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Abstract

Repairing a reconfigurable array by row and column replacement using SR rows and
SC columns was shown to be an N P-complete problem. In crder to reduce the search.
time, we propose to apply a three phase procedure. In the first phase, we suggest to use
a r«::ﬁ.n to find good, but not necessarily optimal, feasible cover for the faulty array.
Only if the heuristic method fails to generate a feasible cover, the array is examined
to find out whether it is repairable at all. If deemed nnaboB.mn&. repairable chips will
undergo an exhaustive analysis. This three phase strategy can considerably reduce the
average time for repair analysis. Searching for a good heuristic to be applied in phase
1, we investigated the fault distribution pattern on the faulty array and considered the
nﬂnnﬂ of a row or column replacement on this fault distribution. Accordingly, a k degree
fault spectrum for a bipartite graph is defined and a maximum spectrum is introduced
as a heuristic for selecting vertices. We prove that the vertices which are most likely to
be included in the feasible cover will be selected by our heuristic. Consequently, a fast
method to generate a feasible cover is proposed and a suitable algorithm is developed.

1 Introduction

Many strategies have been proposed for reconfiguring a faulty memory or processor array
(2]. One method which has been extensively studied is the use of spare rows and columns
to replace the faulty rows and columns of the array. This strategy has been widely adopted
since it needs few additional cannections to reconfigure the faulty chip. Furthermore, the
repair is easily realized, especially in memory integrated circnits [1] [5] [11] [12] . The
problem of repairing a faulty array of size M x N using at most SR rows and § C columns
was proved to be NP — hard [9).

An efficient spare allocation method was proposed by Kuo and Fuchs [9] using a cost
function derived from laser repair processes [L1]. This branch and bound algorithm reaches
an optimal result without examining all other feasible covers, and consequently, the search
time is reduced considerably. In order to speed up the search for a feasible cover, different
heuristics were investigated in [6] [7] [9] and others.

As pointed out in [10], most existing reconfiguration heuristics follow one of the following
two strategies: early-abort and partial solution . An example for the first is the mazimym
matching method (7] [9] that tests whether the array is repairable or not. If not, an early-
abort is performed. For the partial solution method, a must-repair step was proposed [4] {9]
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[12], so that the whole search space is reduced. Another mandatory-repair method proposed
the use of a ¢ritical set which must be included in every minimum cover [7]. Recently, Hadas
and Liu [6] presented an effective method to reduce the partial solutions generated in the
exhaustive search using ezcess-k critical sets.

However, the problem is still NP — hard whatever method is adopted. In industrial
environment, a good heurisiic method running in polynomial time is more practicat for
larger arrays. In [9], a heuristic approximation was proposed selecting the vertex with
highest degree. Based on a probabilistic model, an average-case polynomial time algorithm
is also given in [10].

In fact, the previous methods have rarely considered the fault distribution pattern on
the faulty array and the changes in this pattern after replacing rows or columns by spares.
Actually, the existence of a feasible cover for a faulty array depends mainly on the fault
distribution pattern on the array and the effects on this pattern due to elimination of rows
or columns. Hecent investigations have shown that for a certain patiern of distribution, the
Tepair analysis can be accelerated {1] [5] [8] [10]. Unfortunately, in practice, defects don’t
always occur according to a certain presumed distribution. Therefore, a direct method to
analyze the fault distribution on a device is more practical.

In this paper, we introduce a heuristic approximation with good performance by ana-
lyzing the faunlt distribution on a faulty array. We call this method the k degree spectrum
analysis. According to this method, the effects on the fault pattern of the array due to row
and column replacements are estimated. We show that the lines with maxirnum spectrum
at the lowest degree are most likely to be in¢luded in a feasible cover. As a result, the most
likely vertices for a feasible solution will be selected step by step in polynomial time G (M?),
where M is the size of the bipartite graph for the faulty array.

As an overall algorithm for repair analysis, we propose a three phase strategy. In the
first step of the strategy, a heurislic approzimation is applied and a good feasible cover is
found in most cases. When the heuristic approximation fails to generate a feasible cover,

' a mazimum matching is applied to find out whether there exists a minimum cover for

the faulty array. If there exists one, an exhaustive analysis is performed. Therefore, the
overall time for repair analysis is estimated as pT, + (1 — p)(Tin + T.), where T, Ty, and T,
are the average execution time for the three phases, respectively, and p is the probability
of suctessful repair by the heuristic approximation. Consequently, this strategy depends
largely on the performance of the heuristic approximation because a larger p will reduce
the average time considerably.

2 Fault Spectrum Analysis

For simplicity, the reconfigurable array is assumed to be a rectangle having M x N cells
with SR spare rows and SC spare columns. The problem can be described as a bipartite
graph {Al) B, E} [9], where the lines of the array are represented by vertices in the graph.
Two vertices, corresponding to a row and a column in the array, are connected by an edge
if there is a fault in common to the row and the column. The degree of a vertex in {A]) B}
is defined as the number of edges connected to this vertex, or the number of faults on the
corresponding line.

To find a set of vertices which is most Likely to be included in a feasible cover, we have to
analyze the fault distribution of the array and the effect of the row and column replacements
on this fault patiern.
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2.1 Repair Analysis with the & Degree Spectrum

Obviously, to repair the faulty array, the involved basic element is a row or column. When
replacing a row (or column) by a spare row {or columnm), the faults on the row (or column)
are erased. After deleting the row {or the columm), the fault distribution on the array v.uu
been changed. In this case, the affected lines are those columns or rows which had faults in
common with the replaced row or column.
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(a} A faulty array (b) The bipartite graph and its k degree

spectrum for (a)
Figure 1: Repair analysis

To be more explicit, we investigate a faulty row. If we replace this row by a spare row,
we will never use another spare row to repair the faults on this row. As for columns which
have faults in common with the row, the situation is different. If there is a single fault on
such a column, i.e, it is & one degree column vertex, after the row has been replaced by
a spare row, the column becomes fault-free. Consequently, no more columns or Tows are
necessary to repair this column. However, if the column had more than one fault in it, i.e.,
the vertex’s degree was k > 2, at least one spare column or at most k — 1 additional spare
rows are mecessary to repair the remaining faults in the column. For a faulty column, the
analysis is similar.

For instance, if we want to repair row 5 in Figure 1 (a)}, there are two columns having a
fault in common with this row. Denote by D,; and D,; the degree of row i and column j,
respectively. The fault pattern of row 5 and the effect on the fault pattern of the array due
to the replacement of row 5 can be described through {D,, = 2,D,, = 1,D,, = 3}. gm_.
this row has been replaced by a spare row, no more columns or rows are necessary to repair
the faults on column 4, This is because the fault degree of this column is one. However,
one needs at least one colurnn or at most two additional rows o repair the remaining faults
in colurnn 7 because its degree is three.
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Therefore, when the degree of a line in the faulty array is D, the effect of replacing the
line on the fault distribution pattern of the array is determined by the line’s degree and
that of the orthogonal lines having faults in common with the line, There are exactly D;

. orthogonal lines affected. Different orthogonal lines with different degrees will be affected

differently, but orthogonal lines having the same degree should be classified as one group.
In mathematical terms, the fault pattern of the line and the effect on the fault pattern due
to the line's replacement are defined by the so called fault spectrum.
DEFINITION 2.1: Fault Spectrum of a Line (or Vertex ) I:

The fault distribution pattern on a line [ with degree D; can be represented by the
degrees of the orthogonal lines 0; which have a faul{ in common with the line {. To each of
the orthogonal lines; we assign a weight which equals the product of D, and D,;. The sum
of the weights of the orthogonal lines with degree k is called the k degree spectrum of the
line ! and is denoted by 5y ;.

Siq = Dy .M.ueuo.. 62D, ), (1

where 8 p,, = 0 when k % D,,, and kD, = L when k = D, .

For all lines of a given array, we can obtain their k degree spectrum using the above
definition. In Figure 1 (b}, the bipartite graph for the array in Figure 1 {a) and its k degree
spectrums are ilustrated. For example, the degree of the vertex Ry is 2, only 4 out of the
column vertices has a common edge with K5 and a degree of 1. Thus, the 1 degree spectrum
for B5is 2-1 = 2. There is no column vertex of degree 2 having edges in common with
&g, so the 2 degree spectrum for R5 i5 2.0 = 0. Obviously, the 3 degree spectrum for Ry
is 23 = 6. No other higher degree spectrums exist for R5. All k degree spectrums of the
vertices for the bipartite graph are shown in Figure 1 (b).

2.2 Properties of the k Degree Spectrum

Property i: For a faulty array {AUB, E}, if we select the line with the maximum
spectrum value at the lowest degree from 1 to maz{M, N}, the number of spare lines used
to repair the faults on the selected line and the faults on the orthogonal lines which have a
fault in common with this line will be minimized in most cases,

(1). For a row with degree D,, if we use & spare row to replace it, no other rows are
necessary to repair the faults on the row. Therefore, selecting a row with maximum D, will
cover the marimum number of faults.

(2). For a k degree column having a fault in common with the row, when k£ = 1, no
other columns or rows are necessary io repair the column. When & > 2, at least one column
or at most & — 1 additional rows are necessary to Tepair the remaining faulis on the column.
S0 a column with lower degree will use less additional spare lines to cover the faults on it.
Therefore, in order to reduce the number of additional spare lines to repair the faults on
the corresponding - columns, the row with the maximum number of orthogonal columns ai
the lowest degree will minimize the possibility of requiring extra spare lines to repair the
faults on the related columns.

(3). To consider both situations in {1} and (2), it is necessary to use a weighting function
that takes into account the number of faults on the row and the number of columns having
the same degree from 1 to maz{M, N} At degree E, the weighting function that we suggest
is F.ﬂq ) which satisfies: .
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where Ny, is the number of the corresponding columns having degree k.

Note that the term D, - Ny - £ is identical to the spectrum in Definition 1. Consequently,
we are able to use the spectrum of the faulty array to choose a row having maximum
spectrnm at the lowest degree k where k ranges from 1 to maz{M, N}. Replacing such a
row by a spare row will increase the chances that we use as few spares as possible. As a
result, the selected row is very likely to be included in a feasible cover. :

(4). The case of columns is identical. D

Based on this property, & line with the largest spectrum at the lowest degree will take
care of the largest number of faults on the line and fewer additional spare lines will be
required to repair the faults on its intersecting lines. Because we didn’t investigate further
relationships between the degree of the row and its orthogonal lines' degrees, the obtained
result is only an approximation. However, from our experience, this approximation produces
excellent results. In Figure 1 (b), {(C1,C4,C3),(Rs, Re, R7)} have maximum spectrum at
degree 1, so they are selected first. This selection immediately leads to a feasible cover for
repairing the faults on the array.

Property 2: In a bipartite graph {A|J B, E}, if there is a subset {A.|] B,, E,} containing
more than one vertex whose k degree spectrums from 1 to maz{M, N} have the same value
at every degree k, selecting any of them is equivalent in the repair process for the given
array. We call them equivalence subsets.

Proof: Suppose there are two vertices in {A.|) B.}. Because their spectrums from 1 to
maz{M, N} are the same, their degrees are equal to each other and the fault pattern on
the orthogonal lines which have faults in common with them are the same too. Therefore,
in terms of repairing by a spare vertex, they are equivalent for the current bipartite graph.
[m]

Based on this property, it is clear that, no matter which one of the equivalent vertices
is selected first, the effect on the fault distribution of the array will remain the same. For
instance, in Figure 1 (b), anyone of the vertices {{C4,Ca, Cs), ( K5, Rs, R7)} has the same &
degree spectrums from I to 3. Therefore, it doesn’t matter which one of them is selected
first while repairing the faulty array.

Property 3: In an eguivalence subset {4, B,, E.}, if any row in A, is replaced by a
spare row, the spectrum of the remaining rows of the subset will increase or stay nnchanged,
the spectrums at the lowest degree of the remaining columns in B, will decrease or stay
unchanged. If a column has been replaced, the spectrum at the lowest degree of the columns
will increase or stay unchanged; and that of the rows will decrease or stay unchanged.
Proof: Omitted for the sake of brevity.

This property indicates that if we select a row in an eguivalence subset, the next selection
would probably be another row in the subset with maximum spectrum at degree k. If the
first selection is a column, the next would probably be a calumn too.

On the basis of the spectrum analysis, a feasible cover for the fanlty array is found quickly
in most cases. This is because we select the line with maximum spectrum among all rows
and colurnns. This selection can be done in O M?) time. Therefore, the time complexity for
selecting a feasible cover is polynomial and is given by O{M?). For the example in Figure 1
(b), the unique cover for the faulty array is found in polynomial timne rather than through
an exhaustive search. Here we select the vertices with maximum spectrum from degree 1
ta 4, and the feasible cover is {(Cy, Ca, C3), (Rs, R, R1)}.
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3 Fast Algorithm for Feasible Cover

3.1 Heuristic Approximation

Based on the above discussion of k degree spectrum, it is reasonable to claim that a set of
vertices with maximum spectrum at the lowest degree is included in a good feasible cover
for a given bipartite graph. The algorithm for finding a set of vertices with maximum
w.,mmm..on specirum at the lowest degree is as follows. Let {4:U B} denote 2 temporary
bipartite graph in which a set of vertices with mazimal & degree spectrum will be stored.
At step k, different vertices with maximal spectrum at degree k will be selected and stored
in {A4,|) B,}. Finally, when a vertex with maximum spectrum at & is found, or & becomes
larger than the maximum degree of the faulty array, the algorithm has found the desired
group of vertices. In the former, a vertex will be selected. In the latter, there are three
kinds of vertices in {4, JB.}. The first kind consists of only rows, the second kind consists
of only columns, the last kind consists of both rows and columns. Because the algorithm
finds the maximal k degree spectrum by increasing & by one at each step, the vertices with
the maximum spectrum at the lowest degree will be selected.’ The above algorithrn can be
summarized as follows.

. /* k Degree Spectrum Analysis for {AUB,E} ~/

load (A4 ) B;) with (Al B);

k = mirimal degree of (4| B,);

while { number of vertices in (4, UBy) =2

and k < maximal degree )

{
find the vertices with maximum spectrum among (AU B; ) at  degree;
replace A, by the new row vertices with mazimum k spectrum;
replace B; by the new column vertices with Eukmsﬁﬁ k spectrum,;
k=k+1;

}

/# the vertices with the maximurn spectrum are now in {4, [J B} * /.

Because the algorithm must examine O{ M ) lines at every k, and k ranges from the lowest
degree to the highest degree, the time complexity of this maximum spectrum algorithm is
O(M?), where M is the size of the bipartite graph.

Using this & degree spectrum analysis, our heuristic approximation is as follows. First of
all, 2 vertex or a set of vertices with maxirum specirum is obtained by k degree spectrum
gu.mw&m. These vertices are stored in a partial solution record, then these vertices and
their correspunding edges are deleted from the ariginal bipartite graph. This procedures is
repeated on the reduced bipartite graph until no edges are left. The final result is a feasible
cover for the bipartite graph. Otherwise, the approxirnation fails to return a cover.

) According to the properties of k degree spectrum, the search process will generate a
unique solation if there are no equivalence subsets consisting of both rows and colummns.
This is because in every step of the selection, only one vertex is a candidate for selection.
However, when equivalence subsets exist, it is uncertain how to select among these rows or
columns. Different selections will lead to either a feasible cover or an infeasible cover under
the restriction of the number of available spares. Therefore, a simple cost function is set
up to count the number of spare rows and columns Jeft at each partial solution. Thus, at
a step where equivalence subsets exist, the rows of the subset are selected if the uEmeﬁ
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Figure 2: An example of repairing a faulty array

of spare rows left is wm.“ﬂmnﬂ than that of spare columns left. The columns of the Hm—“uwmwﬁ WHM
selected if the number of spare columnns left is larger than that of spare rows E..». .ou.&ﬂnmmm
search for all possible covers, two partial solution records are generated, e.qrm_“ one —.hm.— :
the rows in the equivalence subset, and the other includes the columns in the mﬁEM mﬂﬂo
subset. This partial branch and bound method can be used to find another cover when
ion i successful. )

Em»“ﬁ”h”@“ nsuw_hw 3 spare rows and 3 spare columns .Eﬁmawﬂmhm _..w.m mmbwawr.oﬂ of ww
feasible cover by the k degree maximum rmc.lmt.n wvvngwﬁuob is depicted rhu- mwﬂ:._.o mm”
First of all, the 1 degree spectrum of the bipartite m..nvw_.p is calculated. F&ﬂ m?lmw ¢
spectrum, Cy has the maximum spectrum, therefore Qa. is selected first wﬂ& bom arthes ¥
degree spectrum analysis is necessary. Cg and the edges incident to Cy M.awa mﬁ..wn ownr e
bipartite graph. In the next step, the k degree mv.mnnu:h- .mon the reduce :uMwS e mM ﬁ.HWm
recalculated and Ry is identified as the vertex with maximum spectrnmn ww.wﬁ“mwmm ﬂ.E.B :
deletion process is then repeated. Next, {Rj, Cs} is wonbm to have m. x .mMmo oﬁm
Since the remaining spares of both row and column for this record are identical, any
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, Table 1: Resulis of repairing faulty arrays.
Array# Size # of | Spare | Spare

Repairable | Spares
Defects | rows | columns ? used | Time(sec)
kuol 128 x 128 5 4 4 yes 5 0.1
kuo2 128 x 128 15 4 4 oo - 0.1
kuo3 256 x 256 10 5 5 yes 9 0.1
kuo4 256 x 256 30 5 5 no - 0.1
kuo5 512 x 512 15 5 5 yes 5. 0.1
ko 512 x 512 19 10 10 yes 18 0.1
kuo? 512 x 512 45 10 19 no - 0.1
kuo8 512 x 512 45 20 20 yes 38 0.1
kuof 1024 x 1024 40 20 20 yes 36 0.1
kuol0 1024 x 1024 60 20 20 no - 0.1
kuoll 1024 x 1024 200 20 20 no - 0.1
kuol2 1024 x 1024 400 20 20 no - 0.1
kuol3 1024 x 1024 400 20 20 yes 37 0.1

The average execution time is 0.1 sec for this group of data.

of {Re, Cs} can be selected. Rg is selected arbitrarily. The final bipartite graph contains
an equivalence subset {(R,, R3),(C3,C;)}. The remaining spare rows and columns for the
bipartite graph are examined. Thus, (C;,Cy) is selected and a feasible cover i5 obtained.

If no feasible cover is found, a backward search is conducted to the last partial solu-
tion recorded by another equivalence subset until a feasible cover is found or no further
equivalence sets are left.

Thus, a set of most likely vertices to be included in a feasible cover is selected. The
algorithm finds a feasible cover quickly. We have tested all the examples presented in (6]
and [9], and the resulis demonstrate the good performance of our methed. In Tables 1 and
2, the algorithm found the feasible cover for the given array in less than 0.3 second system
time, on the average.

3.2 Three Phase Algorithm

As stated in the introduction, we Propose a three phase algorithm. The first phase is the
heuristic approximation to find a good feasible cover. If a suitable feasible cover is found,
the repair analysis for this faulty array is terminated. If the approximation could not find
8 feasible cover, a maximum matching algorithm is employed |7][9]. If there is no minimum
cover for the problem, the search is ended concluding that the faulty array can not be
repaired. Otherwise, an exhaustive search is performed if deemed economical.

In Tables 1 and 2, we present the tested arrays and the results. In the first group of
arrays, no exhaustive search was necessary. In the second group of arrays, only one example
required an exhaustive search. The number of spares used in our algorithm is slightly larger
than that used by the “excess-k” procedure in [6]. However, the average time used for repair
analysis is smaller.

A precise comparison between the execution time of both algorithms is difficult since
our algorithm was executed on a DE(Cstation 5000/120 and the time reported for ezcess-k
method is the execution time on an Encore Multimax.

As indicated in the introduction, the average overall execution time in our method is
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Table 2: Comparison between the ezcess — k method [6] and the k degree spectrum method.

Array Size k Degree Spectrum Excess-k

#of | SR | 5C | Repairable | Spates | Time | Repairable | Spares Time

Faults used | ({sec) used used | {sec
512 x 512 80 10 10 yes 19 0.1 yes 1] 0.4
512 x 512 99 17 16 yes 30 0.1 yes 30 0.5
E12 % 512 107 | 12 | 12 ves 19 01 yes 19 0.3
512 x 512 114 8 14 yes 22 0.1 yes 22 0.8
512 x 512 196 22 § 22 yes 44 0.1 yes 43 55
512 x 512 516 | 25 | 25 yes 35 0.1 yes 35 07
512 % 512 311 | a2 | 32 yes 66 0.1 yes 64 25
512 % 512 397 | 15 | 35 yes | 46 0.1 yes 45 1.9
512x 512 574 35 | 45 yes 77 0.1 yes 77 10.8
512x 512 630 50 | 50 yes 78 0.1 yes 8 2.5
512 x 512 1069 60 60 yes 113 0.3 yes 107 6.1
1024 x 1024 127 10 15 no. - 0.1 no - 2.0
1024 x 1024 218 15 | 20 yes 35 0.1 yes 35 5.8
1024 x 1024 927 50 | 60 L ¥es 107 5.4(*) yes 197 4.5
1024 x 1024 1267 100 | 100 yes 120 0.1 yes 120 6.8
1024 x 1024 1538 75 68 yes 137 0.2 yes 137 19.2
1024 x 1024 532 20 30 yes 50 0.1 yes 46 0.5
1024 x 1024 1084 25 | 20 no - 0.1 no - 2.9
1024 x 1024 642 12 | 25 no - 0.1 no - 1.7
1024 x 1024 3221 50 36 no - 0.5 no . - 23.9

The average execution time is 8.43 sec for this group of data by our method.

(*) exhaustive search applied

estimated by pT5 +{1 — p}(Tm + T ). For the tested results in Table 1, the average execution
tire is 0.1 second. For that of Table 2, the average execution time is 0.43 second. For the
arrays that we tested, p is approximatively 0.975. This means that for most of the faulty
arrays, it is possible to find a good feasible cover by the k degree spectrum method in &
short time.

4 Concluding Remarks

We proposed a new three phase strategy to solve the problem of spare allocation for recon-
figurable arrays. The first phase uses a new heuristic approximation.

Using the maximum spectrum as & heuristic cost function, we are able to select a set
of suitable lines which are most likely to be included in & feasible cover. From the &
degree spectrum analysis, equivalence subsets with maximum spectrum are found. In an
equivalence subset, each vertex has the same property for the elimination process. Therefore,
selecting any one of them first will have the same effect on the final result. In order to cbtain
a feasible cover, a simple cost function which counts the number of spares left is used to
guide the search process when the equivalence subset consists of both rows and columns.

The second step of the strategy is based on the maximum matching method. If the
heuristic was unable to find a feasible cover, this phase is used to examine whether there
exists a cover for the faulty array.

If not, the repair analysis is terminated concluding that thete is no feasible cover for the
faulty array. Otherwise, a exhaustive analysis is used to find out & feasible cover for the
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faulty array.
As indicated in Tables 1 and 2, this three step strategy returned a feasible cover quickly

in most cases. Therefore, the average execution time for the repair analysis decreases
considerably.
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