A Fault Attack Against the FOX Cipher Family

L. Breveglieri', I. Koren?, and P. Maistri®

! Department of Electronics and Information Technology, Politecnico di Milano,
Milano, Italy
{brevegli, maistri}@elet.polimi.it
2 Department of Electrical and Computer Engineering, University of Massachusetts,
Ambherst, MA, USA

koren@ecs.umass.edu

Abstract. Since its first introduction, differential fault analysis has
proved to be one of the most effective techniques to break a cipher im-
plementation. In this paper, we apply a fault attack to a generic im-
plementation of the recently introduced FOX family of symmetric block
ciphers (also known as Idea Nxt). We show the steps needed to mount
an effective attack against FOX-64. Although the basic characteristics of
this cipher are similar to those of AES, FOX uses a non-invertible key
schedule which makes it necessary to use a different attack plan. We also
estimate the number of faulty ciphertexts required to reveal the secret
key. Our results can be easily extended to other variations of the cipher
that use longer inputs and keys.

1 Introduction

Most recent cryptosystems are now designed to be secure against common attack
techniques, such as linear or differential cryptanalysis. To this end, encryption
algorithms are often made public, allowing the research community to analyze
them and find possible weaknesses. As a result, the attackers’ attention has been
shifted to the actual implementations of cryptosystems, which can leak useful
information about the secret key (e.g., simple and differential power analysis).

Recently, a technique exploiting errors injected during the encryption (or de-
cryption) process proved to be a very effective attack. In [4], the authors showed
how a single faulty encryption is enough to break a CRT-RSA cryptosystem;
in [2], faults injected into a DES architecture were successfully used to recover
the secret key. Since then, fault-based attacks have been applied to a variety of
cryptosystems: public-key based ones (ECC, XTR), stream ciphers (RC4) and
block ciphers.

Initially, there was skepticism about the feasibility of these fault-based at-
tacks, until in [I0] the authors showed that even with very cheap equipment (a
microscope and a camera flash) they were able to change the stored values in
static RAM cells. Nowadays, smart cards are tested by manufacturers to study
their vulnerabilities to fault attacks using specialized laser equipment. Obvi-
ously, laser beams increase the chance of a successful fault attack compared to

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 98-[I05] 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Fault Attack Against the FOX Cipher Family 99

a simple camera flash, since the attacker can control more precisely parameters
like wavelength, energy, duration and location.

Most research efforts in the area of fault-based attacks have focused on AES,
due to its adoption as an NIST standard. In the first proposed attacks, the at-
tacker was assumed to be able to flip single bits within the chip with very precise
timing [3]. Such an assumption is getting harder to justify due to technological
restrictions. As die size shrinks, the precision required to affect a single flip-flop
requires expensive equipment (e.g., laser). Moreover, designers are beginning to
consider fault attacks as a serious security risk and are introducing countermea-
sures that can overcome single bit errors.

Later, new types of attacks were proposed, were the fault model was relaxed
and random byte errors were considered. In this scenario, the attacker is able
to alter the value of a whole byte, possibly being able to either decide or know
its location, but without having knowledge of its previous value. On the other
hand, timing is still important, since imprecise injections are useless. One of the
most impressive results is the attack published in [9], where only two precisely
injected faults can break the AES-128 cipher.

Several countermeasures have already been proposed, mostly based on some
form of redundancy. In [7], it is suggested to compute the inverse operation at
the encryption, round or operation level. In [IIGI8] an error detecting code is
used to protect the internal data path. In [I1], a pipeline architecture is used to
detect any transient fault. In addition to these techniques, the chip may also be
protected by means of sensors or shielding.

So far, to the best of our knowledge, there is no published fault attack against
the Idea Nxt cipher which has some unique characteristics. In this paper, we
describe how to mount a successful fault-based attack against this cipher. In
particular, we show the number of required faults that have to be injected, on
average, to mount a successful attack and recover the key.

The paper is organized as follows. SectionPldescribes the Fox family of ciphers,
focusing on the details needed to understand the basics of the attack, which is
described, step-by-step, in Section Bl Section M concludes the paper, summarizing
the results and suggesting possible countermeasures.

2 The FOX Cipher Family

FOX is a family of symmetric block ciphers recently presented as Idea Nxt [5]
and aimed at multimedia streaming and secure data storage. The cipher can be
customized in terms of the block length (see Table [Il), key size and number of
iterations.

The algorithm contains repetition of the round function lmor, followed by
a single instance of the function Imid. The latter differs in the absence of an
additional automorphism applied to the leftmost part of the input block, which
constitutes a single Feistel iteration (see Figure[ll). Moreover, these two functions
have a fixed high-level structure, but are customized in width and in the internal
parameters to suit both Nxt64 and Nxt128.

100 L. Breveglieri, I. Koren, and P. Maistri

Table 1. The FOX cipher family

Name Input size Key size Iterations
NXT64 64 bits 128 bits 16
NXT128 128 bits 256 bits 16

Ti(32) Tr(32)

rko(az)

32

Tk(ea)

rky(s2)

g
L=
g
L=
g
L=
g
L=

E} rko(sz)

Yois) Yus) Ya(s) Ya(s)

Yi(a2) Yr(32)

Fig. 1. Imid function Fig. 2. The f32 function used in Idea Nxt
64

The core part of every round iteration is the f32 (f64 in Idea Nxt128) function,
which includes linear and non-linear operations (see Figure 2]). In this function,
the key is split into two parts: the left one is added at the beginning and at the
end, while the right one is added in the central body, right after the diffusion
step. There are two non-linear steps implemented by means of substitution boxes
(Sboxes): the Sbox can be implemented either as a byte lookup table, or as a
combination of three different smaller tables operating on 4-bit nibbles. This
is similar to the AES Sboxes, which can be defined by using composite fields.
However, unlike AES, an algebraic definition does not seem to exist here. The
diffusion step is defined as a linear transformation over the Galois Field GF(2%).
The irreducible polynomial is 2% + 7 + 25 + 25 + 2* + 23 + 1 which is different
from the one used by AES.

The key schedule routine uses the same operations employed in the encryption
datapath. The master secret key is updated in every iteration by using some
precomputed constant. Each updated key is then used to generate a single round
key for the encryption datapath, through a sequence of non-linear and linear
operations. In addition, a compression stage exists, where bit pairs are exclusive
ORed. This process is shown in Figure Bt the sigma block shown in the figure is
the non-linear stage made of substitution boxes.

A Fault Attack Against the FOX Cipher Family 101

| DKEY J
‘ sigma4‘ ‘ sigma4‘ ‘ sigma4‘ ‘ sigma4‘
mu4 mu4 mu4 mu4
condflip
‘ sigma4 ‘ ‘ sigma4 ‘ ‘ sigma4 ‘ ‘ sigma4 ‘

—“ Imor64 ‘

‘ J Imid64 J %

(RKEY)

Fig. 3. Round key generation from secret key

3 The Attack

A Differential Fault Analysis (DFA) attack allows to apply differential and lin-
ear analysis to only a few rounds of the cipher, possibly only one. This allows
to mount a very effective attack at an almost negligible cost. A conventional
differential attack would consider the whole cipher (in terms of the number of
iterations and size of the data block), which often leads to the ability to only
attack reduced versions of the cryptosystems.

By collecting a few differential pairs relative to the last non-linear step, the
attacker can reduce and finally guess the values computed in the last rounds,
thus being able to infer the last round key. Once the key has been recovered,
the key schedule can be inverted to obtain the initial secret key; if this is not
possible, then the attack can be reiterated on each round, starting from the last,
until the whole key material is exposed.

The key schedule for the FOX ciphers is non-invertible: hence, once the last
round key is revealed, the attack will be repeated either on the preceding round
or on the key schedule directly to recover the master secret key. In this extended

102 L. Breveglieri, I. Koren, and P. Maistri

abstract we describe the initial steps required to mount the attack and recover
the last round key. All the steps to recover the whole key material and the related
results will be described in the full paper.

In the following, we will consider a fault as a random byte addition in GF(28),
i.e., a XOR with a random byte value, such as in [9]. A single bit fault, in fact,
would lead to a simpler problem, but is less realistic. A byte fault, on the other
hand, can be injected more easily. Exact knowledge of the location of the af-
fected byte is not crucial, although it simplifies the analysis. If this information
is not available, then a guess can be made and verified later with additional
experiments (i.e., faults) until a unique guess is possible. Timing, on the other
hand, is very important: the fault injection must be carefully synchronized with
the encryption process, in order to affect the desired operations. This can be
achieved, for instance, by analyzing the power trace of the device while comput-
ing and identifying the desired round. The exact location within the round can
be determined after few (random) attempts.

The attack on the last round must be planned in two phases, since the round
key is actually used in two separate instances. The first phase allows to retrieve
the leftmost part of the key, which is used at the beginning and at the end of the
round. The fault must be injected before the last non-linear operation, which
means between the first and the last Sbox stages of the final round. Any time
instance in this interval is fine, but the effectiveness of the attack is increased
if the injection occurs before the linear diffusion step, i.e., the mu/ operation.
In this case, the linear transformation spreads the fault through the whole word
and more information is provided.

For instance, suppose that an error € is injected into the leftmost byte of
the word, right before the mu/ operation, resulting in the error word (e, 0,0, 0).
Then, the error is spread by the diffusion step and the error word becomes
(¢, €, ce, ae), where ¢ and « are coefficients of mu4. This is the differential input
to the last substitution operation, and although unknown, we can still identify
some regularity, and prune for instance all those values which are not admissible
for each byte of the word (i.e., error values that would give an empty set of
candidates for the Sbox inputs). The output differential, on the other hand, is
known and this information can be used to narrow the search.

The first fault injection is used to build the set of all possible candidates,
considering any admissible fault value. For each additional fault, a new candidate
set is built and intersected with the current solution set, thus narrowing the
number of possible candidates. The process continues until a unique candidate
is identified for each possible byte. The value found in this way is the input to
the last Sbox step. Thus, it is easy to recover the key value used in the last key
addition, i.e., the left part of the last round key.

In this phase, knowing where the fault has been injected simplifies the analysis,
because we know how the error spreads after the mu/ operation. If this is not the
case, however, the actual location may be guessed and the analysis performed
as described above; for each additional fault, a new guess is made. If the guesses
are all correct, then the procedure will give the unique desired solution. If an

A Fault Attack Against the FOX Cipher Family 103

empty candidate set is found, then at least one of the guesses was incorrect and
we have to backtrack and try another possible solution. Although this procedure
increases the complexity of the search tree, we found that the correct key value
could be often identified after only 2 or 3 attempts when the location was known.
The whole search tree, with a new branch for each location guess and for each
injected fault, gives 4/ leaves where f is the number of faults. This number is
an upper bound, since many branches can be pruned after each fault injection,
thus reducing the complexity of the attack.

The second phase aims at recovering the rightmost part of the round key.
The approach is the same and is based on injecting a fault before the first
non-linear step of the last round. In this case, however, the structure of the
last round (see Figure [I) gives us both the input and the output differentials,
making the analysis much easier. On the other hand, the diffusion step does
not provide any additional information, which means that each byte must be
targeted individually.

Based on our simulations, the last round key was completely revealed after
11.45 injected faults on average. Further analysis of the distribution of the faults
required to recover the key reveals that the first phase requires from 2 to 8 faults,
while the second phase uses from 8 to 28 faults: the worst case is however rare,
and the average values are about 2.94 and 8.51 for the first and second phase,
respectively. The complete attack requires from 8 to 31 faults. The distribution
curves are shown in Figure[d where the worst cases (when more than 20 faults are
required) are not shown for clarity, but they constitute a negligible percentage
of the overall test space (less than 0.02%).

If the fault location is unknown, we are confident that a few fault injections
may be still enough to identify the leftmost part of the key. This issue does not
arise when performing the second phase of the attack on the round, since the
injected error can be inferred from the output result (see Figure[dl). This phase,
however, requires more faults since we cannot exploit the diffusion properties of
the linear stage. In fact, each byte of the key must be attacked separately. In the
full paper, we will provide the number of faults required to reveal the whole key
material in the two main scenarios.

OPhase 1 OPhase 2 M Totals

100%
90% —
80%
70%
60%
50% -
40%
30%

20%
10% 4 H
0% T u

Frequency

faults

Fig. 4. Number of fault injections required to mount the attack and recover the key:
left half (phase 1), right half (phase 2) and whole key (totals)

104 L. Breveglieri, I. Koren, and P. Maistri

4 Conclusions

In this paper, we present a fault injection attack against the newly introduced
FOX family of ciphers. The attack resembles currently known attacks against
AES, but unlike AES the key schedule of Idea Nxt is not invertible. This forces
the attacker to iterate the fault injection on every round of the encryption algo-
rithm to recover the whole key material, or to attack the key schedule directly,
as will be shown in the full paper.

The last round key can be found, on average, after 11.45 faulty encryptions. If
we assume that attacking any single round or the key schedule has the same com-
plexity, then the whole cipher can be broken after 183 or 23 faults, respectively.
These results will be confirmed in the full paper.

Differential fault analysis proves to be one of the most effective attack tech-
niques and can be used when the attacker has the ciphering device even for a
short time. Generic countermeasures such as those presented in [7JTT] or shield-
ing and sensors are possible. Moreover, the cipher is based on GF arithmetic and
can therefore be protected by means of a parity code, such as in [I]. We plan to
implement the cipher in hardware and evaluate the effectiveness and overhead
of these countermeasures.

References

1. G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri. “Error analysis and
detection procedures for a hardware implementation of the advanced encryption
standard,” IEEE Trans. Computers, 52(4):492-505, 2003.

2. E. Biham, A. Shamir, “Differential Fault Analysis of Secret Key Cryptosystems,”
Technical Report, Technion - Computer Science Department, 1997.

3. J. Blomer, J.-P. Seifert, “Fault Based Cryptanalysis of the Advanced Encryption
Standard (AES),” Financial Cryptography, Lecture Notes in Computer Science,
vol. 2742, pp. 162-181, 2003.

4. D. Boneh, R. DeMillo, R. Lipton, “On the Importance of Eliminating Errors in
Cryptographic Computations,” Journal of Cryptology, vol. 14, pp. 101-119, 2001.

5. P Junod and S. Vaudenay. “FOX : A New Family of Block Ciphers,” Selected
Areas in Cryptography, 11th International Workshop, SAC 2004, Lecture Notes in
Computer Science, vol. 3357, pp. 114-129, Springer, 2004.

6. M. G. Karpovsky, K. J. Kulikowski, and A. Taubin, “Robust protection against
fault-injection attacks on smart cards implementing the advanced encryption stan-
dard,” 2004 International Conference on Dependable Systems and Networks (DSN
2004), Proceedings, pages 93-101. IEEE Computer Society, 2004.

7. R. Karri, K. Wu, P. Mishraand and Y. Kim. “Concurrent error detection
schemes for fault-based side-channel cryptanalysis of symmetric block ciphers,”
Computer-Aided Design of Integrated Clircuits and Systems, IEEE Transactions
on, 21(12):1509-1517, Dec 2002.

8. R. Karri, G. Kuznetsov, and M. Gossel. “Parity-based concurrent error detection
in symmetric block ciphers,” Proceedings 2003 International Test Conference (ITC
2003), pages 919-926. IEEE Computer Society, 2003.

9.

10.

11.

A Fault Attack Against the FOX Cipher Family 105

G. Piret, J.-J. Quisquater, “A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and Khazad,” Cryptographic Hardware
and Embedded Systems - CHES 2003, Lecture Notes in Computer Science, vol.
2779, Springer-Verlag, pp. 77-88, 2003.

S. P. Skorobogatov and R. J. Anderson, “Optical Fault Induction Attacks,” Cryp-
tographic Hardware and Embedded Systems - CHES 2002, Lecture Notes in Com-
puter Science, vol. 2523, pp. 2-12, Springer, 2003.

K. Wu and R. Karri. “Idle cycles based concurrent error detection of RC6 encryp-
tion,” 16th IEEE International Symposium on Defect and Fault-Tolerance in VLSI
Systems (DFT 2001), Proceedings, pages 200-205. IEEE Computer Society, 2001.

	Introduction
	The FOX Cipher Family
	The Attack
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

