
Low-Cost Software Countermeasures Against Fault
Attacks: Implementation and Performances Trade Offs

Alessandro Barenghi
DEI – Dipartimento di

Elettronica e Informazione
Politecnico di Milano

Via Ponzio 34/5, 20133
Milano, Italy

barenghi@elet.polimi.it

Luca Breveglieri
DEI – Dipartimento di

Elettronica e Informazione
Politecnico di Milano

Via Ponzio 34/5, 20133
Milano, Italy

brevegli@elet.polimi.it

Israel Koren
Department of Electrical &

Computer Engineering
University of Massachusetts

Amherst MA 01003, USA
koren@ecs.umass.edu

Gerardo Pelosi
DEI – Dipartimento di

Elettronica e Informazione
Politecnico di Milano

Via Ponzio 34/5, 20133
Milano, Italy

pelosi@elet.polimi.it

Francesco Regazzoni
UCL Crypto Group, Université

Catholique de Louvain
ALaRI - University of Lugano
Via Buffi 13, 6900 Lugano,

Switzerland
regazzoni@alari.ch

ABSTRACT
In this paper we present software countermeasures specif-
ically designed to counteract fault attacks during the exe-
cution of a software implementation of a cryptographic al-
gorithm and analyze their efficiency. We propose two ap-
proaches that are based on the insertion of redundant com-
putations and checks, which in their general form, are suit-
able for any cryptographic algorithm. In particular, we focus
on selective instruction duplication, employed to detect sin-
gle errors, instruction triplication to support also error cor-
rection, and parity checking to detect corruption of a stored
value. We developed a framework to automatically add the
desired countermeasure, and we support the possibility to
apply the selected redundancy to either all the instructions
of the cryptographic routine or restrict it to the most sen-
sitive ones, such as table lookups and key fetching. Consid-
ering an ARM processor as a target platform and AES as a
target algorithm, we evaluate the overhead of each proposed
countermeasure while keeping the robustness of the imple-
mentation high enough to thwart most or all the known fault
attacks. Experimental results show that in the considered
architecture, the fastest solution is per-instruction selective
doubling and checking, and that the instruction triplication
is a viable alternative if very high levels of fault resistance
are required.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application Based Systems]:
Microprocessor/microcomputer applications; C.5.3 [Computer
System Implementation]: Microcomputers—portable de-
vices; E.3 [Data Encryption]: Standards (AES)

General Terms
Security

Keywords
Side-Channel Attacks, Fault Attacks

1. INTRODUCTION
Embedded systems now constitute the largest segment of

the electronic consumer market. Such a position was gained
thanks to their diffusion in our everyday life, in diverse ap-
plications such as fuel injection in cars, access control sys-
tems and smart-cards. Many of these applications require
the use of cryptographic algorithms to secure the data that
they process. The widespread use of security-sensitive em-
bedded systems brings up new design challenges. Although
the traditional design objectives such as power consumption,
memory usage, real time performances and reconfigurability
continue to be important, the use of embedded systems for
critical functions makes security one of the most significant
requirements of the system design.

Among the possible attacks proposed in the past, the
ones which target the physical implementation of the cryp-
tographic algorithm are the most dangerous, since they are
often easy enough to be successfully carried out. Fault injec-
tion attacks, in particular, have proved to be a very effective
and relatively inexpensive way to retrieve the secret informa-
tion processed by electronic devices. In a typical fault attack
scenario, the adversary injects a number of faults during the
computation of a cryptographic routine and then analyzes
the faulty outputs to derive the secret key of the cipher.

Recent works have improved this technique by significantly
reducing the effort required to mount a fault injection at-
tack, thus raising the threat level posed by such attacks.
Section ?? provides a description of the threat model and

gives a brief summary of the AES block cipher chosen as a
case study. Section ?? describes the proposed countermea-
sures, and Section 5 reports the results of the experimental
campaign conducted in order to ascertain the effectiveness
of the described methods. Finally, Section 6 presents our
conclusions.

2. PRELIMINARIES
In this section we briefly describe the possible threats

posed to cryptographic algorithms running on an embedded
device and present the cipher of choice for the validation of
our proposed countermeasures.

2.1 Threat Model
Recent research [3,10] has provided key insights into how

to induce faults through the use of reasonably cheap equip-
ment and simple workbenches to properly vary the feeding
voltage of an ARM based device, thus resulting in very reg-
ular corruptions of the values loaded from the memory. This
kind of fault can be injected with almost no knowledge about
the implementation details of the device and thus should be
regarded as particularly dangerous. Through the use of more
sophisticated workbenches (e.g., laser injection devices [11]
or timed EM-pulses [1]) it is also possible to inject errors
into a device in a precise way. This kind of attack, albeit
as realistic as the previous one, requires a higher level of
technical knowledge and more expensive equipment to be
practically put into action and thus is regarded as realis-
tically applicable only in a scenario where highly valuable
goods are at stake. In [2] it was shown that widely deployed
embedded processors can be attacked by judiciously lower-
ing the processor’s supply voltage. The induced faults can
be injected with very high precision to affect instructions
which load data from memory and, through exploiting the
resulting faulty ciphertexts, the secret key of an AES cipher
can be easily inferred.

2.2 AES Overview
In this paper we explore countermeasures against such

fault attacks with a tunable level of protection in order to
provide a full spectrum of the trade-off between the level of
protection and the implementation overhead. We focus here
on the AES cipher [5], which is employed in a wide range of
devices.
The AES cipher executes a number of round transforma-

tions on the input plaintext where the output of each round
is the input to the next one. In contrast to Feistel networks,
AES encrypts the whole input at each round, and conse-
quently, it employs a comparably small number of rounds.
The number of rounds r is determined by the key length:
128-bit uses 10 rounds, 192-bit 12 and 256-bit 14. In soft-
ware, AES can be implemented using only bitwise xor op-
erations, table-lookups and 1-byte shifts [5]. Each round is
composed of the same steps, except for the first where an ex-
tra addition of a round key is inserted, and the last where the
(MixColumns) operation is skipped. Each step operates on
16 bytes of data (referred as the internal state of the cipher)
generally viewed as a 4×4 matrix of bytes or an array of
four 32-bit words, where each word corresponds to a column

of the state table. The four round stages are: AddRound-
Key (xor addition of a scheduled round key), SubBytes
(byte substitution by a lookup table (S-box)), ShiftRows
(cyclical shifting of bytes), and MixColumns (linear trans-
formation which mixes column state data). Given the cipher
key k, theKeySchedule procedure outputs r+1 round sub-
keys, with each subkey being 16 byte wide. Algorithm 2.1
shows the complete encryption process.

Algorithm 2.1: AES Encryption

Input: p, plaintext block; k, cipher key
Output: c, ciphertext block
begin1

〈k(0), k(1), . . . , k(r)〉 � KeySchedule(k)2

c � AddRoundKey(p, k(0));3

foreach i ∈ {1, . . . , r} do4

c � SubBytes(c)5

c � ShiftRows(c)6

c � MixColumns(c)7

c � AddRoundKey(c, k(i))8

c � SubBytes(c)9

c � ShiftRows(c)10

c � AddRoundKey(c, k(r))11

return c12

end13

The enciphering procedure is amenable to several software
implementations which trade-off memory and computational
resources in order to obtain the best performance for the
specific architecture.

Specifically, the different steps of the round transforma-
tion can be combined into a single set of table lookups, allow-
ing for very fast implementations on processors having word
length of 32 bits or more [5]. Denote by ai, j the generic
element of the state table, by a the generic value of a byte
variable, by S[0, . . . , 255] the 256-bytes of the S-box table
and by ◦ a GF (28) finite field multiplication [5]. Let T0,
T1, T2 and T3 be four lookup tables, each viewed as a 256
sequence of 32-bit words, containing results from the com-
bination of the round operations as follows:

T0[a] =

S[a] ◦ 02
S[a]
S[a]

S[a] ◦ 03

 T1[a] =

S[a] ◦ 03
S[a] ◦ 02
S[a]
S[a]

T2[a] =

S[a]

S[a] ◦ 03
S[a] ◦ 02
S[a]

 T3[a] =

S[a]
S[a]

S[a] ◦ 03
S[a] ◦ 02

These tables are used to compute the round stages oper-
ations as a whole, as described by the following equation,
where kj is the j-th word of the expanded key and Aj =
〈a0,j , a1,j , a2,j , a3,j〉 is the j-th column of the state table con-
sidered as a single 32-bit word (with the simplified notation:
Aj = Aj mod 4, ai,j = ai,j mod 4):

Aj = T0[a0,j]⊕ T1[a1,j−1]⊕ T2[a2,j−2]⊕ T3[a3,j−3]⊕ kj

The four tables T0, T1, T2 and T3 (called T-tables from
now on) use 4KB of storage space and their main goal is to
avoid performing the MixColumns and InvMixColumns

transformations as these operations, in the original defini-
tion of Rijdael algorithm, perform Galois Field multiplica-
tion by fixed constants which map poorly to general purpose
processors in terms of performance.
Notably, in the final round of the encryption there is no

MixColumns operation, and also the KeySchedule algo-
rithm requires pure substitution operations. Whilst these
facts could represent an impairment in the use of T tables,
it is possible to extract efficiently the S table through proper
masking of the T tables.
Since the T -tables may be derived also through rotating

each word of T0 by i bytes, Ti[a] = RotByte(T0[a], i), i ∈
{0, . . . , 3} in order to reduce the active memory footprint
used within each round, each column of the state table may
be also computed as:

Aj = T0[a0,j]⊕RotByte(T0[a1,j−1], 1)⊕

⊕RotByte(T0[a2,j−2], 2)⊕RotByte(T0[a3,j−3], 3)⊕ kj

This variation reduces the lookup tables to a single 1KB
one, thus lowering the burden on the caches, while incurring
a penalty of only three extra rotations per column per round
with respect to the 4 T -table implementation.
Decryption requires different tables from those used by

the encryption, therefore, an AES implementation able to
perform both encryption and decryption may require up to
8KB of memory, which may extend to 16KB if the last round
operations are realized with ad-hoc tables.
When employing general-purpose processors, endowed with

wide D-caches, the T -table implementation is more effective
since the memory access latency is lower than the compu-
tation time that would be required in place of each T -table
lookup. On the other hand, in cache constrained environ-
ments a valid alternative to the use of T -tables is the com-
putation of the entire AES rounds on the processor, mem-
orizing only the S-box and the inverse S-box tables needed
to perform the substitution operations.
Another downside of employing data caches,regardless of

the constrains on the size of the chip is represented by cache
timing attacks to cryptographic algorithms . This kind of
attack is able to infer from the loading times of a value its
position in the main memory, and thus obtain an informa-
tion on the memory access patterns of a cipher. This in turn
has been demonstrated to be enough to break AES in [13],
and thus the employment of cache should be either avoided
or carefully regulated when during the computation of this
algorithm.

3. TARGET ARCHITECTURE
The target architecture to validate our countermeasures is

the ARM family of processors. Our proposed countermea-
sures are employable on every ARM processor starting from
ARM7 (ARMv3 architecture). This architecture is a load-
store RISC machine, where all the instructions are executed
in one clock cycle, and may be conditioned by a flag of the
program status word. This feature was introduced in order
to compensate for the missing branch predictor which was
introduced only later on in ARM8.
The load instructions are not bound to be executed in a

single cycle, instead, they may stall the pipeline until the
information is retrieved from the main memory. The mem-
ory latencies have a broad range due to the wide field of
applications in which the ARM processor is deployed.

The RISC architecture and the fully predicated instruc-
tions (which are used in place of small decisional constructs)
made the ARM architecture suitable for the use in low power
or memory constrained environments. This has made them
dominant in the mobile and embedded electronics market
as relatively low cost and small microprocessors and micro-
controllers. Thanks to its high power efficiency, the ARM
architecture has been lately employed also in mobile multi-
media enabled platforms. This, in turn, has lead to a rising
computing power and memory demand towards the plat-
form, leading to the formation of the same CPU-Memory
gap experienced in high end microprocessors.

In order to cope with the raising demands of computing
performances, the latest ARM based platforms are split, ac-
cording to the target use, into two families, Cortex-A and
Cortex-M, while retaining full binary compatibility. Cortex-
A based platforms are targeted to high end mobile multime-
dia devices and are often endowed with two levels of caches
to cope with the load latency from high capacity, but slow,
off-chip memory. The L1 cache is split into two halves,
which are used as dedicated instruction and data cache,
fitting the Harvard architecture of the ARMv7 platform,
while the L2 cache is unified for both data and instructions.
The Cortex-M family is targeted to the microcontroller and
highly energy constrained environments. For this cpu fam-
ily, the Cortex-M reference manual from ARM [?] suggests
the employment in the design of tightly coupled memories:
i.e. small amounts of SRAM integrated on the same die of
the microprocessor and with very fast access latencies (one
or two clock cycles). Embedding the memories in full on the
same chip saves the need to employ caches since the whole
main memory is actually implemented with cache-like tim-
ing features and thus avoids the need for the power consum-
ing combinatorial logic driving the caches. While typical
memory access latencies for chips having on-die integrated
memory range from one to two clock cycles, off chip DRAM
memories tend to require up to 50 CPU clock cycles to fetch
the data.

The ARM architecture has 16 general-purpose 32-bit reg-
isters. Although the architectural specification does not
impose any restriction on their usage, the standard ARM
ABI interface mandates the last three registers (r13-r15) to
be used to keep the context of the running program (stack
pointer, link register and program counter). Moreover, the
content of r12 is not guaranteed to be preserved among
function calls, thus acting as a scratch register.

In order to provide fast shifting and rotation of loaded
values, one of the two loading lines for the ALU has a 32-bit
barrel shifter able to act without delaying the loading of the
value from a register into the ALU. This implies that it is
possible to perform computations directly with a shifted or
rotated operand without losing an extra clock cycle.

4. COUNTERMEASURES
In this paper we also explore the incorporation of error

detecting and correction techniques into the AES algorithm
implemented in software and executed on the ARM archi-
tecture without modifications to either the ABI or the un-
derlying architecture.

We consider three ways of inserting redundant computa-
tions and checking: the use of instruction doubling to de-
tect errors (Dual Modular Redundant (DMR) technique),
instruction triplication to add error correction capabilities

(Triple Modular Redundant (TMR) technique), and the com-
putation of parity bits and checking them against stored
values (Parity (PAR) technique).
These countermeasures can be either applied to the whole

AES algorithm or only to the parts sensitive to known at-
tacks (Selective Insertion) in order to reduce the compu-
tational overhead. The advantage of the former technique
is the greater ease of introduction, since the insertion of
the countermeasure can be done directly into the code ob-
tained from disassembling the executable object code, with-
out knowing any details about the AES implementation, nor
the need to take into account the optimization strategies of
the compiler to prevent the removal of the redundant op-
erations. The selective insertion technique requires some
knowledge of the enciphering program structure in order to
locate the sensitive parts which need the application of the
countermeasure.

4.1 Instruction Duplication
The first method (DMR at instruction level) consists of

duplicating the execution of any (or a specific) instruction
and storing the result into a different register of the CPU.
This is possible in our implementation since the AES al-
gorithm uses only 9 registers (in our binary r1–r9) in the
ARM architecture, thus leaving 4 free for our purposes (r0,
r10–r12). After repeating the instruction the results are
compared and, in case a mismatch is detected the inserted
code jumps to an error management routine which may ei-
ther signal the error or fill the state of the computation with
random numbers to avoid information leakage. The follow-
ing code sample illustrates the insertion of the countermea-
sure to protect the load of a value in r4 from a memory
location whose address is contained in r7:

1. ldr r4,[r7];

2. ldr r12,[r7];

3. cmp r12,r4;

4. bne <error>;

This kind of countermeasure fails to detect two kinds of
faults: two identical faults injected in the each of the pay-
loads of the load operations and a single fault injected in a
load and an instruction skipping fault which allows to bypass
the branch instruction after the comparison.

4.2 Instruction Tripling
The second method (TMR) implements a full triple mod-

ular redundancy scheme on an instruction through repeating
it three times and storing the two extra results into two free
registers. In the following code snippet the protected in-
struction is an exclusive-or (eor) between r1, r2 with result
stored in r4:

1. eor r12,r12,r12;

3. eor r10,r1,r2;

4. eor r0,r1,r2;

2. eor r4,r1,r2;

5. cmp r4,r10;

6. eoreq r12,r12,#1;

7. cmp r4,r0;

8. eoreq r12,r12,#2;

9. cmp r10,r0;

10. eoreq r12,r12,#4;

11. cmp r12,#0

12. beq <error>;

13. cmp r12,#4;

14. moveq r4,r0;

This technique employs a fourth register, r12 to record the
effects of the correctness checks (lines 5–10) and determine
whether to correct a single error (lines 13–14), detect two
errors (lines 11–12) or leave the result untouched. The
eor operation between r1, r2 is performed thrice and the
three results are stored in the target register (r4) and in
two scratch pad registers (r10, r0), respectively. The al-
gorithm then proceeds to check the equality of the values
pairwise and stores the result as a single bit flag in register
r12 which was zeroed at the beginning. To save comparison
instructions, it is possible to check only if either the first
value (which has already been loaded in the target register),
is faulty or not and eventually correct it, without taking care
to correct the values in the two scratch pad registers.

The minimum effort required by an attacker to thwart the
instruction tripling countermeasure is represented by the in-
sertion of two perfectly identical faults into two of the three
sensitive operations. This in turn implies that the attacker
must be able to damage two instructions , which are only
a single clock cycle apart, in exactly the same way. An-
other alternative to this is to damage the operation which
will be actually setting the correct output register (i.e. not
one of the redundant ones) and subsequently skip both the
branch to error condition and the last moveq instruction
which would restore the correct result anyways. This would
mean being able to inject one data altering and two instruc-
tion skip faults within a 11 clock cycles timeframe, with the
middle fault being 2 clock cycles afar from the last.

4.3 Parity Checking
The third technique considered is the employment of a

tabulated parity bit in order to check the consistency of the
loaded values. This technique is not applicable to generic
arithmetical/logical operations and will therefore leave the
computational instructions unprotected. Another disadvan-
tage of employing parity in software is the fact that the
parity bit related to each protected value must be both
computed from the word that contains it, at the expense
of additional computation steps, or stored in a very sparse
representation (one bit per byte or one bit per word, de-
pending on the architecture alignment). The following code
snippet represents the most straightforward way to compute
the parity bit of a value contained in r4 in order to check
it against a precomputed value stored in memory at the ad-
dress contained in r7. The protected value in r4 may either
correspond to a byte of the lookup table used in the AES im-
plementation (S-Box or T -table) or to a byte of the unrolled
key.

1. ldr r4,[r7];

2. mov r12,r4;

3. asr r0,r4,#1;

4. eor r12,r12,r0;

5. asr r0,r4,#2;

6. eor r12,r12,r0;

7. asr r0,r4,#3;

8. eor r12,r12,r0;

9. asr r0,r4,#4;

10. eor r12,r12,r0;

11. asr r0,r4,#5;

12. eor r12,r12,r0;

13. asr r0,r4,#6;

14. eor r12,r12,r0;

15. asr r0,r4,#7;

16. eor r12,r12,r0;

17. and r12,r12,#1;

18. ldr r6,[r7];

19. cmp r12,r6;

20. bne <error>;

The code computes the parity bit through xoring a value
obtained from a shifted copy of the one whose parity must

be checked. The parity value is accumulated in a scratch
pad register (r12) and employs a temporary register (r0)
to store the correctly shifted copy of the value whose parity
must be computed. After all the 8 bits of the byte are added
together, the final value is masked with a single bit mask and
compared with the correct parity which is loaded from the
memory in instruction 19.
Since the ARM architecture has a barrel shifter capable of

shifting/rotating one of the two operands of an arithmetical-
logical instruction, it is possible to skip altogether the use of
the temporary register and considerably reduce the number
of instructions needed to compute the parity as shown in the
following code:

1. ldr r4,[r7];

2. mov r12,r4;

3. eor r12,r4,r4, LSR #1;

4. eor r12,r12,r4,LSR #2;

5. eor r12,r12,r4,LSR #3;

6. eor r12,r12,r4,LSR #4;

7. eor r12,r12,r4,LSR #5;

8. eor r12,r12,r4,LSR #6;

9. eor r12,r12,r4,LSR #7;

10. and r12,r12,#1;

11. ldr r6,[r7];

12. cmp r12,r6;

13. bne <error>;

As far as fault coverage goes, parity codes are able to de-
tect half of all the possible faulty results of the operation
they are protecting: in particular, all single bit faults are
correctly detected, but no means of correcting them is avail-
able. This implies that any multi-bit fault injected, having
an even number of bit flips, will not be detected by the parity
scheme, i.e. one generic multi-bit fault every two. A further
possibility for an attacker to bypass the protection scheme
is to inject a fault both during the loading operation and
during either the branch instruction after the comparison or
the loading of the correct parity value.

4.4 Fault coverage summary and effects of the
caches

Table 1 provides a brief summary of the fault detection ca-
pabilities and fault coverage of the aforementioned method-
ologies.
A relevant figure emerging from the table is that all the

countermeasures providing full coverage from single faults,
also require a higher temporal precision from a potential
attacker in order to be thwarted. In particular, the second
fault should be injected into a specific clock cycle, which
is only 4-11 cycles apart from the first fault. This tight
timeframe is a very difficult to be matched with the current
fault induction techniques which require a non negligible
amount of time to reset the fault inducing mean (laser, EM
or clock glitcher). Since this reload time exceeds the required
11 clock cycles by far, even for implementations running at
very limited clock rates, the proposed countermeasures may
be regarded as safely stopping the injection of faults for all
the present implementations.
Many high-end ARM based embedded systems also inte-

grate one or two levels of memory caches in their architec-

ture. This architectural feature has a direct impact on the
fault injection countermeasures, since it implies that the re-
sult of an operation may be reused by the CPU if the wrong
computed or loaded value is held in cache.

This side effect is particularly interesting in case load in-
structions are replicated since inducing a fault in a single
load implies in turn that all the subsequent ones will be em-
ploying the same faulty value held in the data cache. Such a
side effects could allow an attacker to bypass load replication
countermeasures since all the comparison made to detect the
error would act on the same faulty value, thus failing to de-
tect the error. A possible solution is the use of per-line
cache invalidation, which is available on the ARM archi-
tecture through the MCR instruction. Through selective
invalidation of the cache lines containing the values which
have just been loaded, it is possible to avoid the fault stor-
ing effect of the caches, thus performing reliable instruction
duplication.

Another advantage of flushing the cache lines containing
the sensitive values is the intrinsic protection against the
timing attacks mentioned in [13], since it is no longer possi-
ble to make any inference on the position of the values loaded
with respect to the loading times within the algorithm.

The invalidation of cache lines will take additional instruc-
tions on cache endowed systems, which must be placed right
before every sensitive instruction in the code, in order to
warrant a fresh load from main memory. Thus, all the afore-
mentioned listings will gain a number of MCR instructions
equal to the number of LDR performed, since the whole in-
ner state of the AES cipher is kept in the registers, which in
turn implies that there are no memory writeback operations
which need to be taken care of. It is important to notice that
also the common DMR/TMR applied at algorithm level will
need to flush the caches among the repeated executions of
the algorithm, otherwise they would suffer from the same
problems as the proposed methodologies.

In order to minimize the impact of the cache line flushes, it
is possibile, if the source code of the algorithm is available, to
align all the sensitive variables to the cache lines through em-
ploying compiler directives such as the DCACHEALIGN of
GCC. These directives, provided the cache line size is known,
allocate the variables so that their beginning in memory is
aligned to a cache line, thus resulting in minimal trashing
of unrelated values when a cache line is flushed. Employing
this technique avoids the possible performance degradation
on the remainder of the running programs on the chip which
would ensue if the cache lines contained values used outside
of the encryption algorithm.

The following section will present, together with the fig-
ures of cost for the algorithms in both cache endowed and
cache free environments in order to provide results suitable
for the whole range of embedded systems based on ARM
CPUs.

5. COUNTERMEASURES EVALUATION
In this section we discuss the efficiency of the proposed

countermeasures when applied to either the full cipher or to
a selected subset of the weak spots according to the known
attacks. The findings in [2,6–10,12] suggest that injecting a
fault within the last three rounds of the AES cipher leads to
successful attacks allowing a complete key recovery with as
few as 6 faults for AES-256. It is thus mandatory to protect
the last three rounds in full to prevent these attacks from

Technique Single fault coverage [%] Faults needed to skip Maximum fault distance for double faults
DMR 100 2 4
TMR 100 2 11
Parity 50 1 12

Table 1: Fault coverage and minimum required faults to subvert a countermeasure

succeeding. The attack in [4] addresses another fault injec-
tion technique capable of discovering the full key through
injecting single bit errors during the first key addition. This
implies that also the first key load and addition must be
protected against faults. Further care must be taken in pro-
tecting against the attack mentioned in [4] since, being a
safe-error attack, it requires the countermeasure designer to
provide an error correction mechanism in order to produce a
correct result regardless of the fault injected during the first
key addition. If the AES implementation outputs either a
randomized value, the actual faulty ciphertext or simply sig-
nals an error without outputting anything, the attack pro-
posed in [4] will still be able to extract informations since
it only relies on detecting an anomaly in the correct func-
tioning of the circuit. Since the fault injection capabilities
required to lead the aforementioned attack are very high, it
is reasonable to take into account an error correction mech-
anism only if the implementation is protecting significantly
valuable goods.
A key point of employing a parity bit for protecting the

encryption is that it cannot detect errors that were inserted
during computations, thus leaving a possible target for at-
tackers. However, a low cost and easy to setup technique
described in [3] is only able to inject faults in the load oper-
ations in an ARM9 architecture and thus would be detected
also by a parity bit check.
An obvious alternative countermeasure is to replicate the

entire computation of the cipher and compare only the final
results. While this may sound like a sufficient protection,
an attacker capable of injecting faults with accurate timing
may be able to produce two identically faulty results and
thus bypass the check. This is due to the fact that repli-
cating a whole algorithm execution leaves a large time gap
between the two fault injection points, thus allowing the at-
tacker to properly reload the fault injection equipment. By
contrast, this is much harder, if not impossible, if the time
gap is only a couple of instructions wide, as in the proposed
countermeasures.
The implementation of AES used to validate our proposed

countermeasures is a T -table based implementation, realized
in C and compiled for the ARM9 architecture, employing
release grade optimizations (-O2) with GCC 4.0.2. Since
the ARM architecture provides free rotations through the
barrel shift unit, the most efficient implementation is the
one employing only a single T -table and rotating on the fly
the obtained value to get the correct 32-bit word to update
the state of the cipher, as described in Section ??.
The compiled object was subsequently disassembled and the
countermeasures were introduced directly into the assembly
listing. Table 2 presents the overhead, expressed in number
of clock cycles, needed for each countermeasure to protect
a single instruction. The overhead has been split into in-
dividual components, namely, the extra computational in-
structions inserted, the additional loads and the number of
scratch registers required.

Table 2: Countermeasures overhead per single in-
struction to be protected

Countermeasure
Instruction load No. of extra

Count Count Registers

None 1 1 0

DMR 4 2 1

TMR 14 3 3

PAR 20 2 3

PAR-barrel 13 2 2

The results show that employing a TMR scheme has al-
most the same computational cost of calculating the byte
parity (employing a tailored algorithm for the given ARM
architecture) and is less expensive than the basic parity code
method. Figure 1 depicts the timing overhead of protecting

 0

 50

 100

 150

 200

 250

1 2 4 8 16 32 64

E
xe

cu
tio

n
tim

e
[c

yc
le

]

Load cost [cycle]

PAR
PAR-barrel

TMR
DMR
None

Figure 1: Time overhead required to protect a sin-
gle load instruction as a function of the clock cycles
needed to execute it

a single load instruction when taking into account also the
cost in terms of clock cycles of the load operation. The costs
range from an ideal of a single cycle (which may happen in
case the value is held tightly coupled memories, typical of
small embedded systems) to 64 cycles for slow off-chip mem-
ory.

From the figure one can notice that the DMR is uniformly
less expensive than the parity schemes regardless of the la-
tency of the memory, while providing the same error detec-
tion capability. The TMR has a performance overhead lower
than that of the parity scheme up to memory latencies of 8
cycles, thus being a viable solution when either fast on-chip
memories are employed or if on-the-fly error correction is a
stringent requirement.

Figures ?? and ?? depict the overhead in number of cycles
for the AES algorithm when applying complete protection

 0

 20000

 40000

 60000

 80000

 100000

 120000

1 2 4 8 16 32 64

E
xe

cu
tio

n
tim

e
[c

yc
le

]

Load cost [cycle]

TMR
PAR
DMR

PAR-barrel
None

(a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1 2 4 8 16 32 64

E
xe

cu
tio

n
tim

e
[c

yc
le

]

Load cost [cycle]

TMR
PAR
DMR

PAR-barrel
None

(b)

Figure 3: Execution times of AES with protection of all load instructions (a), and with protection of the load

instructions in the last three rounds only (b)
without cache flushing

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

1 2 4 8 16 32 64

E
xe

cu
tio

n
tim

e
[c

yc
le

]

Load cost [cycle]

TMR
DMR
None

(a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1 2 4 8 16 32 64

E
xe

cu
tio

n
tim

e
[c

yc
le

]

Load cost [cycle]

TMR
DMR
None

(b)

Figure 4: Execution times of AES with protection of all the instructions(a), and with protection of the load

instructions in the last three rounds only (b)
without cache flushing

 0

 20000

 40000

 60000

 80000

 100000

 120000

1 2 4 8 16 32 64

E
xe

cu
tio

n
tim

e
[c

yc
le

]

Load cost [cycle]

TMR
PAR
DMR

PAR-barrel
None

(a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1 2 4 8 16 32 64

E
xe

cu
tio

n
tim

e
[c

yc
le

]

Load cost [cycle]

TMR
PAR
DMR

PAR-barrel
None

(b)

Figure 5: Execution times of AES with protection of all load instructions (a), and with protection of the load

instructions in the last three rounds only (b)
with cache flushing

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

1 2 4 8 16 32 64

E
xe

cu
tio

n
tim

e
[c

yc
le

]

Load cost [cycle]

TMR
DMR
None

(a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1 2 4 8 16 32 64

E
xe

cu
tio

n
tim

e
[c

yc
le

]

Load cost [cycle]

TMR
DMR
None

(b)

Figure 6: Execution times of AES with protection of all the instructions(a), and with protection of the load

instructions in the last three rounds only (b)
with cache flushing

Table 3: Overview of clock cycles overhead for all the proposed countermeasures schemes

Countermeasure
Last Three Round Protection Whole Algorithm

load cycles: 2 load cycles: 64 load cycles: 2 load cycles: 64

None 1 1 1 1

DMR (load instr.) ×1.48 ×1.94 ×2.23 ×2.01

TMR (load instr.) ×2.82 ×2.98 ×5.60 ×3.13

PAR (load instr.) ×3.54 ×2.18 ×7.13 ×2.26

PAR-barrel (load instr.) ×2.45 ×2.05 ×4.99 ×2.15

DMR (full) ×1.83 ×1.98 ×3.39 ×2.07

TMR (full) ×4.30 ×3.15 ×10.63 ×3.38

 0

 50

 100

 150

 200

 250

1 2 4 8 16 32 64

E
xe

cu
tio

n
tim

e
[c

yc
le

]

Load cost [cycle]

PAR
PAR-barrel

TMR
DMR
None

Figure 2: Time overhead required to protect a sin-
gle load instruction as a function of the clock cycles
needed to execute it including cache flushing

(to all the rounds) or when selectively protecting only the
sensitive spots mentioned above (last three rounds plus the
initial key addition). For this comparison, the countermea-
sures are limited to the load instructions. The results in
these two figures confirm the intuition deduced from the
single load overhead investigation, suggesting DMR as the
cheapest fault detection scheme and TMR as a reasonably
lightweight alternative if error correction is desired. The
comparison between the blind injection of the countermea-
sure (Figure ??) and the selective protection of the sensitive
spots (Figure ??) shows an advantage of roughly three times
in terms of clock cycle overhead for the selective solution.
Table 3 provides a full overview of the countermeasures pro-
posed in this paper together with their time overheads. The
comparison among the methods to protect only the load in-
structions shows that proper selective duplication (DMR)
is cheaper than all the other methods, and clearly cheaper
than duplicating the entire cipher. This scheme also pro-
vides a stronger protection than the simple recomputation
since it can only be eluded by an attacker able to inject two
precisely timed and equal faults in two instants only a single
clock cycle apart: this is expected to be more difficult than
injecting two identical faults into two subsequent runs of the
same algorithm to circumvent simple doubled execution.
The TMR scheme, applied only to the sensitive parts, re-

sults in a reasonably lightweight scheme, keeping the over-
head lower than the trivial triple execution of the algorithm
and outperforming also the straightforward parity scheme
(which does not provide error correction) if the memory is
fast enough. This suggests that TMR is a viable alterna-
tive when error correction is desired or when an even tighter
bound on the attacker capabilities must be placed. In fact,
the only way to circumvent the per-load-instruction TMR is
to inject three identical faults in three subsequent instruc-
tions, which has not yet proved feasible due to the difficulty
of the fault injection apparatus in disturbing a circuit suffi-
ciently quickly and precisely.
The last two rows in Table 3 present the overheads of

protecting all the instructions using DMR and TMR, re-
spectively. Albeit at a higher cost, these schemes provide
complete protection against any possible injected fault, ei-

ther in the computational part or in the memory accesses.
Particularly interesting are the results obtained for the last
three round protection when DMR is employed: the time
overheads are lower than those for a trivial duplication of
the whole computation, while retaining per-instruction con-
sistency checking. Another noteworthy result is for the case
when TMR is applied to the whole algorithm on devices
with slow memories. In this case, with an overhead of only
10% higher than a triplication of the entire algorithm, it
is possible to provide instruction level triplication, checking
and correction, thus providing a complete protection against
all known fault attacks using all the currently known fault
injection techniques.

6. CONCLUSION
In this paper we have explored possible countermeasures

against faults attacks on software implementations of AES
that are based on introducing redundant computations. The
proposed countermeasures (selective, per-instruction, DMR
and TMR) require lower overheads than common alterna-
tives (parity bit checking) and can be applied in an auto-
mated fashion to a software implementation of the AES al-
gorithm.

We foresee possible future development in evaluating the
effectiveness of the proposed countermeasures for other ar-
chitectures and ciphers.

7. REFERENCES
[1] R. J. Anderson and M. G. Kuhn. Low Cost Attacks on

Tamper Resistant Devices. In Proceedings of the 5th
International Workshop on Security Protocols, pages
125–136, London, UK, 1998. Springer-Verlag.

[2] A. Barenghi, G. Bertoni, L. Breveglieri, M. Pellicioli,
and G. Pelosi. Low Voltage Fault Attacks to AES. In
M. Tehranipoor and J. Plusquellic, editors, HOST,
pages 7–12. IEEE Computer Society, 2010.

[3] A. Barenghi, G. M. Bertoni, E. Parrinello, and
G. Pelosi. Low Voltage Fault Attacks on the RSA
Cryptosystem. In Workshop on Fault Diagnosis and
Tolerance in Cryptography, volume 0, pages 23–31, Los
Alamitos, CA, USA, 2009. IEEE Computer Society.

[4] J. Blömer and J.-P. Seifert. Fault Based Cryptanalysis
of the Advanced Encryption Standard (AES). In R. N.
Wright, editor, Financial Cryptography, volume 2742
of Lecture Notes in Computer Science, pages 162–181.
Springer, 2003.

[5] J. Daemen and V. Rijmen. The Design of Rijndael:
AES - The Advanced Encryption Standard. Springer,
2002.

[6] P. Dusart, G. Letourneux, and O. Vivolo. Differential
Fault Analysis on A.E.S. CoRR, cs.CR/0301020, 2003.

[7] C. Giraud. DFA on AES. In H. Dobbertin, V. Rijmen,
and A. Sowa, editors, AES Conference, volume 3373 of
Lecture Notes in Computer Science, pages 27–41.
Springer, 2004.

[8] A. Moradi, M. T. M. Shalmani, and M. Salmasizadeh.
A Generalized Method of Differential Fault Attack
Against AES Cryptosystem. In L. Goubin and
M. Matsui, editors, CHES, volume 4249 of LNCS,
pages 91–100. Springer, 2006.

[9] G. Piret and J.-J. Quisquater. A Differential Fault
Attack Technique against SPN Structures, with

Application to the AES and KHAZAD. In C. D.
Walter, Çetin Kaya Koç, and C. Paar, editors, CHES,
volume 2779 of Lecture Notes in Computer Science,
pages 77–88. Springer, 2003.

[10] N. Selmane, S. Guilley, and J.-L. Danger. Practical
Setup Time Violation Attacks on AES. In
EDCC-7’08: Proceedings of the 2008 Seventh
European Dependable Computing Conference, pages
91–96, Washington, DC, USA, 2008. IEEE CS.

[11] S. P. Skorobogatov and R. J. Anderson. Optical Fault
Induction Attacks. In B. S. K. Jr., Çetin Kaya Koç,

and C. Paar, editors, CHES, volume 2523 of Lecture
Notes in Computer Science, pages 2–12. Springer,
2002.

[12] J. Takahashi and T. Fukunaga. Differential Fault
Analysis on AES with 192 and 256-Bit Keys.
Cryptology ePrint Archive, Report 2010/023, 2010.
http://eprint.iacr.org/.

[13] E. Tromer, D. A. Osvik, and A. Shamir. Efficient
Cache Attacks on AES, and Countermeasures. Journal
of Cryptology, 23(1):37–71, 2010.

