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AS SYSTEM-ON-A-CHIP TECHNOLOGY MATURES,
including sensor arrays on the chip itself is increasingly

valuable, allowing more system integration, higher oper-

ating speeds, and the ability to include many sensor types

in a single substrate for hyperspectral image analysis At

the same time an important trend in digital cameras has

been the move to a larger detector area (currently reach-

ing 35 mm); while shrinking the actual pixel size, both cre-

ating enhance resolution. This combination of digital

imagers growing ever larger in silicon area and pixel

count with shrinking pixel areas, results in increasing

defects during fabrication and the number of dead pix-

els that develop over the device’s lifetime. This makes it

essential to avoid defects in these megapixel detectors.

Furthermore, in remote, dangerous environments such as

outer space, high radiation areas, and military battlefields,

digital cameras can image the scene at low cost and low

risk. However, these environments put more stress on the

imager system (from radiation, heat, or pressure), possi-

bly leading to pixel failure, while making the replacement

of failed systems difficult. Thus, to increase fabrication

yield and extend operational lifetimes for these sensor

areas, manufacturers need to develop self-

correcting, self-repairing imagers for both

cameras and SoC systems.

Another recent trend in digital imager

systems is the move from charge-cou-

pled-device (CCD) detectors to CMOS-

based active pixel sensors, which are

easier to produce, cost less, use less

power, and integrate easily with other

processors.1,2 Previously, we proposed an

APS cell design that included redundancy, something

that is not possible for CCDs, to enhance imager relia-

bility.3,4 This article extends that work by reporting on

our implementation of the redundant-photodiode APS

in a CMOS 0.18-micron process and our device testing

in normal operating mode and in modes with various

forms of defects. In addition to this hardware correction

through redundant APS cells, we explore software cor-

rection techniques.5-7 We have combined hardware cor-

rection with a new software correction algorithm to

create an extremely reliable imaging system. To the best

of our knowledge, such a combination has not previ-

ously appeared in the literature.

Redundant-pixel circuit
Our hardware correction mechanism consists of

dividing a single pixel in half into two active subpixel

circuits working in parallel. Figure 1 shows a schemat-

ic diagram of the two circuits, connected to achieve a

pixel with redundancy. The light detection mechanism

of one active pixel circuit works as follows: In normal

operation, the incident light increases the reverse bias
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current of photodiode PD.a. This current discharges the

capacitance formed by the photodiode in parallel with

the gate capacitance of readout transistor M2.a. The

photosite node is precharged through reset transistor

M1.a to a voltage level applied at line V (pixel reset)

prior to the photocurrent’s voltage integration. At the

end of an integration period, a row select transistor, M3,

is activated so as to deliver a current inversely propor-

tional to the voltage built at the readout transistor’s gate

at line Column out.

Although the circuit in the diagram shows some

duplication, in practice it does not require much

increase in area. The photodiode area is much larger

than the minimum size (typically 25 to 40% of cell area),

and splitting it into two costs only a small percentage of

cell area. Scaling the readout (M2.a and M2.b) transis-

tors to half size keeps the circuit working like a full-size

device, so the total area increase is low. Much of an APS

cell’s area is occupied by the row/column/power lines,

which are not duplicated. Splitting the reset and row

select transistors is optional but increases the pixel’s

defect tolerance. Figure 2 shows the layout of a redun-

dant split photodiode APS in the CMOS 0.18-micron

TSMC technology in which our test chips were manu-

factured.

The self-correcting scheme built into the APS counters

defects affecting the pixel’s photosite—the photodiode,

output, and reset transistors. Figure 3 shows a cross-sec-

tion of the important layers involved in the fabrication of

one pixel in a CMOS 0.18-micron process. The N+ implant

in the P sub (P substrate) forms the photodiode. This same

N+ implant also acts as the source of reset transistor M1.

Readout transistor M2 is patterned separately and con-

nected to the photodiode through a metal line. In this typ-

ical concept, the reset transistor pulls the gate high (near

VDD), and during operation, the photocurrent reduces out-

put transistor M2’s gate voltage. This keeps the APS in a

linear operation region during low-illumination condi-

tions. Hence, the total Col out current ranges from a high

value for no illumination (with M2 fully on) to no current

for saturated illumination (with M2 off).

Redundant-pixel self-correcting
scheme

We categorize APS defects into three main classes

on the basis of the final output signal, which we specify

as the equivalent illumination the pixel would require

to create that measurement:4
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Figure 1. Schematic of redundant APS pixel. Two identical

single-pixel circuits work in parallel, providing built-in

redundancy for a robust APS array.
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■ Stuck high. Optical signals saturate one pixel (for

example, readout transistor gate shorted to ground,

photodiode malfunction, reset path severed, or row

select transistor not operating).

■ Stuck low. An optical signal is absent on one pixel

(for example, readout transistor gate shorted to VDD,

photodiode shorted to VDD, photodiode fully covered

by particles or other layer defects, or reset always

on).

■ Low sensitivity. An obstruction (a dust particle or

layer defects, for example) partially blocks the

photo-sensing element.

Stuck high refers to the optical signal’s being high

under all conditions. This means that output transistor

M2’s gate is electronically stuck low and always satu-

rated. Stuck low refers to the optical signal’s being

absent under all conditions, causing the photodiode’s

cathode to be electrically stuck high.

Thus, there are five possible cases of faults affecting

the two pixel halves:

1. Both halves of the pixel are active, indicating full-pixel

sensitivity (0 to maximum current output range).

2. One half of the pixel is stuck high, leading to half-

pixel sensitivity (0.0 to 0.5 output range).

3. One half of the pixel is stuck low, resulting in a half-

pixel sensitivity biased by a half level of output (0.5

to 1.0 maximum current output range).

4. Both halves are stuck low—this is a dead pixel (out-

put constantly near 0).

5. Both halves are stuck high, indicating a dead pixel

(output constantly near 1); or half stuck high and half

stuck low, also indicating a dead pixel (output con-

stantly near 0.5). Pixel output is above zero for these,

but it does not respond to illumination changes.

To calibrate the sensor, we can identify all these faults

with two simple, standard tests. We take a dark-field

image (from an imager without light) to identify base

noise levels for subtraction and a light-field (fully illu-

minated) image to calibrate sensor sensitivity. The light-

field image will identify low-sensitivity pixels in case 1,

half-stuck-low pixels in case 2 and fully dead pixels in

case 4. Although data cannot be recovered from a dead

pixel, the sensitivity adjustment calculations will take

care of the first two cases. In the simplest analysis, a sim-

ple multiplication by 2 corrects these half-stuck cases.

We identify the half-stuck-high pixels in case 3 and

the fully stuck-high pixels in case 5 from the dark field.

In the fully stuck-high case, the dark-field subtraction

sets the pixel to 0. In the half-stuck case, the dark-field

subtraction reduces the pixel to the half-sensitivity case.

Thus, multiplying by 2 results in the full signal.3,4 These

are calibration-related corrections best done after image

processing, as is software correction.

Calibration tests can identify the half stuck pixels; a

dark-field test shows the half stuck highs as half the max-

imum output swing plus an offset. A light-field test iden-

tifies half stuck lows by their half-maximum output

swing. These tests are commonly performed at fabrica-

tion time. For calibration in the field, we commonly use

the dark-field (no exposure) test; the light-field test might

require taking special exposures. This scheme does not

correct cases in which the row select or readout transis-

tor is shorted. To achieve the self-correcting scheme, we

must use a redundant pixel that sums the output currents

with a current-to-voltage column amplifier.

Hardware correction experiments
A key aspect of the hardware correction scheme is

that in the event of a failure, one subpixel behaves

exactly like a full working pixel but generates half the

signal and possibly some offset (in the stuck-high con-

dition). After we remove the offset, this half-response

characteristic will be the same whether the other sub-

pixel of the pair has a stuck-high or stuck-low fault.4

Thus, after analog-to-digital conversion of the pixel sig-

nal, a simple 1-bit left serial shift on the register con-

taining the digital result brings the subpixel response to

the level of a fully working pixel.

To experimentally test the redundant APS, we

designed and manufactured a 1.5 × 1.5 mm test chip in

CMOS 0.18-micron TSMC technology. The chip contains

several layouts of APS arrays, with column and row

decoders to extract the photocurrent from each pixel.

To address each pixel, we controlled the decoders via a

data acquisition board attached to a computer. We

obtained measurements from the pixels with specially

developed LabView-based software, which adapts to

different acquisition schemes by adjusting the pixel

array’s reset and exposure times, and its reading

sequence. During the measurement, we bring the pixel

current off-chip and convert it to a voltage, using an

operational amplifier connected as an inverter with a

feedback resistor. We tie the Column out1 and Column

out2 signals together for the measurement and then

visualize the pixel reset and response signals, storing

them with a digital oscilloscope.

To measure a pixel’s response in the optically stuck-
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low and stuck-high situa-

tions, we focus an argon

laser operating in the visi-

ble region at 514 nm

through a 50× objective

lens, generating a narrow

laser spot approximately

2.5 microns in diameter. A

microscope mounted with

a TV monitor directs the

spot precisely on the pho-

todiode surface. This spot

enables the entire laser

beam to fit within the pho-

todiode surface area of one

subpixel. We can then per-

form the optically stuck-

low scenario by keeping

one subpixel in the dark

while shining the laser spot

on the photodiode of the

other subpixel and varying

the laser beam intensity. From the same setup, we perform

the optically stuck-high scenario by submitting one sub-

pixel photodiode to intense laser spot exposure while illu-

minating both pixels with a uniform light source coming

from the microscope that aligns the laser spot. The setup

shows very little crosstalk among adjacent subpixels, even

when we expose a subpixel to a high-intensity laser spot

for the stuck-high scenario.

Figure 4 plots noninverted-output-voltage results after

offset removal as a function of illumination intensity for

three possible scenarios: a fully functional pixel (nor-

mal), one half stuck low, and one half stuck high. The

error bars represent the combined uncertainties of the

illumination intensity and the output voltage reading.

We evaluated pixel sensitivity with a linear-regression

analysis. Table 1 presents the results. The stuck-low sce-

nario yields a sensitivity of 0.571 ± 0.031 times that of the

normal operating pixel, whereas the stuck-high scenario

yields a sensitivity of 0.402 ± 0.031 times that of the nor-

mal operating pixel. The nonlinearity over the photodi-

ode’s full voltage swing is responsible for the deviation

of the stuck-low and stuck-high responses from exactly

0.5 times a normal operating pixel’s sensitivity.

To further investigate the redundant pixel’s behav-

ior, we measured the response of one subpixel work-

ing in normal, stuck-low, and stuck-high operations.

Again, we extracted the response slopes from a linear-

regression fit to measure subpixel sensitivity. Table 2

shows the results. The stuck-low scenario’s sensitivity

is higher than that of normal operation, agreeing with

the results of Table 1 and showing a sensitivity gain of

the subpixel in the stuck-low scenario. Conversely, the

results show a reduced sensitivity of the subpixel in

the stuck-high scenario, in agreement with the 0.402

sensitivity ratio obtained from the analysis shown in

Table 1.

Software correction method
When both subpixels are faulty, hardware correction

is impossible, so we propose applying software correc-
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Figure 4. Subpixel response with power per unit area in three scenarios.

Table 1. Pixel sensitivity.

Scenario Slope (mV-m2/W) Error (mV-m2/W)

Normal operation 112 ± 3.5

Stuck low 64 ± 1.5

Stuck high 45 ± 2.1

Table 2. Subpixel sensitivity.

Scenario Slope (V/nW) Error (V/nW)

Normal operation 1.39 ± 0.043

Stuck low 1.59 ± 0.004

Stuck high 1.12 ± 0.005



tion after hardware correction of all pixels with one

faulty subpixel. We suggest three software correction

methods. The first method, SC1, replaces a faulty pixel’s

value with the arithmetic mean of its eight neighbors.

The second, SC2, replaces the missing pixel’s value with

the arithmetic mean of its four immediate neighbors

only. In the third method, SC3, we fit a quadratic func-

tion to the nine pixels in question.

We use the following notation: We denote the faulty

pixel’s coordinates as (0, 0) and those of its eight neigh-

bors by the pair (i, j), denoting the (row, column) of

each neighbor pixel, listed counterclockwise. So these

pairs are (0, 1), (1, 1), (1, 0), (1, –1), (0, –1), (–1, –1),

(–1, 0), and (–1, 1). We denote the value of the pixel

with coordinates (i, j) as fi,j, where i and j can assume

values of –1, 0, 1. We then denote the estimated value

of the faulty pixel obtained by SCk (k = 1, 2, 3) as f k
00

Thus, for method SC1,

f 1
00 = (f01 + f11 + f10 + f1–1, + f0–1 + f–1–1 + f–10 + f–11)/8

and for method SC2,

f 2
00 = (f01 + f10, + f0–1 + f–10) / 4

To obtain f 3
00, we assume that the faulty pixel and its

eight neighbors obey a quadratic function:

f 3
xy = a00 + a10x + a10y + a11xy + a20x

2 + a02y
2+ a21x

2y +

a12xy 2

Substituting the given fij’s for (i, j) ≠ (0, 0), we have

eight linear equations in the eight unknown coefficients

akl. Since f 3
00 = a00, we need to solve only for a00, which

results in

f 3
00 = [(f01 + f10, + f0–1 + f–10) / 2] −

[(f11 + f1–1, + f–1–1 + f––11) / 4]

All three estimates are linear combinations of the

faulty pixel’s eight neighbors. In SC2 and SC3, the four

immediate neighbors get higher weights than the other

four. We assume that the faulty pixel’s eight neighbors

are not faulty or at least hardware-corrected in the first

correction step. The probability of two neighbors both

having two faulty subpixels is very low (the defect must

be very large, typically 10 to 20 microns, and aligned

with pixels). In the rare case that this occurs, we omit

the faulty neighbor from the average and use simple

variations of formulas SC1, SC2, and SC3.

Image quality analysis
Both self-correction methods somewhat decrease

the quality of the camera’s image. The software correc-

tion technique replaces the exact value by a linear com-

bination of the neighboring pixels (which might or

might not be close to the correct value). The hardware

correction method, which multiplies the reading of half

the pixel by 2, reduces the signal resolution by 1 bit. We

next compare image quality reduction of the original

nonredundant-pixel design, which enables only soft-

ware correction, with that of our proposed modified

design, which attempts hardware correction first and

software correction second.

We denote the number of pixels corrected by hard-

ware and software as NHC and NSC, and the average num-

ber of errors per image caused by these two methods 

as EHC and ESC. Denoting by QR the quality reduction

of a corrected image, we define QR as the overall aver-

age error in pixel value. Clearly, the lower the value of

QR, the better the design. We obtain QR as follows:

QR = (NSCESC + NHCEHC) / M 2

where M 2 is the number of pixels per image. Because

the original design (OD) has only software correction,

the equation becomes

QROD = (NSCESC) / M 2

and for the modified design (MD),

QRMD = (NSC,MDESC + NHC,MDEHC) / M2

We must now obtain estimates for parameters NSC,

NHC,ESC, andEHC for both designs. (Note that NSC and

NHC depend on the design, whereasESC andEHC do not.)

We denote as p = e–λt the probability of a pixel in the

original design (or a half-pixel in the modified design)

being fault-free at time t; we denote as q = 1 – p the

probability of a pixel (or a half-pixel) failing by time t.

We can closely approximate NSC and NHC, (for small val-

ues of q) by

NSC,OD = p8qM 2

NSC,MD = (1−q2)8q2M 2

NHC,MD = 2pqM 2

and thus

QROD = p8qEHC
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and

QRMD = (1 − q2)8q2ESC + 2pqEHC

For small values of q, q2 is close to 0 and p is close to

1, and thus QRMD < QROD if and only if 2EHC <ESC.

Denoting ratioEHC/ESC by α, the new design has a bet-

ter image quality than the original design if and only if α
> 2 or the average error caused by software correction

is at least twice that caused by hardware correction.

We can easily quantify the average error due to hard-

ware correction. We obtain the estimate of the pixel

value, denoted f00
HC, by multiplying the value of half the

pixel by 2, and thus its last bit might be incorrect.

Therefore,

Denoting the error caused by hardware correction of a

single pixel as EHC, we have

Assuming that the last bit of the pixel’s value is equally

likely to be 0 or 1,

EHC = 0.5

Quantifying the errors caused by software correction

is more difficult because they depend on correlations

among neighboring pixels. In the following analysis, we

perform hardware correction first and then software cor-

rection on the pixels, with both subpixels faulty. Thus,

we assume that all eight neighbors of a faulty pixel are

either fault-free or hardware corrected.

We denote the error incurred in a single pixel from

using SCk (k = 1, 2, 3) as

Ek
SC = |f00 − f k

00|

Figure 5 illustrates the calculation of QR for the orig-

inal and modified designs, as a function of ratio α. As

the figure shows, the new design has better image qual-

ity when α > 2.

BecauseESC is impossible to calculate analytically,

we performed several experiments calculating the aver-

age software correction error for various pictures (all in

gray scale) and the three SC methods. We analyzed two

types of pictures: portraits of people and images of earth

from space taken by the Jet Propulsion Laboratory

(http://www.jpl.nasa.gov/radar/sircxsar).

The portraits had relatively low average software cor-

rection errors, which varied in value between 2 and 6

(for a maximum pixel value of 255). The order of the

errors wasE 3
SC <E 2

SC <E 1
SC, indicating that the four

immediate neighbors should have a higher weight in

determining the center pixel’s value. We reach a simi-

lar conclusion observing the error size frequency dis-

tributions. Figure 6 shows one such distribution for a

portrait.
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The results for the earth images were slightly differ-

ent. The average software correction errors tended to

be much larger (between 10 and 20), and although in

most cases SC3 was better, there were some images for

which SC2 was best.

The previous results apply to the combination of per-

forming hardware correction first and software correc-

tion second. To illustrate the difference in image quality

between the methods performed separately, Figure 7a

shows a checkerboard image with simulated faulty pix-

els. Figure 7b shows the image after hardware correc-

tion, and Figures 7c and 7d show the same image after

SC1 and SC3. Clearly, hardware correction results in a

much better corrected image than either SC method,

correcting a very large percentage of faults. If we apply

software correction in addition to the hardware cor-

rection of Figure 7b, it significantly reduces even the few

remaining errors, and we obtain an almost perfect

image (not shown here because to the naked eye it is

indistinguishable from the error-free checkerboard).

The calibration using light- and dark-field illumina-

tions discussed earlier identify the pixels with half sen-

sitivities requiring hardware correction and the pixels

requiring software correction. We easily make these cor-

rections with the simple multiplication by 2 for hard-

ware correction and the modest-complexity software

correction interpolation formulas. Because the number

of pixels with errors relative to the number of total pixels

is likely to be small, the resulting system overhead for

these corrections is small compared with other correc-

tions (such as background subtraction to remove pat-

tern noise) normally used for the entire pixel array.

THE IMAGER HARDWARE CORRECTION METHOD demon-

strated in this article shows promising results for improv-

ing the yield of megapixel large-area-array APS. The

redundant-pixel approach

allows for defective-pixel

avoidance, which inher-

ently increases the imager

yield and thus decreases

the number of APS chips

rejected after test. The

technique employed to

correct for defective pixels

involves multiplication by

a factor of nearly two, a cal-

culation easily performed

on chip after analog-to-

digital conversion. This simplicity of the correcting

scheme also enables the design of self-correcting APS for

use in remote or harsh environments.

For greater defect density, combining the hardware

correction technique with a software correction algo-

rithm has been proven more effective than the hardware

or software correction alone. The proposed software

methods are also fairly simple and would be easily

implementable in the processors typically used in com-

bination with imagers for JPEG image compression. ■
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