentage of in-
curred false alarms out of the maximum potential false
alarms and fault detections out of the maximum faults
which could be detected, respectively, for the union of the
two filters. The number of faults which are disjoint between
the two filters can also be estimated by seeing how many
“extra” faults are detected by adding the second filter.



V. RESULTS

By using the suggested method, the union of multiple
filters, each with unique configurations, can be calibrated
to achieve optimal results. Our final table reveals some
characteristics of the two filters: namely that the number
of disjoint fault detections between the two is very low.
While this is not beneficial insofar as the creation of filters
for OTIS, the fact that this information can be determined
at all encourages the creation of new filters, for OTIS as
well as for other applications.

In the case of OTIS, each filter is approximately of the
same complexity. If it were the case that one filter was sig-
nificantly more complex than the other, our decision could
be weighted to reflect not only the results, but also the
cost of filter runtime. The weighted table would allow the
user to pick the best calibration of filters considering fault
detection characteristics as well as calculation overhead.

VI. CONCLUSION

The focus of this paper has been the creation of a method
by which “filters” (application specific data acceptance
tests) can be calibrated. Faulty data may occur in a num-
ber of ways, one of the most elusive is as corrupted data.
Such data may run through an application without any
hint of its faulty nature - unless the application employs
fault tolerance. Filters employ the observed data trends of
nonfaulty data to distinguish which data is probably non-
faulty, and which may be faulty.

A filter must be calibrated such that the data that is
judged as faulty or nonfaulty is actually so. Doing this
requires the filters to know certain “cutoffs” beyond which
the data is ambiguous, or definitely faulty. Adjustment of
these cutoffs yields returns and penalties in the form of real
faults detected and false alarms, respectively. It is at the
user’s discretion to balance these two.

A single application may have multiple filters, and it is
necessary to be able to determine the tradeoffs of all filters
working in unison. Fault detection and false alarm rates
increase proportionally with respect to each other. If each
filter can detect a small, disjoint set of faults, the overall
false alarm rate may remain less than if a single filter were
to detect the entire set of faults.

This method is critical for employing ALFTD. The ap-
plication, using the filters, relies on a low-overhead, rea-
sonably accurate method of fault detection to determine
when redundant processes should be run. By employing
this method to make these filters as accurate as possible,
ALFTD itself can run with less overhead, and produce good
fault tolerance.

REFERENCES

[1] R. Ferraro, “Remote exploration and experimentation project
plan,” Tech. Rep., Jet Propulsion Lab, July 2000.

[2] E. Ciocca, “Application-level fault tolerance and detection,” M.S.
thesis, University of Massachusetts Amherst, 2002.

[3] K.-H. Huang and J.A. Abraham, “Algorithm-based fault toler-
ance for matrix operations,” Proc. IEEE Int’l Conf., pp. 518-528,
jun 1984.

[4] J.C. Knight and N.G. Leveson, “An experimental evaluation of
the assumption of independence in multiversion programming,”

IEEE Transactions on Software Engineering, vol. 12, no. 1, pp.
96-109, January 1986.

J. Haines, V. Lakamraju, I. Koren, and C.M. Krishna,
“Application-level fault tolerance as a complement to system-level
fault tolerance,” The Journal of Supercomputing, vol. 16, pp. 53—
68, 2000.

B. James, O. Norton, and M. Jr, “The natural space environment:
Effects on spacecraft,” 1994.



