Detecting Faults in Integer and Finite Field Arithmetic Operations
for Cryptography

L. Breveglierif I. Koren! and P. Maistri

Abstract

Fault detection is gaining in importance since fault
attacks may compromise even recently developed
cryptosystems. In this work, we analyze the dif-
ferent operations used by various symmetric ciphers
and propose possible detection codes and frequency
of checking. Several examples (i.e., AES, RC5 and
DES) are presented to illustrate our analysis.

1 Introduction

Recently, schemes for detecting faults in hardware
implementations of several symmetric key encryption
algorithms have been developed. The motivation be-
hind the increased interest in such detection schemes
is based on two important observations. First, ci-
phered communication is very sensitive to errors in
the input data or faults occurring during the com-
putation, due to the strong non-linearity of the en-
cryption functions. Analysis of the effect of faults
occurring during the encryption process, described
in [3] for the Advanced Encryption Standard (AES)
algorithm and in [4] for RC5, has shown that even a
single bit error leads, after only a few rounds of the
algorithm, to a completely corrupted result.

The second reason for the increased importance of
fault detection, besides the data integrity issue, is
the observation that attacks based on fault injection
are feasible [6]. The authors of [6] showed that a
cryptographic device computing DES could be com-
promised by injecting a fault during the computation.
Depending on the cipher algorithm employed, useful

*L. Breveglieri and P. Maistri are with the Department of
Electronics and Information Technology, Politecnico di Milano,
Milano, Italy. E-mails: {brevegli,maistri}@elet.polimi.it

tI. Koren is with the Department of Electrical and
Computer Engineering at the University of Massachusetts,
Ambherst, MA, USA. E-mail: koren@ecs.umass.edu

data can be extracted by analyzing the resulting er-
roneous output. This approach proved to be success-
ful, and was later applied to other more recent algo-
rithms, such as AES [7]. It is worthwhile to note that
fault injection attacks are not limited to symmetric
block ciphers, although these received the most at-
tention in recent publications. In [2], fault injection
attacks against RSA-capable smart cards were stud-
ied; in [8], an erroneous RSA signature can lead to
an easier factorization of the modulus, thus breaking
the cryptosystem.

Some preliminary studies of fault detection schemes
have already been performed. In [11], Karri et al.
have proposed to use the existing hardware for an
immediate decryption of the cipher text. They rely
on the fact that the unit responsible for decryption
is normally not used during the encryption process
and is often independent of the encryption datapath
since it involves the inverse transformations. In US
patent [10] the embedding of error detection capabil-
ities in DES was proposed: additional bits are gen-
erated from the input and provided to the ciphering
device in parallel with the plain text. These bits,
acting as check bits for the error detecting code, are
propagated and updated during the encryption pro-
cess. Since the cipher is mainly based on substitution
tables, these tables are extended in order to also in-
clude the check bits. Checking for inconsistencies at
the end of the process may thus reveal a possible error
in the computation.

A different approach is needed when the operations
are more complex than substitutions. Some research
has been performed in this direction in [3, 4, 12]. In
[3], an error detection code was proposed for the AES
cipher. The proposed code is based on the well-known
parity code and uses one parity bit for each byte of
the 128-bit-long input. In [4], a similar approach is
applied to RC5 [15].

The objective of this paper is to analyze the differ-
ent types of basic arithmetic operations employed by
various encryption algorithms and list the different
fault detection schemes that can be used for these
operations. Based on such a classification we can
recommend certain fault detection techniques for the
analyzed ciphers. Finally, we discuss the required
frequency of error checking, i.e., we indicate whether
for a given cipher one can wait until the encryption
is complete and only then check for errors, or check
for errors at a higher frequency (e.g., every round)
since the error indication may disappear (due to er-
ror masking).

2 Symmetric ciphers

For the purpose of our study we need to first iden-
tify the operations that are used by the various ci-
phers. We carry out this task in this section, and
make some preliminary observations regarding fault
detection in dedicated VLSI implementations of ci-
phers. We consider for this purpose two principal ap-
proaches to fault detection, namely, duplication (the
brute force solution) and the use of an error detect-
ing code. The latter may prove to be more or less
efficient than duplication depending on the structure
of the selected code.

The list of the symmetric ciphers considered in this
paper (see Table 1) is far from being exhaustive; how-
ever, it includes all the finalists of the last AES round
[1,9, 14, 16], together with some other previously pro-
posed algorithms like DES [14], and RC5 [15]. Soft-
ware implementations for all these ciphers are avail-
able and all have been used in practice to some extent.
However, DES and more recently Rijndael (AES) are
more commonly used and dedicated VLSI devices are
available for computing them. Still, most of the con-
sidered ciphers are well suited for VLSI implementa-
tions: for instance RC5 and RC6, which, due to their
extreme simplicity, would yield very low cost imple-
mentations.

Usually symmetric ciphers have an iterative struc-
ture. The encryption process of a data block consists
of repeating a number of identical rounds (or two or
more alternating round types). Each round may con-
sist of a series of internal transformations, and uses
a round key, derived from the secret key. Having an
iterative structure greatly simplifies the design and

implementation of fault detection mechanisms.

The operations may be applied to the whole data
block or part of it and are:

e Bit-wise XOR (Exclusive OR); this is a modular
arithmetic (modulo 2) operation.

e Bit-wise AND and OR; these are logical opera-
tions.

e Modular addition, subtraction and multiplica-
tion of integers; the modulus depends on the
considered cipher, but is usually 2* or 2% + 1
(most often w = 16 or 32).

e Expansion, meaning that the data block is ex-
panded to a larger number of bits.

e S-Box, or Substitution-Box. It is included in
many different ciphers, and consists of a replace-
ment of bytes or words by means of a look-up ta-
ble. The way it is defined varies with the cipher,
and there does not seem to exist any general rule.

s Rotation and shift of the bytes or of the words
of the data block.

e Permutation of the bits, bytes or words of the
data block.

e Polynomial modular multiplication of the bytes
or the words of the data block. Usually one of
the two factors is fixed, so that multiplication
actually reduces to scaling.

All the above operations, considered in isolation, ad-
mit specific error detection codes (EDCs), and some
are so simple and inexpensive as to allow duplica-
tion, yet there does not seem to exist an EDC which
is inherently optimized for all of them. The design-
ers of the various symmetric ciphers have provided
some qualitative explanations of the reasons for pre-
ferring certain basic operations in the internal trans-
formations. These reasons are based on the need for
achieving diffusion (each bit of the input should af-
fect every bit of the output) and confusion (all the
regularities of the input are uniformed in the output)
while processing the input data block.

The presence of explicitly non-linear operations
makes the design of an error detecting code more
difficult and the code may become inefficient. The

mixture of different and incompatible algebraic struc-
tures may also pose a problem: a code which is effi-
cient for one structure may be very inefficient when
applied to the other. This may force the insertion of
a checkpoint and the generation of new check bits for
a different code.

The above mentioned criteria are however qualitative,
and still leave many degrees of freedom. We stress
that, as far as we know, there exist no specific and
well-defined criteria for designing reliable and fault-
resistant symmetric cyphers. Moreover, none of the
ciphers listed in Table 1 has been implemented in a
way that specifically addresses these issues.

We next make some detailed observations regarding
Table 1. First, there is only one operation, namely
XOR, which is used in all the ciphers analyzed. Note
also that there is only a single cipher, i.e., Camellia,
which makes use of purely logical operations (AND
and OR) (which, incidentally, are well-known to be
hard for error detecting codes). The same is true for
shift, which is used only by Serpent; expansion is used
only by DES. Polynomial multiplication (or scaling)
is common to only two ciphers: Rijndael (AES) and
Twofish. All the remaining operations are common
to three or more ciphers.

Some operations in Table 1 are invertible, while oth-
«ers are not (e.g., AND, OR, shift, etc). Every cipher
is invertible, since decryption must be possible. The
presence of non-invertible operations is compensated
by the fact that the input operands are preserved in
some way during the process. These operands are
also forwarded in some way, so that during decryp-
tion they can be reconstructed. It is well-known that
the presence of multiple data flows is a challenge for
fault detection.

In what follows, the analysis of the fault detection
issues is restricted to the Encryption data-path of
the ciphers, excluding both the Key Schedule and
the Decryption parts. This is done both for simplic-
ity of analysis and because Key Schedule is usually
built around the same operations used in Encryption.
Table 1 shows the sizes of the data processed by the
internal operations of the ciphers, but restricts atten-
tion to the Encryption data path only, for the above
mentioned reasons. For the S-Box, both the input
and the output size are listed (since they may differ).

Some details regarding Table 1 are necessary for the
rest of the paper. The operations (+) and (—) are in-

teger addition and subtraction, respectively, modulo
2" with w = 16 or 32. The operation (x) is integer
multiplication modulo 22 or 2'6 +1 (the latter mod-
ulus is used by IDEA [14]). Expansion is used only by
DES, and consists of transforming 4-bit nibbles into
sequences of 6 bits. S-Box is a substitution of bit
sequences (and its definition depends on the cipher)
with the most frequent case being a byte substitution.
Since S-Boxes must be invertible, they are one-to-one
functions. Rotation and shift are simple operations
and the number of bit positions may be either con-
stant or data dependent. Permutation consists of the
exchange of bits, bytes or words. Polynomial multi-
plication is defined over the finite field GF (28) with
one factor always a constant, i.e., the operation re-
duces to scaling.

3 Operations and error detec-
tion codes

This section provides a brief overview of the fault de-
tection techniques which are used in this paper and
discusses their application to the selected ciphers. We
focus on the basic multiple transient fault model,
which is appropriate for algorithms working on rel-
atively large data blocks (64 to 128 or more bits).
Although our analysis is based on the hypothesis of
multiple bit errors, we still consider and analyze first
the single bit error, which allows us to describe the
model more precisely.

Two types of error detection techniques are available:
duplication followed by comparison of the results, and
the use of error detecting codes (EDCs). Clearly, du-
plication can be applied to every cipher and would
achieve a 100% fault coverage. It is however a brute
force solution to error detection, and has a high hard-
ware overhead.

Error detecting codes are, in principle, more promis-
ing than duplication: they may achieve a relatively
high coverage, at least for low order errors, with a
relatively low hardware overhead. Moreover, EDC’s
could be applied to the entire data block, or to parts
thereof (bytes, words), thus allowing several variants.
We therefore mainly focus in the next sections on em-
ployment of EDC’s. The basic ones are: arithmetic
residue codes with the modulus 3, 7 and 15; and par-
ity codes. Residue codes are most suited for modular
arithmetic operations, while parity codes are appro-

priate for logical and polynomial ones.

Remember that the use of these EDC’s implies the
need of: a code generator circuit (to be used ini-
tially and ahead of every checkpoint), a set of code
prediction circuits (one for each internal operation),
and a comparator for checking the real check bits
against the predicted ones at each checkpoint. The
scheduling of the checkpoints must also be planned,
and it depends on the tradeoff between the desired
fault coverage and the acceptable hardware and per-
formance overhead. Since all ciphers are iterative,
scheduling the checkpoints basically means deciding
on the checkpoint frequency in the round flow, and
whether the checkpoint should be executed between
two rounds or in the middle of the round.

All the above listed EDC’s can be applied at differ-
ent levels of granularity. Table 1 suggests that the
right levels to select from are byte level (8 bits) and
word level (16 or 32 bits), since most internal opera-
tions work on data of such sizes. Applying an EDC
at the level of the entire data block does not seem to
be a good choice since the data block is large and is
always fragmented into shorter bit sequences for pro-
cessing: a global code would require a large overhead
for prediction and will provide a low fault coverage.
We will therefore consider residue and parity codes
at the byte and word level.

3.1 Feasibility of the EDC techniques

Table 2 shows the estimated cost of the various EDC
techniques listed above, when applied to the oper-
ations of the ciphers, listed in Table 1. We distin-
guish between EDC’s which have an acceptable cost
(a “yes” entry in the table) and expensive EDC’s (an
“exp.” entry). An EDC is considered expensive when
its implementation (generation, prediction and com-
parison of the check bits) requires an overhead com-
parable to that of duplication, which is 100% plus
the overhead of the comparator of the two results.
Some special cases in Table 2 are explained below, in
Sections 3.1.1 and 3.1.2.

3.1.1 Codes

We next provide explanations on the entries of Table
2. The generation and prediction techniques of the
various EDC’s are omitted for brevity. Residue base

15 is not considered at the byte level since it uses 4
check bits resulting in 50% bit overhead, which is un-
acceptable for an error detection code; it is considered
at the level of words of 16 or 32 bits.

Both parity and residue coding are reasonable for bit-
wise XOR, although parity is obviously more suit-
able. On the other hand, both codes are expensive
for bit-wise AND and OR; moreover, AND and OR
are so inexpensive themselves, that the prediction of
any conceivable EDC will cause an overhead larger
than that of duplication.

Expansion is used only by DES: due to its fine-grained
and unconventional size of input to the S-Box, any
code is quite expensive. S-Box is a non-linear substi-
tution, and hence its treatment is more complex and
will be detailed below.

Both parity and residue codes are feasible for inte-
ger modular addition and subtraction; still, residue
is better suited than parity code, which can be an
acceptable solution for a single byte. Residue code is
appropriate for integer modular multiplication, while
parity is expensive since all the intermediate carries
must be considered. In contrast, parity is feasible for
polynomial multiplication in GF (2®) when one of the
two factors is fixed (scaling), while the residue code
is expensive.

Both parity and residue codes incur a reasonable
overhead for rotation at the byte and word level, with
the exception of residue base 7. Shifting is generally
expensive because the shifting amount may not be
known a priori; however, it is used only in Serpent
and only small shift amounts are used, which means
a reasonable overhead for parity and residue codes
(since shifting by k is a multiplication by 2¥); both
parity and residue codes have reasonable overhead for
permutations at the byte and word levels, obviously.

3.1.2 S-Box

S-Box is a non-linear substitution which is usually im-
plemented by means of a look-up table. Two kinds
of faults are possible: those affecting the contents of
the look-up table and those affecting the address de-
coder. The address is extended by concatenating the
check bits of the code. In the entries of the look-up
table for valid address codewords, the corresponding
correct output codewords are stored (data bits plus
check bits), while the remaining entries contain a de-

Operations - Data-Path of the Encryption part of the Cipher
Input mod n mod G (z)

Ciphers Size XOR |AND|OR| + | — | x | Expan. | S-box |Rot.|Shift | Perm. X
Camellia 128 8,32,64 | 32 | 32 88| 32 32,64

DES 64 32, 48 32 48| 6 =+ 4 1

IDEA 64 16 16 16 16

8 — 32

MARS 128 32 32 | 32 | 32 9 — 32 32 8

RC5 64 32 32 32

RC6 128 32 32 32 32 8
Rijndael 128 8 8—8 8 8
Serpent 128 32 44| 32 | 32
Twofish 128 32 32 8—+8| 32 8,64 8

Table 1: Symmetric ciphers and the operations they
size.

use in the Encryption data-path only, with operand

Per byte Per word
Operation | Parity | Res. 3| Res. 7 | Parity | Res. 3 | Res. 7 | Res.. 15
XOR yes ves yes yes yes yes yes
AND more expensive than duplication
OR more expensive than duplication
+ modn yes yes yes yes yes yes yes
— mod n yes yes yes yes yes yes yes
x mod n exp. yes yes exp. yes yes yes
Expansion separate treatment (applies only to DES)
S-Box yes exp. exp. yes exp. exp. exp.
Rotation yes yes exp. yes yes exp. yes
Shift yes yes yes yes yes yes yes
Permutation yes yes yes yes yes yes yes
x mod G (x) yes exp. exp. yes exp. exp. exp.

Table 2: Operations and the allowed error detection coding techniques: exp. - very expensive; yes - reasonably

feasible.

liberately incorrect codeword (e.g., the data can be
all 0 with invalid check bits). This way, the data sec-
tion of the memory is protected, but not the address
decoder.

To protect the latter, an auxiliary and independent
memory unit is needed, storing only the check bits of
the correct output. The two memories are operated
in parallel and the check bits of the codeword pro-
vided by the main memory must be compared with
the output bits of the auxiliary memory. A mismatch
between the two will indicate a fault in the address
decoder. When this happens, the system should out-
put a deliberately incorrect codeword, as before.

In both cases, the address is extended by concatenat-

ing the check bits. Therefore, only the parity code
has an acceptable overhead since it doubles the size
of the memory, which has an overhead similar to that
of duplication. Residue codes with modulus 3, 7 or 15
would increase the size of the memory by a factor 4, 8
or 16, respectively, which is unacceptable. Note also
that the auxiliary memory (for detecting address de-
coder faults) is much smaller than the main one and
its overhead is relatively small.

3.2 Preferred EDC’s

Some preliminary conclusions can be drawn regarding
the preferable error detection code for each symmet-

ric cipher. Most operations allow simple prediction
rules both for parity and residue codes. Few opera-
tions are an exception to this rule: integer multiplica-
tion, for instance, allows only for residue prediction:
this forces to choose residue codes when the cipher
employs integer multiplications, such as RC6. On
the other hand, expansion in DES and polynomial
multiplication (AES and Twofish) are better suited
to parity codes, which are hence the suggested choice
for those ciphers.

IDEA uses only exclusive ORs, natural additions and
modular multiplications. However, the product uses
the modulus (2® + 1) so that the parity code is not
a reasonable choice, but even residue codes are ex-
pensive, since the unusual modulus makes the com-
putation of the corrective term a very complex task.

As stated in Section 3.1.2, the addressing and storage
overheads for residue code prediction in S-Boxes sug-
gest that parity code is preferable. However, MARS
uses also integer multiplications, which are not suited
for parity prediction, hence a compromise must be
achieved. When no conflicts exist, parity is still the
simplest choice. Other operations have affordable
prediction rules for both codes which can hence be
reasonable choices, such as the case of RC5. The re-
sults are summarized in Table 3.

Cipher Suggested Code
Camellia Intractable by EDC
DES Parity
IDEA Residue, but expensive
MARS Residue, but expensive
RC5 Parity or Residue
RC6 Residue
Rijndael (AES) Parity, per byte
Serpent Parity, per byte
Twofish Parity, per byte

Table 3: Suggested error detecting codes for protect-
ing various symmetric ciphers.

4 Frequency of checking

In the previous sections various options have been ex-
amined for detecting faults in the studied symmetric
ciphers. All the detection techniques (i.e., parity and
residue, at the byte and word level), are able to de-

tect single transient faults (see for instance [13]). This
means that, if error checking is performed at the end
of each internal transformation of every round, the
coverage of single bit transient faults is 100%.

However, this is a very high checking frequency and
has a considerable hardware overhead. Since the ci-
phers are all iterative and consist of a repetition of
a basic round, it might be possible to perform the
checking less frequently, for instance once at the end
of each round or even only once at the end of the
whole sequence of rounds. This allows speeding up
the clock rate and reduces the time latency. In a
pipelined architecture, reducing the check frequency
would allow implementing fewer checkers and thus
reducing the hardware overhead as well.

Define the error signature as the difference between
the real values and the predicted values of the check
bits for the data block. Then, the exact error prop-
agation model will depend on the particular cipher
studied. We assume that the key scheduling al-
gorithm is fault-free, and the rounds following the
one(s) that has (have) been affected by the fault are
also fault-free: consequently, they evolve the error
signature, by spreading or canceling the errors.

To determine how an error signature propagates
throughout the cipher, it is necessary to examine how
the predicted values of the check bits at the output
of each transformation contained in the round step
depend on the predicted values of these bits at the
input of the transformation.

In simple cases, the propagation rule of the error sig-
nature depends only on the value of the current error
signature (and not on the actual values of the code or
the datum). This is not always true and must be con-
firmed in every case, though most EDC's satisfy it.
Should this be false, the analysis of the propagation
of the error signature would be much more complex,
since it would depend on the datum as well.

Thus, the error signature depends only on its previ-
ous value and is determined by the single prediction
rules. In most cases, the global rule proves to be a
linear error propagation model or is reducible to a
composition of linear models, thus simplifying con-
siderably the error signature propagation rules.

The error propagation analysis is therefore very de-
pendent on the considered cipher. The analysis for
AES is partially outlined in [3], and can serve as a
guideline for the remaining ciphers. The checkpoints

for AES were scheduled only at the end of the en-
cryption: as shown in [5], the evolution of the error
state model can be described by a 16 x 16 matrix de-
fined over GF(2): this matrix is non-singular and its
8" power is the Identity matrix. Hence, any single
fault will propagate (spreading and contracting) to
the end and will never be completely canceled. Even
the RC5 cipher gives similar results [4]: both residue
and parity codes can be propagated through the oper-
ations used in RC35, and the propagation model (not
described here for brevity) allows the single fault to
reach the comparator at the end of the encryption.

DES requires a completely different approach: due
to its permutation unit, which acts at the bit level
on the whole word, it is not possible to derive a sim-
ple prediction rule for the detecting code. Hence, a
checkpoint must be scheduled within the round, and
then the code has to be regenerated. The inner check-
point makes the check at the round level redundant:
this is the approach used in [10], where only inner
and final checkpoints are scheduled, but none at the
end of the round. IDEA would also require inter-
nal checkpoints, due to the prediction overhead for
its multiplications. However, since there are 4 checks
per round, implementing them would be extremely
costly in terms of overhead and latency.

Such frequent checking is also required when the code
is larger-grained than the operations. Consider for
example, 8-bit S-Boxes and a word parity code; be-
fore accessing the look-up table, we need to check
the consistency of the code, compute the S-Box and
finally recompute the new code, with an additional
global overhead.

5 Conclusions

In this paper, some suggestions were given in order
to provide fault detection capabilities in recent block
ciphers. Some preliminary experiments were run, but
the results were not shown for brevity.

Acknowledgment: The work of Israel Koren has been
supported in part by DARPA/AFRL NEST program un-
der contract number F33615-02-C-4031. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or im-
plied, of the Defense Advanced Projects Agency, AFRL,
or the US Government.

References

[1] R. Anderson, E. Biham and L. Knudsen, “Serpent: A
Proposal for the Advanced Encryption Standard,” avail-
able from www.cl.cam.ac.uk/ ~rjal4/serpent.html, 1999.

[2] C. Aumiiller, P. Bier, W. Fischer, P. Hofreiter,
J.-P. Seifert, “Fault attacks on RSA with CRT:
Concrete Results and Practical Countermeasures,”
http://citeseer.nj.nec.com/525626.html, 2002.

[3] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, V. Piuri,
“Error analysis and detection procedures for a hardware
implementation of the Advanced Encryption Standard,”
Computers, IEEE Transactions on, Volume 52, Issue 4,
pp. 492-505, 2003.

[4] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, V. Piuri,
“Concurrent Fault Detection in a Hardware Implemen-
tation of the RC5 Encryption Algorithm,” Proc. of the
IEEE Intern. Conf. on ASAP 03, pp. 410-419, 2003.

[5] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, V. Piuri,
“Detecting and locating faults in VLSI implementations
of the AES,” Proc. of 18th IEEE Intern. Symp. on DFT
in VLSI Systems, '03 pp. 105 - 113, 2003.

[6] E. Biham, A, Shamir, “Differential Cryptanalysis of the
Data Encryption Standard,” Springer Verlag, 1993.

[7] J. Bléemer and J.-P. Seifert, “Fault based cryptanalysis of
the Advanced Encryption Standard,” Cryptology ePrint
Archive, Report 2002/075, 2002.

[8] D. Boneh, R. DeMillo, R. Lipton, “On the Importance
of Eliminating Errors in Cryptographic Computations,”
Journal of Cryptology, vol. 14, pp. 101-119, 2001.

[9] C. Burwick, et al., “MARS - A Candidate Ci-
pher for AES” NIST AES Proposal, research-
web.watson.ibm.com /security /mars.pdf, 1998.

A. S. Butter, C. Y. Kao, J. P. Kuruts, “DES encryp-
tion and decryption unit with error checking,” US patent
US5432848, July 1995.

R. Karri, K. Wu, P. Mishra, K. Yongkook, “Fault-based
side-channel cryptanalysis tolerant Rijndael symmetric
block cipher architecture,” Proceedings of the IEEE In-
tern. Symposium on DFT in VLSI Systems '01, pages
427-435, 2001.

R. Karri, G. Kuznetsov, M. Goessel, “Parity-Based
Concurrent Error Detection of Substitution-Permutation
Network Block Ciphers,” Proceedings of CHES 2003,
Springer-Verlag, pages 113-124, 2003.

W. Peterson, E. Weldon, Error-Correcting Codes, 2%
ed., The MIT Press, Cambridge, MA, U.S.A., 1972.

B. Preneel et al.,, “NESSIE D20 - NESSIE security re-
port,” citeseer.ist.psu.edu/preneel03nessie.html, 2003.

R. Rivest, “The RC5 Encryption Algorithm,” K. U. Leu-
ven Workshop on Cryptographic Algorithms, Springer-
Verlag, 1995.

[16] B. Schneier, J. Kelsey, D. Whiting, D. Wag-
ner, C. Hall and N. Ferguson, “Twofish: A 128-
Bit Block Cipher,” CounterPane Labs, available at
http://www.counterpane.com/twofish.pdf, 1998.

(10]

(11]

[12]

(13]
(14]

(15]

—

