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Abstract. Most successful attacks against hardware implementations
of cryptographic systems make use of side-channel information leakage.
Recently, some attacks have been proposed against various cryptosys-
tems, which exploit deliberate error injection during the computation
process. Several error detection schemes have been proposed in order to
counteract these attacks. In this paper, we add a residue-based error de-
tection scheme to an RSA architecture and evaluate the area and latency
overheads with respect to the basic architecture.

1 Introduction

Hardware implementations of cryptographic systems have become very popular,
in order to satisfy the latest demands in terms of performance and tamper re-
sistance. The most widely adopted public-key algorithm is currently the RSA
cryptosystem (proposed by Rivest, Shamir and Adleman) that relies on the dif-
ficulty in factorizing large integers.

In the past, most attacks were aimed at solving the factorization problem.
However, RSA uses currently 1024-bit operands and factorization of such large
integers is unaffordable with current computational power. An alternative way
to attack a cipher is through attempts to break a specific implementation by
finding a correlation between physical information leakage and the secret keys
(e.g., simple and differential power analysis, timing attacks). Recently, new side
channel attacks have been proposed. In [4], the authors showed how deliberate
hardware faults can be exploited to break a cryptographic algorithm and retrieve
the key. They have addressed public-key schemes in general and provided exam-
ples, including a description of an attack against RSA. Attacks against RSA
were later refined in [1] where the authors showed how a single faulty ciphertext
can be used to easily factor the RSA modulus, thus breaking the cryptosystem.
It should be pointed out that RSA implementations based on the Chinese Re-
mainder Theorem (CRT) can be broken more easily than a basic implementation
[2,4]. Other attacks against CRT-RSA appear in [13] and [14].
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Fault-based attacks are highly effective, since few carefully localized errors
can break the cipher. While attacking regular RSA requires the ability to inject
single-bit errors, it must be noted that the only requirement to successfully break
CRT-RSA is that only one of the two sub-signatures is corrupted. Hence, if the
attacker can inject any error into one sub-exponentiation and have a result back,
he can break the cryptosystem. This implies that the error model could be as
general as possible.

Although they may have been considered to be of only theoretical value,
some initial experiments have shown that such attacks are possible in practice.
Therefore, several countermeasures were proposed to foil the attacks. In 1999,
Shamir registered a patent [10] where a multiplicative masking is used against
timing and fault attacks. In 2000, Walter [12] has suggested to use residue codes
to protect modular arithmetic operations. The residue code can help detect
both transient and permanent faults. The error coverage depends on the value
of the base modulus that is chosen: higher values of the base modulus allow
higher detection rates. The overhead of the residue code is approximately the
cost of an extra digit in the operands. In general, this overhead can be in terms
of area if an extra element is included in each functional unit or in terms of
time when the same functional unit is reused. In 2004, Gueron [5] described an
extended version of the modular exponentiation and Montgomery multiplication
algorithms by using a residue code in multi-digit algorithms. If the base modulus
is chosen to be the maximum value of a digit (i.e., 2d − 1, where d is the digit
size in bits), generation is very simple [8,12].

In this paper, we present a reasonably simple architecture for computing the
RSA with protection against injected faults using residue codes. Residue codes
were chosen since they can protect arithmetic operations quite efficiently. More-
over, if a specific fault pattern is likely to occur, a sufficiently large base modulus
can be chosen in order to provide good coverage. We adapt the suggestion made
by Walter [12] to a specific architecture and evaluate the benefits and overheads.
We also show how to further improve this specific solution.

In Section 2 we briefly describe the RSA cryptosystem and our reference ar-
chitecture. In Section 3 we present the detection mechanism by means of residue
codes. Section 4 provides the details of our implementation of a circuit with error
detection capabilities, detailing the implementation choices. Finally, Section 5
concludes the paper.

2 The RSA Cryptosystem

The RSA cryptosystem [9] is based on few essential parameters, namely, the
public moduli N = p · q, where p and q are two large primes, each n/2 bits
long; d, the private exponent key; and e, the public exponent key, selected such
that e · d = 1 mod (p − 1)(q − 1). Encryption of a message m is done by com-
puting me mod N . Decryption is computed by another exponentiation, namely
(me)d mod N . The most critical operation is therefore the modular exponentia-
tion. A large number of multiplications is needed to perform exponentiation and
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quite often, a simple Square-and-Multiply algorithm is used. Various exponen-
tiation algorithms are described in [7]. Most implementations of exponentiation
use the modified Montgomery multiplication algorithm (depicted in Figure 1),
since it avoids the use of expensive trial divisions and avoids conditional branches
which might benefit side channel attacks at the cost of few additional iterations,
while maintaining the correctness of the algorithm [11]. Many different architec-

Input: X = (0 0 Xn · · · X1X0)
Y = (Yn · · · Y1Y0)
M = (Mn−1 · · · M1M0)

Output: X · Y · 2−(n+2) mod M

1. U ← 0
2. for i from 0 to (n + 2) do
a if (U0 = 1) then U = U + M
b U = (U/2) + XiY

3. return U

Fig. 1. The modified Montgomery Multiplication, radix-2 [6]

tures have been proposed, differing mostly in some minor modifications to the
Montgomery algorithm and in the digit size. The designer can thus obtain the
desired trade-off between area and latency.

Our selected architecture was inspired by the design presented in [6]. Our
solution differs from the original design mainly in the absence of the Z-processor,
i.e., the squaring functional unit; this modification has also been suggested by
the authors of [6]. The basic implementation includes a core (consisting of a
control unit and a Processing Element (PE)), an internal memory and a bridge.
The architecture is highly parameterized and it can therefore support future
operand sizes. A small area is achieved by using a serial-digit approach. The
exponentiation is computed by using the Square-and-Multiply algorithm; each
multiplication scans the multiplier one bit at a time, and computes the result
by using the Double-and-Add algorithm. Finally, each addition is performed by
computing the result one digit at a time.

The PE is able to perform the basic required operations (addition, subtraction
and addition with extra shifting) on the n-bit operands by repeated steps. The
word size of the computational core is only 25% of the memory word size, which
is in turn considerably smaller than the size of the modulus N . This allows
to reduce the PE critical path and achieve higher frequencies. Accessing the
memory implies a certain latency, due to the signal setup time and the register
layers required to obtain stable values at the PE inputs. However, since the PE
word size is 25% of the memory word size, producing a single result requires 4
clock cycles to fetch the next memory read. This is done at each iteration except
the last one, when the PE is processing the last word.
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3 Online Detection

In this section, we describe our detection scheme for errors injected during an
RSA operation. The underlying principle is associating check bits to the data
we are processing. If we are able to maintain the relationship between the data
and the corresponding check bits throughout the entire process, the final result
and the associated check bits should still satisfy the same relationship. This can
be accomplished by propagating the check bits according to a specified set of
prediction rules. When the data is processed by a specific functional unit, the
corresponding check bits are processed in parallel using the associated prediction
rule in order to preserve the relationship. As an example, consider a parity bit
associated with a data word. When computing the exclusive OR of two different
words, we can predict the parity bit of the result by XOR’ing the parity bits of
the operands.

The code chosen for error detection must be simple. First of all, its generation
and propagation overheads should be negligible relative to the computation of
the main algorithm. Moreover, the need for prediction does not allow the use of
complex codes, which may be very efficient in detecting faults but will be very
expensive when implementing the various prediction circuits. The overhead of
the error detection code should always be compared to brute force duplication
which is the simplest way to detect errors. If detecting errors using codes is
cheaper than duplication, then it is a viable solution.

To make the prediction rules as simple as possible, the code must be compat-
ible with the operations performed on the data. Since RSA is based on modular
integer arithmetic, residue codes are a natural choice. From the theory on mod-
ular arithmetic we know that the residue of the sum is the sum of the residues,
possibly reduced once more:

(X + Y ) mod R = ((X mod R) + (Y mod R)) mod R (1)

where X and Y are two operands and R is the base modulus. For instance, take
X = 8, Y = 13 and R = 3: 8 mod 3 = 2, 13 mod 3 = 1, 8 + 13 = 21 and
21 mod 3 = 0, and finally (2) + 1 mod 3 = 3 mod 3 = 0. A similar rule holds
for subtraction and multiplication. However, since all the high-level operations
are implemented in terms of simple additions, this is the only prediction rule
employed in our system.

The main issue is that we have to deal with two different moduli at the same
time: the modulus of the residue code, usually smaller than the word size, and
the modulus used by the RSA, which in contrast, is very large. When perform-
ing a reduction of the result, the check bits have to also be modified accord-
ingly. Extending the algorithm with residue codes is straightforward, thanks to
the properties of modular arithmetic, but there are several issues that must be
considered: the residue code may require an additional reduction as shown in
Equation (1), and the required division by 2. The former issue is addressed by
correcting the residue if it overflows the boundaries of its domain. No informa-
tion is lost, since the residue is stored in a larger data register. Regarding the
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latter issue, the right shift is computed in the Montgomery multiplication only
after we are sure that the operand is even, by adding the modulus only to odd
inputs (see algorithm in Figure 1, instruction 2.a). However, nothing can be said
about the value of the residue. The residue of an even (odd) value can be either
odd or even; therefore, when an odd residue must be right shifted, the (odd)
residue base must be added to provide a congruent even residue value before
dividing by 2.

4 Implementation

In this section we present our implementation of an RSA architecture with error
detection capabilities, discuss the differences from the basic architecture and
estimate the resulting overheads in terms of area and latency.

When incorporating an error detection code in the architecture, there are
three new components to be considered:

1. A code generator: the check bits must be first generated from the initial raw
data, possibly using a dedicated unit;

2. A set of prediction rules, needed to propagate the check bits through any
operation performed in the encryption process;

3. A code validator: at the end of the encryption, the check bits must be verified
against the computed data.

The code generation is obtained by using a dedicated functional unit, which
is situated between the input interface and the memory. While operands are
loaded into memory one word at a time, the residue generator computes and
accumulates the residue into an internal register. When an additional word is
loaded into memory, the partial residue value is updated. Upon deactivation of
the memory write signal, the final residue value is written into the next memory
word.

The check bits generated from a single word depend on the base modulus:
choosing a modulus of the form 2h − 1 allows to compute the check bits by
splitting each word into h-bit-long nibbles and adding them together. In our
implementation, the size of the residue base modulus is chosen as 1/8 of the
memory word size, i.e., half the PE word size. A tree of Carry-Save Adders
(CSAs) is used to reduce the 9 input nibbles (8 coming from the data word, and
the current value stored in the internal register) down to a single pair (Carry,
Sum). However, any other size can be chosen: smaller values will give deeper
trees, while larger values will require fewer steps. The size of the processing
element should be considered as the upper bound, since the residue base must
fit within the adder. Our choice was the largest divisor that fits the PE size,
allowing a simpler design.

Although the carry output of each CSA is shifted with respect to the sum
output by one bit position, the values are implicitly reduced by routing the
most significant bit into the least significant position. For instance, if the size of
the residue code is r, the sum output is (sr−1 . . . s0), while the carry output is



76 L. Breveglieri et al.

CSA

Input
Word

CSA

CSA

CSA

CSA

CSA
CSA

RCA

RCA

0

1Forced Carry-In

1

0

Carry-Out

R
es

id
u

e

Carry-Select Adder

Fig. 2. Residue generation unit, with residue size being 1/8 of memory word size

(crcr−1 . . . c10). The residue of the carry output can be computed in the same
way (one more time) by splitting the carry into a least significant word and a
single most significant bit and adding them together. Since the least significant
bit of the carry vector is null, adding the most significant bit is just a simple
rerouting.

The final residue generation, i.e., the summation of the carry and sum vectors
is computed by using a Carry-Select Adder. In principle, the final addition might
result in an r +1-bit-long vector. Hence, two additions are computed in parallel,
forcing the carry-in to 0 or 1, respectively. Finally, the carry out of the adder
with null carry-in is used to select the proper result to be stored in the internal
register. Figure 2 illustrates the overall architecture of the residue generation
unit. The CSA layer allows to shrink the sum of 9 operands down to only 2
addends with a delay of only a few gates. On the other hand, the twin ripple-
carry adders allow to obtain a value in the residue domain within the PE delay.

The code prediction is performed within each single operation, since the rule
often matches the operation itself: the residue of an addition, for instance, is the
sum of the input residues. Therefore, the PE can also be used for residue calcula-
tion after the main operation is completed. This is a straightforward application
of Equation (1). This simple rule is integrated into the existing architecture
exploiting the pipelining in order to minimize the latency overhead. When all
the words are fetched into the PE, prefetching continues to load both residue
codes. Control signals are set up so that the residue prediction is an atomic
operation, with no impact on or from other operations (carries, overflows, etc.).
Input residues are ready as soon as the PE finishes processing the last word. In
addition, the residue fits the PE size since it is smaller (in our implementation,
it is half the PE word size), therefore the operation can be completed in a single
clock cycle. Using only few additional controls, the residue prediction can be
achieved with almost no increase in the circuit area and with a single added
clock cycle to the overall latency of each operation. If we consider that each
operation requires 4 clock cycles per word and any operand is made of several
words, the overhead for residue prediction becomes negligible. For example, in



Incorporating Error Detection in an RSA Architecture 77

our reference implementation we have a 128-bit-word memory module, a 32-bit
PE and an operand size that starts from 768 bits. In this case, the overhead is
only 3.7%. With longer operands, the overheads become significantly smaller.

Finally, the resulting residue must be validated against the computed data.
This validation does not have to be scheduled immediately. It is possible to
delay the validation to a later time, for instance before reading the result from
the memory. This is possible since any occurring error in the data does not
affect the check bits during computation; on the other hand, local generation of
the check bits (i.e., just before any operation) would force to schedule a code
validation checkpoint after each operation, in order to avoid residue generation
from corrupted data. Our solution follows the former approach. In particular, an
error would not be detected at an immediate checkpoint only if the corrupted
value had the same check bits as the correct data. This implies that the detection
coverage is inversely proportional to the size of the check modulus which can be
chosen accordingly. It should be clear that such a fault will not be detected even
afterward.

In our implementation, the memory read policy is changed. In the basic archi-
tecture, each memory word had to be individually read, by setting up the read
address properly and issuing the read command. In the error detecting version,
only the initial address must be submitted. Subsequent memory reads are auto-
matically fetched, while an additional buffer intercepts the data coming from the
memory and computes the final residue on-the-fly. Finally, the actual check bits
are compared with the predicted check bits, which are stored in the last position.
If the two match and no errors are detected, then the read process is repeated
and the output is enabled, allowing for external reads. Reissuing the read com-
mand may seem a waste of time, but the architecture was developed with area
constrained implementation as a goal. Using a buffer to store the data when it

Table 1. Synthesis results – Area does
not include any memory module

Version
Area Latency
(GE) (ns)

Basic 11, 400 4.7
Error Detecting 13, 400 4.7

Table 2. Area and latency overheads

Key Length Global Overheads
(bits) Area Memory Latency

768 +17.8% +14.3% +3.7%
1024 +17.8% +11.1% +2.9%
1536 +17.8% +7.7% +2.0%
2048 +17.8% +5.9% +1.5%

is read from memory would have resulted in a large area overhead, while the few
additional clock cycles are negligible with respect to the complete process.

The check bits validation unit makes reuse of the residue generation unit
described above. In principle, a new residue generator could be implemented.
However, the area overhead (an additional increase of 10.3%) would not be
compensated by a significant reduction in the delay. Both architectures, in fact,
were able to run at the target frequency of 200 MHz. The latency overheads
were obtained by running several simulations in ModelSim with realistic data,
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while the area figures were obtained by synthesizing both designs with Design
Compiler by Synopsys with STM 0.18μm High-Speed libraries.

5 Conclusions

One of the most effective techniques for attacking a cryptosystem is through
deliberate error injection during computation. The faulty results can be used
by attackers to retrieve the secret keys after a few attempts. In this paper, we
extend an RSA architecture to include error detection capabilities based on the
residue code. Our design incurs a 17.8% overhead in circuit area and only small
latency and memory overheads, which become even smaller with longer keys.

The expected fault coverage, based on our previous experience with error
detecting codes and on some simulations, depends on the level of redundancy,
i.e., the size of the residue base modulus. After injecting an error, the data and
the corresponding check bits become uncorrelated: the error is not detected if
and only if the check bits match the data by chance. The probability of this
event occurring, when 2h − 1 is the residue base modulus, is (2h − 1)−1 ≈ 2−h.
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