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Abstract

Fault detection in encryption algorithms is gaining in importance since fault attacks may com-
promise even recently developed cryptosystems. In this work, we analyze the different operations
used by various symmetric ciphers and propose possible detection codes and frequency of checking.
Several examples (i.e., AES, RC5, DES and IDEA) are presented to illustrate our analysis.

1: Introduction

Recently, schemes for detecting faults in hardware implementations of several symmetric key en-
cryption algorithms have been developed. The motivation behind the increased interest in such
detection schemes is based on two important observations. First, ciphered communication is very
sensitive to errors in the input data or faults occurring during the computation, due to the strong
non-linearity of the encryption functions. Analysis of the effect of faults occurring during the en-
cryption process, described in [2] for the Advanced Encryption Standard (AES) algorithm and in [4]
for RC5 [18], has shown that even a single bit error leads, after only a few rounds of the algorithm,
to a completely corrupted result.

The second reason for the increased importance of fault detection, besides the data integrity issue,
is the observation that attacks based on fault injection are feasible [6]. The authors of [6] showed
that a cryptographic device computing DES could be compromised by injecting a fault during
the computation. Depending on the cipher algorithm employed, useful data can be extracted by
analyzing the resulting erroneous output. This approach was later applied successfully to more
recent algorithms, such as AES [7, 11]. It is worthwhile to note that fault injection attacks are
not limited to symmetric block ciphers, although the latter received the most attention in recent
publications. In [10] it is shown how an error in some parameters of an ECC (Elliptic Curve
Cryptosystem) may reveal information which could lead to the secret key; in [1], fault injection
attacks against RSA-capable smart cards were studied. The authors of [8] showed how an erroneous
RSA signature can lead to an easier factorization of the modulus, thus breaking the cryptosystem.

Some preliminary studies of fault detection schemes have already been performed. In [12], Karri et
al. have proposed to use the existing hardware for an immediate decryption of the cipher text. They

1

Proceedings of the 15th IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP’04) 
1063-6862/04 $ 20.00 IEEE 



rely on the fact that the unit responsible for decryption is normally not used during the encryption
process and is often independent of the encryption datapath since it involves the inverse trans-
formations. In US patent [9] the embedding of error detection capabilities in DES was proposed:
additional bits are generated from the input and provided to the ciphering device in parallel with
the plain text. These bits, acting as check bits for the error detecting code, are propagated and
updated during the encryption process. Since the cipher is mainly based on substitution tables,
these tables are extended in order to include the additional check bits. Checking for inconsistencies
at the end of the process may thus reveal a possible error in the computation.

A different approach is needed when the operations are more complex than substitutions. Some
research has been performed in this direction in [3, 4, 13]. In [3], an error detection code was
proposed for the AES cipher. The proposed code is based on the well-known parity code and uses
one parity bit for each byte of the 128-bit-long input. In [4], a similar approach is applied to RC5.

In this paper we analyze the different types of basic arithmetic operations employed by encryption
algorithms and list different suitable fault detection schemes. We then recommend appropriate
fault detection techniques for the analyzed ciphers. We also discuss the required frequency of error
checking, Since, due to error masking, error indication may disappear, we indicate for each cipher
whether to check for errors at every round or only when the encryption is complete.

2: Symmetric ciphers

This section identifies the operations used by the various ciphers, and makes some preliminary
observations regarding fault detection in dedicated VLSI implementations of ciphers. To this end,
we consider two principal approaches to fault detection, namely, duplication (the brute force solu-
tion) and the use of an error detecting code. The latter can be either more or less efficient than
duplication depending on the structure of the selected code.

Table 1. Four Symmetric ciphers and the operations they use in the Encryption (or Decryp-
tion) data-path (the sizes of the operands are indicated).

Operations - Data-Path of the Encryption part of the Cipher

Input mod n mod G (x)

Ciphers Size XOR + × Expansion S-box Rotation Permutation ×

DES 64 32, 48 32 → 48 6 → 4 1

IDEA 64 16 16 16 16

RC5 64 32 32 32

Rijndael 128 8 8 → 8 8 8

The list of the symmetric ciphers considered in this paper (see Table 1) is far from being exhaustive;
however, it includes the winner of the last AES competition [16], together with some other previously
proposed algorithms like DES [15], RC5 [18] and IDEA [14]. In what follows, the analysis of the
fault detection issues is restricted to the Encryption data-path of the ciphers, excluding both the
Key Schedule and the Decryption parts. Software implementations for all four ciphers are available
and all have been used in practice to some extent. Two out of the four, namely DES and Rijndael
(AES), are more commonly used and have dedicated VLSI devices; however, the other two are also
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well suited for VLSI implementations. RC5, especially, would yield very low cost implementations
due to its extreme simplicity.

Usually, symmetric ciphers have an iterative structure, which greatly simplifies the design and im-
plementation of fault detection mechanisms.
The encryption process of a data block consists of repeating a number of identical rounds (sometimes
two or more alternating round types). Each round may consist of a series of internal transforma-
tions, and uses a round key, derived from the secret key. The operations, which may be applied to
the whole data block or to part of it, are:

• Bit-wise XOR (Exclusive OR); this is a modular arithmetic (modulo 2) operation.

• Modular addition, subtraction and multiplication of integers; the modulus depends on the
cipher, but is usually 2w or 2w + 1 (with w = 16 or 32).

• Expansion, meaning that the data block is expanded to a larger number of bits.

• S-Box, or Substitution-Box. It is included in many different ciphers, and consists of a re-
placement of bytes or words by means of a look-up table. The way it is defined varies with
the cipher, and there does not seem to exist any general rule.

• Rotation and shift of the bytes or words of the data block.

• Permutation of the bits, bytes or words of the data block.

• Polynomial modular multiplication of the bytes or words of the data block. Usually one of
the two factors is fixed, so that multiplication actually reduces to scaling.

All the above operations, considered in isolation, admit specific error detection codes (EDCs), and
some are so simple and inexpensive as to allow duplication. Still, there does not seem to exist an
EDC which is inherently optimized for all of them. The designers of the various symmetric ciphers
have provided some qualitative explanations of the reasons for preferring certain basic operations
in the internal transformations. These reasons are based on the need of achieving diffusion (each
bit of the input should affect every bit of the output) and confusion (all the regularities of the input
are uniformized in the output) while processing the input data block.

The presence of explicitly non-linear operations makes the design of an error detecting code more
difficult and the code may become inefficient. The mixture of different and incompatible algebraic
structures may also pose a problem: a code which is efficient for one structure may be very inefficient
when applied to the other. This may force the insertion of a checkpoint and the generation of new
check bits for a different code.

The above mentioned criteria are however qualitative, and still leave many degrees of freedom.
We stress that, as far as we know, there exists no specific and well-defined criterion for designing
reliable and fault-resistant symmetric cyphers. Moreover, none of the ciphers listed in Table 1 has
been implemented in a way that specifically addresses these issues.

We next make some detailed observations regarding Table 1. First, there is only one operation
among those analyzed, namely XOR, which is used in all the ciphers considered. Note also that
expansion is used only by DES; polynomial multiplication (or scaling) is used only by Rijndael
(AES); rotation is used only by RC5, while natural multiplication is used only by IDEA. All the
remaining operations are common to several ciphers.

The following details regarding Table 1 are necessary for the rest of the paper. The operation
(+) is integer addition modulo 2w with w = 16 or 32. The operation (×) is integer multiplication
modulo 216 + 1. Expansion consists of transforming 4-bit nibbles into sequences of 6 bits. S-Box
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is a substitution of bit sequences and its definition depends on the cipher. Permutation consists
of the exchange of bits, bytes or words. Polynomial multiplication is defined over the finite field
GF

(
28

)
with one factor always a constant.

3: Operations and error detection codes

This section provides a brief overview of the fault detection techniques used in this paper and
discusses their application to the selected ciphers. We focus on the basic multiple transient fault
model, which is appropriate for algorithms operating on relatively large data blocks (64 to 128 or
more bits). Although our analysis is based on the hypothesis of multiple bit errors, we still consider
and analyze first the single bit error, which allows a more precise description of the model.

Two types of error detection techniques are discussed: duplication followed by comparison of the
results, and error detecting codes (EDCs). Clearly, duplication can be applied to every cipher and
has a 100% fault coverage. It is however a brute force solution and has a high hardware overhead.

Error detecting codes are, in principle, more promising than duplication: they may achieve a
relatively high coverage, at least for low order errors, with a relatively low hardware overhead.
Moreover, EDCs could be applied to the entire data block or to parts thereof (bytes, words),
thus allowing several variants. We therefore focus in the next sections mainly on employment of
EDCs. The basic ones are arithmetic residue codes with the modulus 3, 7 and 15 and parity codes.
Residue codes are most suited for modular arithmetic operations, while parity codes are appropriate
for logical and polynomial operations.

Note that the use of these EDCs implies the need of a code (used initially and ahead of every
checkpoint), a set of code prediction circuits (one for each internal operation), and a comparator
for comparing the actual and predicted check bits at each checkpoint. Since all ciphers are iter-
ative, scheduling checkpoints implies deciding on the checkpoint frequency in the round flow and
whether the checkpoint should be executed in the middle or at the end of the round. The selected
schedule depends on the tradeoff between the desired fault coverage and the acceptable hardware
and performance overhead.

All the above listed EDCs can be applied at different levels of granularity. Table 1 suggests that
the right levels to select from are byte level (8 bits) and word level (16 or 32 bits), since most
internal operations work on data of such sizes. Applying an EDC at the level of the entire data
block does not seem to be a good choice since the data block is large and is always fragmented into
shorter bit sequences for processing. A global code would entail a large overhead for prediction
while providing only a low fault coverage. We therefore consider residue and parity codes at the
byte and word level.

The parity code is obtained by XORing all the bits of the word or byte, depending on the level of
the code. The residue code of a word is obtained by taking the modulo (2s − 1) of the word itself,
where s is the number of check bits. A simple way of computing the residue is taking the weighted
sum of the word bits: res(A) = res(an−1 . . . a0) =

∑n−1

i=0
ai res(2i).

3.1: Feasibility of EDCs

Table 2 shows the estimated cost of the various EDCs listed above, when applied to the operations
of the ciphers in Table 1. We distinguish between EDCs which have an acceptable cost (a “yes”
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entry in the table) and expensive EDCs (an “exp.” entry). An EDC is considered expensive when
its implementation (generation, prediction and comparison of check bits) requires an overhead
comparable to that of duplication. We next provide explanations on the entries of Table 2. The

Table 2. The cost of applying error correcting codes to the various operations: exp. - very
expensive; yes - reasonably feasible.

Per byte Per word

Operation Parity Res. 3 Res. 7 Parity Res. 3 Res. 7 Res.. 15

XOR yes yes yes yes yes yes yes

+ mod n yes yes yes yes yes yes yes

× mod n exp. yes yes exp. yes yes yes

Expansion separate treatment (applies only to DES)

S-Box yes exp. exp. yes exp. exp. exp.

Rotation yes yes exp. yes yes exp. yes

Permutation yes yes yes yes yes yes yes

× mod G (x) yes exp. exp. yes exp. exp. exp.

generation and prediction techniques of the various EDCs are omitted for brevity. Residue base 15
is considered at the level of words of 16 or 32 bits. It is not considered at the byte level since it
uses 4 check bits resulting in 50% bit overhead, which is unacceptable for an error detection code.

Both parity and residue codes are reasonable for bit-wise XOR, although parity is obviously more
suitable: residue code prediction must be corrected by subtracting the residue of the logical AND of
the operands (see [4]). Expansion is used only by DES: due to the unconventional size of the input
to the S-Box, any code is quite expensive. S-Box is a non-linear substitution, hence its treatment
is more complex and is detailed below.

Both parity and residue codes are feasible for integer modular addition and subtraction; still, residue
is better suited than parity code, which can be an acceptable solution for a single byte (parity
prediction must consider all the carries generated in the operation). Residue code is appropriate
for integer modular multiplication, while parity is expensive since all the intermediate carries must
be considered. In contrast, parity is feasible for polynomial multiplication in GF

(
28

)
when one

of the two factors is fixed (scaling) [3], while the residue code is expensive. Finally, both parity
and residue codes incur a reasonable overhead for rotation at the byte and word level, with the
exception of residue base 7 [2]. This holds also for permutations at the byte and word levels.

3.1.1: S-Box

S-Box is a non-linear substitution which is usually implemented by means of a look-up table. Two
kinds of faults are possible: those affecting the contents of the look-up table and those affecting the
address decoder. Both can be detected in the following way. The 8 input bits are inputted to three
units: (1) The ordinary S-Box look-up table; (2) a look-up table providing the correct parity bit for
the corresponding entry in the above S-Box table; and (3) an input parity checker. The parity bit
generated by (2) is then XORed with the parity check provided by (3) so that the final parity bit
is incorrect if the parity of the incoming byte was wrong. When the input is fault-free, the correct
parity is produced; if this is not the case, an incorrect result is propagated and its associated parity
is deliberately altered.
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A similar scheme can be applied to residue codes with modulus 3, 7 or 15, but the overhead will
be larger since the table (unit (2) above) will be larger than that for the parity code.

3.2: Preferred EDCs

Some preliminary conclusions can be drawn regarding the preferable error detection code for each
symmetric cipher. Most operations allow simple prediction rules both for parity and residue codes.
Few operations are an exception to this rule: integer multiplication, for instance, allows only for
residue prediction: this forces the choice of residue codes for ciphers employing integer multipli-
cations, such as IDEA. On the other hand, expansion in DES and polynomial multiplication in
AES are better suited to parity codes, which are hence the suggested choice for those ciphers. As
stated in Section 3.1.1, the addressing and storage overheads for residue code prediction in S-Boxes
suggest that parity code is preferable.

Table 3. Suggested error detecting codes for protecting various symmetric ciphers.

Cipher Suggested Code

DES Parity

IDEA Residue, but expensive

RC5 Parity or Residue

Rijndael (AES) Parity, per byte

IDEA uses only exclusive ORs, natural additions and modular multiplications. However, the prod-
uct uses the modulus

(
216 + 1

)
so the parity code is not a reasonable choice, but even residue codes

are expensive since the unusual modulus makes the computation of the corrective term a very
complex task. Other operations have affordable prediction rules for both codes which can hence be
reasonable choices, such as in the case of RC5. The results are summarized in Table 3.

4: Frequency of checking

In the previous sections we examined various options for detecting faults in the studied symmetric
ciphers. All the detection techniques (i.e., parity and residue, at the byte or word level), are able
to detect a single transient fault (see for instance [17]). This means that, if checking for errors
is performed at the end of each internal transformation of every round, the coverage of single bit
transient faults is 100%.

However, this is a very high checking frequency with a considerable hardware overhead. Since the
ciphers are all iterative and consist of a repetition of a basic round, it might be sufficient to check
less frequently, for instance once at the end of each round or even only once at the end of the whole
sequence of rounds. This will speed up the clock rate and reduce the time latency. In a pipelined
architecture, reducing the check frequency allows to implement fewer checkers and thus reduce the
hardware overhead as well.

We next study this possibility for three of the previously mentioned ciphers, namely Rijndael (AES),
RC5 and DES, since these exhibit different behaviors. Define the error signature as the difference
between the actual values and the predicted values of the check bits for the data block. Then, the
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exact error propagation model depends on the particular cipher studied. We assume that the key
scheduling algorithm is fault-free, and the rounds following the ones affected by the fault are also
fault-free: consequently, they evolve the error signature by spreading or canceling the errors.

To determine how an error signature propagates throughout the cipher, it is necessary to examine
how the predicted values of the check bits at the output of each transformation contained in the
round depend on the values of these bits at the input of the transformation.

Let D be the data block to be processed. The error signature is represented by a vector E = [ej ]
satisfying

ej = rj − pj

where

rj = actual check bits of the jth element

pj = predicted check bits of the jth element

and where the operator (−) depends on the algebraic structure over which the EDC is defined. In
the absence of errors, rj = pj, and thus the null vector O is the signature corresponding to the
error-free case.

In general, the prediction rule of the EDC check bits in any internal transformation of the round
has the following form:

p′j = fj (p1, p2, . . . , pm,D)

where pj are the predicted check bits from the preceding transformation. Ideally, the new predicted
EDC check bits p′j should depend only on the pj’s, but in most cases there is also a dependence
on part of the data block D. Note however that only the dependence on the pj’s is essential
for determining the propagation of the errors. If, for some values of the datum D, the p ′

j’s were
independent of the pj’s, then the propagation chain of the error signature would be interrupted
and a checkpoint would have to be inserted.

By definition, the element e′j of the error signature at the output of an internal transformation is

e′j = fj (r1, . . . , rm,D) − fj (p1, . . . , pm,D)

The above formula can be rewritten as follows:

e′j = fj (p1 + e1, . . . , pm + em,D) − fj (p1, . . . , pm,D) (1)

Equation (1) gives the propagation rule of the error signature. In simple cases the right hand side
of the above equation depends only on the ej’s (and not on the pj’s or D). More generally, it is
frequently possible to separate the dependence on ej from that on pj and the datum D. This is
not always true and must be confirmed in every case, though most EDCs satisfy it. We stress that,
should this be false, the analysis of the propagation of the error signature would be much more
complex, since it would depend on the datum D as well.

Thus, the error signature is updated as follows: E ′ = F (E), where F is some function determined
by fj in equation (1). In most cases, F proves to be a linear error propagation model or is reducible
to a composition of linear models, thus simplifying considerably the error signature propagation
rules.

The error propagation analysis is therefore very dependent on the considered cipher. The analysis
for AES is partially outlined in [3], and can serve as a guideline for the remaining ciphers. The
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checkpoints for AES were scheduled only at the end of the encryption: as shown in [5], the evolution
of the error state model can be described by a 16×16 matrix defined over GF (2): this matrix is non-
singular and its 8th power is the Identity matrix. Hence, any single fault will propagate (spreading
and contracting) to the end and will never be completely canceled. Even the RC5 cipher gives
similar results [4]: both residue and parity codes can be propagated through the operations used
in RC5, and the propagation model (not described here for brevity) allows a single fault to reach
the comparator at the end of the encryption.

DES requires a completely different approach: due to its permutation unit, which acts at the bit
level, it is not possible to derive a simple prediction rule for the check bits. Hence, a checkpoint
must be scheduled within the round, and then the code check bits must be regenerated. As shown
in Section 5, the inner checkpoint makes the check at the round level redundant, at least for the
word parity code. This is the approach used in [9], where only inner and final checkpoints were
scheduled, and none at the end of the round. IDEA also requires internal checkpoints, due to the
prediction overhead for its multiplications. However, since there are 4 multiplications per round,
the checkpoint implementation would be extremely costly in terms of overhead and latency.

Such frequent checking is required also when the code is larger-grained than the operations: e.g.,
consider 8-bit S-Boxes and a word parity code; before accessing the look-up table, we need to
check the consistency of the code, compute the S-Box and finally recompute the new code, with an
additional global overhead.

5: Detection coverage of multiple faults

The AES cipher was already studied in [3], with respect to parity code at the byte level. Here we
briefly summarize those results: the interested reader can refer to the original paper for further
details. The parity code is a natural choice due to the use of polynomial multiplication in GF (28)
and achieves impressive results due to the high regularity and symmetry of AES. The parity code
is able to detect all the faults that cause an odd number of errors. Those causing an even number
of errors are mostly detected, but 100% coverage is not guaranteed. The most likely case of unde-
tectable errors is pairs of errors occurring in the same byte, which are intrinsically not detectable
by parity codes. Most notably, the parity code also allows for the location of the fault [5].

The results of our study of the RC5 cipher are shown in Figures 1 and 2. The experiments were
run both with parity (Figure 1) and residue codes (Figure 2); the level of redundancy was chosen
out of 1, 2 or 4 bits per word; checkpoints were scheduled at each round or just at the end of the
encryption. Exhaustive simulations were performed for one or two faults; larger sets (from 3 to 20)
were tested by random generation of 1, 000, 000 plain text, key and injection combinations. The
figures show the percentage of undetected faults using a logarithmic scale. Single faults are not
considered, since they are always detected by the codes.

The continuous lines show the detection capability of the code when the check is performed at the
end of the entire encryption. The result is strictly dependent on the level of redundancy. The
dotted lines show the percentage of undetected faults when checking is performed at the end of
each round. This percentage decreases exponentially with the number of faults; this is a result of
the fault model we chose where each fault is uniformly distributed over all rounds. Note that the
residue code modulo 15 is the only code that is able to detect the faults in all the test cases; very
few fault sets are not detectable by this code if every round is checked, and those cases did not
occur in the simulation. The percentage of undetected faults for this code is thus 0% and is not
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shown on the graph. On the other hand, all odd-order faults are fully detected only by round-level
check of the parity codes. This does not apply to residue codes.

RC5 - Undetected Faults - Parity Code
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Figure 1. Undetected faults in the RC5 en-

cryption datapath with parity codes.

RC5 - Undetected Faults - Residue Code
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Figure 2. Undetected faults in the RC5 en-

cryption datapath with residue codes.

The results of similar experiments for the DES cipher are shown in Figures 3 and 4. Only the parity
code was studied; the level of redundancy was set to 1 (Figure 3) or 4 (Figure 4) bits per word;
checkpoints were scheduled at the end of encryption, at the end of each round or even within the
round, between the S-Boxes and the permutation unit. Parity codes allow detecting all odd-order
faults, therefore only even-order faults are shown. The same pattern is used in both figures when
the same frequency of checkpoints is followed.

Note that one parity bit per word gives very poor detection capability: checking at the end allows
detecting only half the injected faults, because parity must be regenerated after the substitution
boxes anyway even if the data is already corrupted. In fact, the S-Boxes act at a finer level than the
parity code. Moreover, if we use just one single bit per word, there is no difference between checking
at the end of each round and checking also within the round. The finer-grained checkpoints results
in a decreased percentage of undetected faults as the number of faults increases.
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Figure 3. Undetected faults in the DES en-

cryption datapath with word parity code.
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Figure 4. Undetected faults in the DES en-

cryption datapath with byte parity code.

If we increase the level of redundancy to 4 parity bits per word, the behavior of the parity code
depends heavily on the frequency of checkpoints. Checking at the end of each round gives a good
protection against even-order faults, and it scales well when increasing the amount of injected
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faults. Checking within the round allows detecting all the injected faults, which was confirmed also
by an extensive simulation of the double fault injection. The only drawback is the presence of some
false positives: a fault in the unmodified word can be canceled by a similar fault in the other word
at the beginning of the following round. This is obvious, since Feistel ciphers swap the two halves
of the input at each round. Checking at each round signals these cases as false positives, which
doesn’t happen when the checkpoint is scheduled only at the end of encryption. Finally, checking
this code at the end of encryption gives moderate results, with the percentage of detected faults
ranging from about 90% to 99%.
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Figure 5. Undetected faults in the IDEA en-

cryption datapath with residue-3 code.
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Figure 6. Undetected faults in the IDEA en-

cryption datapath with residue-15 code.

Figures 5 and 6 depict the results of similar experiments performed on the IDEA cypher using
residue codes, which are the only choice (though an expensive one) due to the uncommon 16-
bit multiplication. Exhaustive simulations were performed for single and double injected faults.
When injecting three or more faults, 1, 000, 000 random inputs and keys were generated for each
number of injected faults. Checkpoints were scheduled at three different levels (as for DES), where
the internal ones were located just before executing products. This was justified by the fact that
predicting through multiplication is expensive, hence the code should be verified and then re-
generated after the operation is completed. Since IDEA uses 16-bit words, we chose radix-3 and
radix-15 residue codes for each word, which introduce 12.5% and 25% redundancy, respectively.
The considerations made in the case of DES hold here as well, with some interesting differences:
first, only the finest-grained checkpoint frequency allows to detect all the single faults. Moreover,
the detection percentage is quite poor when compared to that of AES [3], and internal checkpoints
are mandatory if we want to break the 99%-detection barrier. Round-level checkpoints are a good
compromise, while a unique final checkpoint gives the lowest detection rate. The situation improves
when using radix-15 residue code, but the overhead introduced by the redundancy becomes as high
as 25%, not including the additional cost due to the prediction units and comparators.

6: Conclusions

In this paper we have presented suggestions for providing fault detection capabilities in recent
block ciphers. Some preliminary results have been shown regarding AES, DES, RC5 and IDEA.
Observations were made that can be extended to other ciphers on the basis of the operations
included in each datapath. In particular, we have shown that the detection capability of any code
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depends on the type of the code, the frequency of checkpoints and the level of redundancy.
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