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Abstract

Fault injection based attacks on cryptographic devices aim at recovering the secret keys by inducing
an error in the computation process. They are now considered a real threat and countermeasures
against them must be taken. In this paper, we describe an extension to an existing AES architecture
proposed by Mangard et al. [13], which provides error detection and fault tolerance by exploiting
the high regularity of the architecture. The proposed design is capable of performing online error
detection and reconfiguring internal data paths to protect against faults occurring in the computa-
tion process. We also describe how different redundancy levels provide protection against different
numbers of errors. The presented design incorporating fault detection and tolerance has the same
throughput as the base architecture but incurs a non-negligible area overhead. This overhead is about
40% for the fault detection circuitry and 134% for the entire fault detection and tolerance (through
reconfiguration). Although quite high, this overhead is still lower than for reference solutions such
as duplication (providing detection) and triple modular redundancy (providing fault masking).

1: Introduction

The AES algorithm is a symmetric block cipher standardized in 2001 by NIST [14] after allowing
the research community to investigate possible weaknesses of the cipher. Since the standard has
been established, many software and hardware implementations have been proposed. The software
implementations have been targeting various platforms, from x86 architectures down to smartcard
devices. The hardware solutions have been proposed for both reprogrammable devices, such as
FPGAs, and custom devices (ASICs). The goals of these implementations are quite different.
FPGA designs attempt to reduce the used gate count while keeping an acceptable throughput.
This is usually achieved by sharing components between the encryption and decryption units, or
by optimizing the mapping of the units onto the gate array [16]. Large throughput can be achieved
by exploiting intensively inter-round and intra-round pipelining [18].

In contrast, ASICs are usually optimized for inclusion in embedded systems and consequently,
the focus is on exploiting the maximum parallelism allowed by the algorithm and increasing the
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throughput, e.g., by unrolling the round iterations and pipelining the operations [8]. The higher
throughput incurs a very large area requirement, see for instance [17].

The increasing complexity of cryptographic algorithms raises some new issues. First of all, it
increases the likelihood of hardware failures, forcing us to check the validity of the result. Due
to the diffusive behavior of symmetric ciphers, even a single bit error occurring in the middle
of the computation can result in a completely different (and unusable, in the best case) result.
Moreover, the occurrence of a computation error can be exploited by an attacker to easily recover
the secret key with a very small number of attempts, each consisting of the pair made of the
correct and the wrong output. When errors can be deliberately injected, this attack becomes
a very powerful threat to cipher security. Errors can be induced in several ways, but the most
effective way is by electromagnetic radiation (i.e., light or laser beam). The timing and location
of the fault can be controlled precisely but the actual injected error can not be predicted and it
is hence considered random. Some examples of fault attacks can be found in [4, 6] which address
fault attacks against DES and RSA, respectively. Many attacks have also been proposed against
AES after its standardization. These mostly affect the last computation rounds to exploit the
controlled confusion features of the permutation layer (i.e., the MixColumns operation); see for
instance [5, 7, 15].

Such fault injection attacks can be made ineffective by using some error detection scheme. An
initial solution was proposed in [9] where error detection is achieved by exploiting the redundancy of
functional units typical of encryption/decryption units. Later research has studied the application
of error detecting codes to symmetric block ciphers [1, 10]. Simple codes like parity allow obtaining
very high detection capabilities at a reasonable cost. Using parity code for fault detection in generic
Substitution-Permutation Networks has also been discussed in [11].

So far, error codes were used only for detection purposes. However, it has been proven in [2] that
the parity code at the byte level can also be used to locate the error even after several rounds have
been completed. In this paper we show an extension to an existing architecture [13] incorporating
our error detection scheme. Moreover, we further develop the architecture in order to provide fault
tolerance through reconfiguration at computation time. As soon as an error is detected, the parity
scheme allows to locate the faulty computation cell and a backup cell takes its place. Computation
is then restarted from the beginning to provide the correct result.

The paper is organized as follows. In Section 2 we provide a brief overview of the AES encryption
algorithm and the reference architecture. Section 3 describes the application of the error detection
code and the structure of the fault tolerant architecture. The evaluation of the hardware costs and
the performance impact are presented in Section 4. Section 5 concludes the paper.

2: The Advanced Encryption Standard

2.1: The AES algorithm

The Rijndael encryption algorithm [14] consists of three procedures, namely Encryption, Decryption
(i.e., the inverse of Encryption) and Key Schedule. NIST imposed an input block size of 128 bits
with the most common version using a 128-bit-long key, but longer keys are allowed. The ciphered
output is 128-bit. The architecture we propose is limited to 128-bit-long keys; however, longer keys
can be easily supported by modifying the Key Unit and the Control Unit.

2

Proceedings of the 2005 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05) 
0-7695-2464-8/05 $20.00 © 2005 IEEE 



The encryption process consists of 10 iterative rounds executed after a pre-processing key-mixing
phase, where the initial key is added (modulo 2) to the initial input. The intermediate result of the
encryption process is stored in a 16-byte square matrix S called state. The encryption round is a
chain of four byte-based transformations, both linear and non-linear, defined over the Galois Field
GF (28) (see Figure 1). These transformations are:

SubBytes: a byte-wise non-linear substitution, it can be computed on-the-fly or implemented by
means of a lookup table;

ShiftRows: a byte rotation of the rows of the state S using an offset that depends on the row itself;
MixColumns: a linear algebraic transformation of each column of the state, over the Galois Field;
AddRoundKey: a bit-wise addition (modulo 2) of the current round key, provided by the key

schedule, to the state S.

Each round key is also a 16-byte square matrix. The Key Schedule updates the matrix by using
some of the encryption operations: in particular, each byte of the last row of the matrix is fed as
input to the SubBytes operation. This result is later used to update each row of the matrix with a
cascaded XOR-tree. Further details about AES can be found in [1]; Galois Fields are described in
[14].
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Figure 1. Block diagram of Rijndael’s AES: (a) Key Schedule, (b) Encryption.

2.2: The reference architecture

The architecture we selected as a reference was presented in [13]. The authors described a highly
regular architecture, which mimics the AES state: each byte of the state is computed and stored
in a data cell, which communicates only with the cells in the same row or column (see Figure 2).
Additionally, each cell has an extra input for the round key, not shown in the figure to make the
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drawing clearer. The first clock cycles are used to load the plain text into the circuit by feeding
the input from the side. After the load is complete, the encryption process starts.

The actual computation process is slightly different for the two architectures. The baseline archi-
tecture has only 4 SubBytes units, which means that data is cycled vertically through each cell to
enter the SBoxes and is updated at each cycle. The ShiftRows operation is computed by proper
data routing at this stage. The MixColumns and AddRoundKey operations are computed in the
next clock cycle. For this computation, each cell communicates with the other cells in the same
column. Since the SBox implementation is pipelined, 6 clock cycles are needed to compute the
SubBytes for the whole state and then complete the round. The Key Schedule updates the round
key using the idle cycle of the SBoxes of the encryption datapath, thus saving some area.

DC DC DCDC Plaintext

DC DC DCDC Plaintext

DC DC DCDC Plaintext

DC DC DCDC Plaintext

SB SB SBSB

ShiftRows
Multiplexors

From Key ScheduleSubBytes
Input Selectors

To Key Schedule

Ciphertext

Ciphertext

Ciphertext
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Figure 2. Baseline reference architecture [13]; DC = Data Cell, SB = SBox.

The high-performance architecture adopts an SBox component for each data cell. Since the SBox
is still pipelined, the SBoxes of the last row can also be used to update the round key. A single
round is computed in only 3 clock cycles, at the expense of 16 global SBoxes. This architecture
differs from the one presented above mainly in the number of SBoxes, since each data cell has its
own. The fact that each data cell has its own SBox leads to some interesting consequences. First
of all, there is no need to cycle the data vertically to compute SubBytes. Instead, the computation
is performed locally by each data cell. Second, the ShiftRows operation must be implemented
explicitly by connecting properly the data cells. Additional multiplexers are still needed to support
both shifting directions, i.e., when decrypting data.

In the next section we discuss the changes we made to the architecture in order to support online
error detection and reconfiguration.
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3: Online detection and reconfiguration

3.1: Detection through parity code

In order to provide error detection capabilities, we decided to adopt the parity code as described in
[1]. The choice was motivated by the fact that both the code and the architecture are fine-tuned to
work at byte level. The basic processing unit of the reference architecture is the data cell computing
and storing a single byte. The granularity of the parity will therefore be one parity bit for each
data cell.

Each data cell was upgraded to store the 9th bit for parity and all the encryption operations were
similarly extended to provide parity prediction during execution. The prediction for ShiftRows and
AddRoundKey is trivial. The prediction for the MixColumns operation is made more complex by
the need to support both the encryption and decryption procedures. The higher complexity of the
prediction rule is due to the larger coefficients of the Inverse MixColumns matrix. Prediction for
SubBytes follows the approach used in [3]. Due to the non-linearity of the operation, no simple
rule exists and prediction is obtained by XOR’ing the input data bits, the input parity and the
stored predicted parity (computed on the basis of a correct input). When the input is faulty, the
error is easily propagated to the output (see Figure 3). This approach allows to implement the
SBox by using composite fields, as in our case, and allows complete freedom in the implementation;
the SBox parity table acts as the actual parity predictor, while the XOR’ing of all the input bits
constitutes the error propagation component; i.e., if the input is faulty, the result is computed
as if the data bits were correct, but the output parity is complemented in order to restore the
inconsistency, which will signal the error at the next checkpoint.

S-Box
Data

S-Box
Parity

SubBytes
Input Data

SubBytes
Input Parity

SubBytes
Output Parity

SubBytes
Output Data8

8

1 1

1

1

Figure 3. Parity propagation in SubBytes.

Parity prediction is implemented also in the Key Schedule component. However, since the opera-
tions used in key generation are those used also in the encryption datapath, we will skip the details.
Moreover, the baseline reference architecture does not include any SBox in the Key Unit, relying
instead on the SBoxes included in the Data Unit [13]. Thus, parity prediction is mainly parity
propagation through XOR ports. Recall that our implementation supports only 128-bit keys, but
longer keys can be easily supported as well, with a few changes in the control state machine.

In this architecture no explicit action is taken when an error is detected. Each single data cell
outputs the predicted parity bit and an additional error bit, calculated as the exclusive OR between
the predicted and the actual parity. The error bit can be used to signal the fault at the external
interface or to take some more defensive action such as key memory deletion. Note however that
this scheme targets round-level checkpoint frequency, which will be used in the next section. This
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means that there is no need to analyze the parity of the data input at each step. An erroneous
input will be detected by the checkpoint unit anytime, since any single byte fault is propagated to
the end of the process [2]. This approach greatly simplifies the global design.

3.2: Online reconfiguration

The parity error generated by each data cell can be used to route signals between correctly working
components. This can be achieved by introducing a backup element and some multiplexers to route
data to the correct path. Figure 4 shows how a backup data cell BKP can be used to substitute any
data cell in the same row. When a cell signals an error in its result, its input is redirected towards
the next data cell. Then, the input of the next data cell is redirected towards the end of the row,
until the backup unit is fed with the last input value. This technique is well-known in fault tolerant
array architectures [12]. For instance, suppose that there are 4 data cells in the row, named A, B, C,
D and a backup cell E. If an error occurs in cell B, then its input is redirected to cell C; the original
input of C is redirected to cell D, and finally, the original input of D is redirected to the backup
cell E. The route to A is left untouched. In a similar way, the correct value must be selected at the
output, in order to restore the correct data alignment: the lower layer of multiplexers, driven by
the reconfiguration unit (which is an extension of the Control Unit), propagates the correct value.
Using this approach, each row can be reconfigured to correct a single occurring error; this means
that up to 4 errors can be corrected online, provided they occur in different rows. If 2 or more
errors occur in the same row, reconfiguration is not possible and the device signals the inability to
continue.

Mux controls

DC DCDCDC BKP

Figure 4. Reconfigurable row with a backup element (Arrows represent the data path; simple
lines are the control signals).

The number of backup elements is not determined a priori. However, it should be emphasized that
the data cells, although very similar one to one another, are not identical. In fact, the coefficients
of the MixColumns operations are aligned according to the specific row (this is due to the property
of the Galois Field GF ((28)4) and the reducing polynomial chosen). For this reason, and to keep
the design simple, we did not use a single backup cell for the whole data unit, although this is
possible. Instead, we added a backup cell to each row. Since all the cells in the same row are
similar (they have the same MixColumns coefficients), data can be easily moved. Other solutions
are still possible: a single backup cell for the whole Data Unit as mentioned above, or a whole
backup column, managed with the same policies of the backup cell described in this paper. In
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the latter, when a cell is marked as faulty, the whole column is disabled and its input routed to
the adjacent column, and so on until the backup column is used. This reduces the number of
multiplexers required for proper routing of each cell input/output and thus simplifies the design.
Higher levels of redundancy can be implemented as well (e.g., a backup cell for each pair of data
cells), but the area overhead is likely to increase drastically.

4: Experimental results

The basic architecture was described in VHDL and then extended with error detection capabilities
first, and backup cells later. The architecture was synthesized three times, with target frequencies
of 200, 250 and 333 MHz. However, the latter was too restrictive and could not be met. Here
we report the results for the first two with target clock latencies of 5 and 4 ns, see Table 1. The
Table also includes our previous solution [3] which is a round-iterated architecture using a single-
stage pipeline and able to compute a complete encryption round in a single clock cycle. The new
architecture is more globally efficient (see column AT of Table 1) and can perform both encryption
and decryption.

We do not compare our results to the original solution in [13] since the technology libraries are
different. Instead, we want to investigate the overheads introduced by the redundant components
and provide a complete evaluation of the additional area and time requirements. Moreover, we
compare the solution proposed in this paper to our previous architecture presented in [3], which
supported only error detection.

We can analyze these results from different aspects. First of all, we can simply evaluate the
overheads with respect to the bare solution with no extensions. We want to highlight the fact
that there is no additional latency due to the code prediction logic or to the control logic used for
reconfiguration. Thanks to pipelining, the clock period is preserved, but on the other hand, the
increase in area is significant. Comparing to the error detecting version in [3], we note that the
overhead is much higher (about 40% versus only 18%). However, the previous design suffered from
a non negligible increase in latency, which does not occur in the current solution.

Table 1. Synthesis results and comparison.
Version Area µm2 overhead Latency ns overhead AT overhead
DFT ’04 - 1 stage pipeline
Base 233, 100 − 8.9 − 2, 074, 590 −
Detection 276, 500 +18% 12.0 +35% 3, 318, 000 +60%
DFT ’05 - Target clock 5ns - 3 stage pipeline
Base 147, 200 − 4.6 − 677, 120 −
Detection 212, 500 +44% 4.6 +0% 977, 500 +44%
Tolerance 385, 600 +162% 4.6 +0% 1, 773, 760 +162%
DFT ’05 - Target clock 4ns - 3 stage pipeline
Base 190, 800 − 3.6 − 686, 900 −
Detection 266, 700 +39% 3.6 +0% 960, 120 +39%
Tolerance 446, 500 +134% 3.6 +0% 1, 607, 400 +134%
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5: Conclusions

Attacks on cryptographic devices based on fault injection can now be considered a real threat. In
this paper, we have proposed an extension to an existing AES architecture, in order to provide error
detection and fault tolerance to protect against malicious fault injections. Thanks to pipelining,
the system throughput is unchanged, but the area overhead is significant (e.g., between 40% and
134%). This overhead is still lower than conventional solutions like duplication and Triple Modular
Redundancy (TMR). Moreover, our fault tolerant solution is able to sustain up to 4 independent
errors, while TMR can tolerate only one fault.
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