Detecting and locating faults in VLSI implementations of
the Advanced Encryption Standard

Guido Bertoni', Luca Breveglieri', Israel Koren?,
Paolo Maistri!, Vincenzo Piuri?

"Department of Electronics and Information Technology
Politecnico di Milano, Milano, ITALY
2Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA, USA
3Department of Information Technologies
Universita di Milano, Crema, ITALY

bertoni@elet.polimi.it, brevegli@elet.polimi.it,
koren@ecs.umass.edu, maistri@elet.polimi.it, piuri@dti.unimi.it

Abstract

Concurrent fault detection for hardware implementations of the Advanced Encryption
Standard (AES) may provide protection against random faults, and against an attacker
who may maliciously inject faults in order to find the encryption secret key. We have
recently developed such a scheme which is based on the parity code. In this paper we prove
that the parity-based code detects all odd-order faults and allows the location of most single
transient and permanent faults.

1 Introduction

Fault detection and tolerance schemes for various implementations of cryptographic al-
gorithms have recently been considered. The motivation is twofold: there exist attacks for
breaking the encryption code, which are based on the deliberate injection of faults [3, 6, 8];
and, the circuit implementation of cryptographic algorithms can be quite complex, increas-
ing the likelihood of device failures [5]. Preliminary work on introducing fault detection
(and possibly tolerance) in hardware implementations of cryptographic units includes [4]
where a redundancy-based fault detection scheme was proposed for the Advanced Encryp-
tion Standard (AES), while [7] proposes a detection scheme based on time redundancy.

A different approach for fault detection in implementations of AES has been proposed
in [2] and further developed in [1]. This approach is based on the simple idea of using the
well-known parity bit error detection code (EDC) with a number of parity bits, and has
been proven to be very successful in achieving a high fault coverage, for both transient and
permanent faults, at the cost of reasonable hardware overhead.

It was shown in [1], based on simulation experiments, that the proposed coding scheme
detects all odd-order transient faults, but a complete formal proof was not given. Moreover,
the question arises whether the parity-based scheme would also allow the location of faults
(transient and permanent), which would facilitate developing fault tolerance techniques.

The goal of this paper is to further develop the parity-based coding scheme for AES, in
order to answer these open questions. To this end, we developed a precise mathematical

model describing the diffusion of errors caused by faults in the computational flow of AES.
This model allows us to prove in a formal way that the parity-based coding scheme achieves
a 100% coverage for transient faults of odd order. Moreover, this model allows us to show
that the parity-based coding scheme is also capable of locating all single-bit transient and
most permanent faults at the byte level.

The paper is organized as follows. In Section 2 a brief review of the AES encryption
algorithm, Rijndael, is presented. In Section 3 the essentials of the error model for AES
are described. In Section 4 we prove that our parity-based coding scheme achieves 100%
coverage for transient faults of odd order. In Section 5 the fault location capabilities of
the parity-based code are analyzed for transient single-bit faults and for permanent faults.
Section 6 summarizes our results and presents future research directions.

2 The Rijndael algorithm

The AES algorithm, Rijndael [5], is composed
of three procedures: Key Schedule, Encryption Secret Key Plain Text

and Decryption. The most commonly used ver- I i
e | e [
) puts a ci- Round Key State
phered text block of 128 bits. The encryption
algorithm is iterative and consists of the repe- v v
tition of 10 rounds. Each round processes the Key Encryption
data block and adds to it (modulus 2) a round Schedule Round
key, derived from the secret key by means of iund 2 Matrix
the key schedule algorithm. Figure 1 shows the (@)
encryption and key schedule procedures; this is v (b
also the architecture of the simplest VLSI imple- =<)
mentation of AES, and is assumed in this paper. i

AES works on the 16 bytes of the data block
to be encrypted by structuring it into a square
matrix of order 4 x 4 bytes. This is called the Figure 1. Block diagram of Rijndael:
“state” matrix and is shown in Figure 2. The Key Schedule (a) and Encryption (b)
body of one AES encryption round is a chain of
four transformations, called: SubBytes (or Sbox), ShiftRows, MixColumns and AddRound-
Key. Each transformation applies to the entries of the state S some algebraic operations
(addition, multiplication and inversion), both linear and non-linear, which are defined over
a finite field, namely the Galois Field GF (28) [9]. The four transformations are:

SubBytes: byte-wise non-linear substitution.

ShiftRows: rotation of the rows of the state S.

MizColumns: linear algebraic transformation of the
columuns of the state S.

AddRoundKey: bit-wise addition of the current round
key to the state S.

More details about AES can be found in [5] and also in Figure 2. State matriz

[1].

Ciphered Text

80,0 $S0,1 80,2 $0,3
g— |S10 s11 S12 s13
82,0 82,1 S22 823
83,0 83,1 832 833

3 AES error model

In this section the coding scheme [1] and the associated error model of AES are described.
The model describes the way errors diffuse in the AES computation flow. Attention is
focused on encryption, while key schedule and decryption are assumed to be fault-free.

The coding scheme associates a set of parity bits with the state S, which are predicted
at every round transformation. Checkpoints, where the predicted and generated parity
bits are compared, may be scheduled at the end of each round. The total number of such
checkpoints and their exact position can be determined by the designer but at least one
check must be performed at the end of the last round.

A parity-based coding scheme is in principle capable of detecting every fault which results
in an error involving the complementation of an odd number of bits in the state S, and
also of an even number of bits, provided at least one byte of the state S contains an odd
number of erroneous bits.

3.1 Preliminaries

Each byte element s, . of the state matrix S is associated with a parity bit p, ., for every
0 <r,c < 3. We define an error bit e, . as follows:

€rec=2Pp (sr,c) + Pre for0<r,c<3

where p () is the parity operator and addition is modulo 2. Since even parity is used,
the value e, . = 0,1 indicates whether the 9-bit sequence s, ¢, p, has a correct (even) or
incorrect (odd) parity status, respectively.

In order to study the propagation of incorrect parity states during
the rounds, a 4 x 4 error state matrix FE is defined, as in Figure 3.
To investigate the dispersion of errors in the encryption
process, it suffices to examine how the round transforma-
tions modify the error state matrix £. This depends on
the prediction of the output parity bits; the details are
described in [1], while here only a brief overview is given.

SubBytes (or Sbox). Sbox is usually implemented as
a look-up table. The output parity bits are stored with
the data bits. Hence, the error status of each input byte Figure 3. Error matriz
element propagates unaltered through Sbox. Therefore,

Sbox maps the error state matrix F to itself.

AddRoundKey. The behavior is the same as above, since the round key produced by the
key schedule is assumed to be error-free.

ShiftRows. The parity states of the input bytes are preserved but rotated.

MizColumns. The error state matrix is modified by a linear transformation, which is
described in [1].

Of course, it is also necessary to include a set of parity generators for computing the
parity bits of the data block, and a set of comparators for checking them against the
predicted parity bits.

€0,0 €0,1 €02 €03
E— |60 €11 €2 €13
€20 €21 €22 €23
€30 €31 €32 €33

3.2 Error model for the AES Encryption

It is possible to determine analytically how the error state E is modified through the
computation flow of one AES encryption round, and hence of a sequence of rounds.

We first define a column error vector V' with 16 entries, obtained by scanning the error
state matrix F by columns:

V — T
= [60,0, €1,0,€2,0,€3,0,€0,1,€1,1, - - - ,63,3]

V contains the same information as the error state matrix E, only differently organized.

One AES encryption round modifies the column error vector V as follows: V — ZV.
The square matrix Z is of order 16 and is shown in Figure 4. The proof can be obtained
by a careful analysis of the internal transformations of the round, but is omitted for the
sake of brevity. Clearly, the application of n > 1 AES encryption rounds is represented by
V = Z"V. Tt is quite easy to check that matrix Z is orthogonal (over GF (2)), and hence
is non-singular.

COO0OOCOOCOO0OO0OOOOCOrFH
HHEHSMOOOODOOOOQOCOOOO
OCO0COHHOHOODOODOOOO
CO0O0OO0O0O0OO0OHORHHFOOOO
CO0O0OO0O0O0OO0O+HFHFHOOOO
CO0CO0OO0O0OO0OO0OOOOHKFEO
= =OROOODOOOOOCOOOO
CO0OOFHOFRR,OOOOOOOO
CO0CO0OO=KHRTOODOOOOOO
OCO0O0O0O0O0ORFEFMFEFOOOOO
COO0OCOOCOO0OOOOO O
~FORHOOODO0OOOOOOOOO
O~ MFHROOODODOODOOOOOO
CO0OHHFHFOOODOOOOOO
CO0O0OO0CCOOHHOFROOOO
COO0COCOOOO0OOOOHHOHH

Figure 4. The matriz Z modeling the error dispersion in one AES round.

4 Coverage of the faults of odd order

In this section we prove that the parity-based EDC for the encryption algorithm of AES
has a fault coverage of 100% at the byte level for multiple transient faults of odd order. The
proof is based on Linear Algebra techniques and uses the above-introduced error dispersion
model.

To prove the coverage of faults, it is first necessary to define a metric for errors, and then
investigate the effect of AES on the dispersion of the errors themselves. Let X = [z;] be a
vector of order n > 1 with entries z; over GF (2). Define the parity norm || X||, € GF (2)
of X to be || X|, = Z?;OI x; = 2o+ 21 + -+ + £p—1 with all additions modulus 2. By
definition, for every X; and X3 of equal order it holds that || X; + Xs||, = || X1]|5 + || X2]]5-
We extend now the parity norm to a sequence X = (X1, Xo,...,X}y) of h > 1 vectors X,
as follows: || X, = S0 1 Xilly = | Xilly + -+« + [Xn -

Multiplying a column vector times a square orthogonal matrix does not change the parity
norm of the vector. Therefore, the application of n > 1 AES encryption rounds does not
change the parity norm of the column error vector V; that is: Vn > 1 ||Z"V||, = ||V |l,-

Next, it is shown how AES acts upon the error metric defined above. A multiple transient
fault of order k > 1 at the byte level consists of exactly k single-bit errors at the beginning

of the rounds, assuming that an odd number of bits is commuted. All injection patterns
are assumed to be equally likely. Two bit errors may well be injected into the same byte
position of the data block, in two different rounds.

Let n > 1 be the number of AES rounds, numbered 1,...,n. A multiple fault m in
the AES encryption algorithm can be represented as follows: m = (n,X), where n =
(n1,n9,...,mp) (1 < n; < n) is a strictly increasing sequence of h < n integers, and
X = (X1,Xs,...,X3) is a sequence of h < n column error vectors X; of order 16. Vector
X, represents the bit errors injected during the encryption process at the beginning of round
number i (1 <3 < n).

Given a multiple fault m, the order ord (m) of m is defined to be the total number of
entries of value 1 in the vectors of the sequence X. Moreover, the parity norm of m is defined
as follows: ||m|l, = || X]||,. Based on these definitions, it is possible to see that ||m|, =
ord (m) mod 2. Based on linearity, it follows that encryption (m) = Z?Zl Zm " X;. Now,
the fundamental point is that, given any multiple fault m = (n, X), the AES encryption
preserves its parity norm, that is: ||encryption (m)|, = ||m||,. The proof is not shown here,
however it depends on the linearity of the error model of the AES encryption round and
on the orthogonality of the matrix Z.

As a consequence, the parity-based EDC for the AES encryption algorithm detects all
multiple faults of odd order. Let m be a multiple fault of odd order: it follows that ||m||, =1
and hence ||encryption (m)||, = ||m|l, = 1. A fault is detectable if and only if the final
column error vector V is non-null. Suppose that encryption (m) = O, then it follows that
|lencryption (m)||, = ||O||, = 0. But this would contradict the previous conclusion.

The conclusion holds also in the case when the faulty bits of the multiple fault m are
injected between the individual round transformations, not only at the beginning of the
rounds. To prove this fact, it is only necessary to model in a finer way the action of
encryption over the multiple fault.

5 Localization of faults

In this section we show that the parity-based EDC is not only able to detect transient
faults (at the byte level), but also exhibits fault locating properties. In fact, by analyzing
the final error signatures (i.e., which out of the 16 bytes have erroneous parity bits), we can
identify the faulty byte and the round in which the fault has occurred for the first time, in
most relevant cases.

One such relevant case is that of a single-bit transient fault. Such a fault can be repre-
sented by an error state matrix E containing a single entry of value 1. Observe the following
simulation, showing how the error state matrix evolves after each round (for a total of 8
rounds), starting from a matrix showing the injection of a single bit error into the leftmost
top byte of the error state of the initial round.

Beginning End of End of Rounds End of End of
ofround1 round 1 round 2 from 3" to 7* Round 7 Round 8
1000 1000 1010 .. 1000 1000
0000 1000 1001 . 0000 0000
0000 1000 1011 . 0010 0000
0000 0000 oo11r ... 0001 0000

Note that the above error state matrices differ from one another, though after round 8

the initial matrix is obtained (and from that round on the simulation is cyclic). Should this
property extend to all the remaining error state matrices associated with single-bit faults
(in total 16 such matrices) generating unique error matrices, it would be possible to locate
the fault and the round it appeared in, with a latency of at most 8 rounds.

Z0 Zt zZ2 zZ3 zZ4 A z6 zZ7
X1 1 7 60679 21713 43946 21077 44359 33793
X2 2 57344 3803 35626 22357 43594 36443 32801
X3 4 3328 46861 29777 44714 21848 42781 1057
X4 8 176 2042 35374 23893 6826 11102 33824
X5 16 112 53374 19733 47786 9557 54394 16408
Xe 32 14 60848 45736 30037 42154 58808 536
X7 64 53248 28891 17687 60074 21893 29146 16912

X3y 128 2816 47072 41704 54613 43681 46562 16904
Xg 256 1792 2029 53588 43691 21842 18349 388

X10 512 224 56078 10891 21847 19114 23438 8576
X11 1024 13 3511 20852 43694 22613 7591 8452
X12 2048 45056 32267 11914 21853 43546 24107 8324
X13 4096 28672 32464 5453 43706 21797 31444 6208
X14 8192 3584 45293 43186 21877 43684 47333 6146
X15 | 16384 208 56176 5957 43754 34133 55921 4162
X16 | 32768 11 57527 59554 21973 41386 58037 2114

Figure 5. Matriz of the Y, , = Z" X, signatures (0 <n <8, 1< h <16).

Figure 5 shows the results Y, 5, of the expressions Z"X), (0 <n < 8,1 < h < 16) for
all the vectors X, with exactly one entry of value 1 at position h, where Z° = I. The
vectors Y, j, are displayed in decimal form (considering them as natural integers of 16 bits).
For example, the first row in Figure 5 corresponds to the matrices in the example above
with the decimal values 1, 7, 60679, ..., 33793 and 1. Each vector Y,, ;, represents the error
signature, after n rounds, caused by the injection of the single-bit error vector Xj. The
entries of the table in Figure 5 are all different from one another, thus confirming that it
is possible to locate all single-bit transient faults (round number and byte position), with
a latency of at most 8 rounds.

The above mentioned property can be formally proven. First of all, note that Z8 = I,
i.e., the powers of the matrix Z constitute a cyclic group of period 8. This is a direct
consequence of the fact that Z is orthogonal and thus, invertible. The value 8 of the period
can be proven by direct computation, which is omitted. We must, therefore, position the
parity checkpoints at a distance of 7 rounds or less in order to allow the location of faults.

Let X} be a (column) error vector, having a single entry of value 1 at position h (1 <
h <16). Then Z"X}; (0 < n < 8) yields a vector having a single entry of value 1 if and
only if column h of Z contains a single entry of value 1. But the eight matrix powers Z"
of Z do not contain columns having a single entry of value 1 (this can be checked by direct
computation, here omitted). Now, two identical signatures Y;,, n, = Yy, .5, (0 < nyp,m9 < 8)
would imply Z™ X}, = Z™ X}, , hence (since Z is invertible), assuming for instance n; < ng,
Xp, = 2™ MXy,, le. Xy, = Z™Xp,, with 0 < m < 8. But this is impossible, as said
before.

The above procedure for the location of transient faults can be extended to permanent
faults as well. The location procedure is however more sophisticated, since a permanent
fault manifests itself as a sequence of errors injected into the error state F at several
rounds, in a fixed byte position, but in a time and data dependent way. However, the
error dispersion model presented in this paper can be exploited for this purpose as well. A

straightforward way to identify the location of a permanent fault is through computing the
matrix of all the signatures that might occur. This two-dimensional matrix has 16 columns
(which correspond to the bytes where the permanent fault can occur) and 255 rows. Each
row corresponds to one of the possible different manifestations of a permanent fault during
the eight rounds. Depending on the input data to the cipher and the type of fault (short or
open circuit), a permanent fault might affect the computation of the given byte at any one
of the eight rounds. Omitting the case where no fault is manifested, this yields 28 —1 = 255
different possibilities for a permanent fault to inject errors during the eight rounds.

0 1 2 3 4 5 6 7 8 9 15
0x01 1 2 4 8 16 32 64 128 256 512 32768
0x02 | 33793 32801 1057 33824 16408 536 16912 16904 388 8576 2114
0x03 | 33792 32803 1061 33832 16392 568 16976 17032 132 9088 34882
Ox11 | 43947 22359 44718 23901 47802 30069 60138 54741 43947 22359 54741
0x77 | 15163 56540 52942 29555 46003 52685 60652 14135 15163 56540 14135
0x78 | 16425 30958 14510 50863 660 36583 35555 27388 10560 61048 64618
0x79 | 16424 30956 14506 50855 644 36551 35491 27260 10304 60536 31850
0x87 | 10560 61048 44600 44998 37890 59278 58250 64618 16425 30958 27388
O0xFF | 26985 38550 38550 26985 38550 26985 26985 38550 26985 38550 38550

Figure 6. Fxcerpt from the matriz of permanent fault signatures

An excerpt of the permanent fault signature matrix is shown in Figure 6. The rows
correspond to the “temporal manifestation” of the permanent fault, i.e., which rounds are
actually affected by the fault. For example, row 1 corresponds to the case where only the
first round is affected, while row 7916 (whose bit representation is 0111 1001) corresponds
to the case where the 15¢, 4" 5th 6" and 7" rounds were affected. All the fault signatures
in the matrix are represented as a decimal value, using the same notation used in Figure
5. The matrix includes 16 - 255 = 4080 entries, out of which 3072 are unique, allowing to
immediately identify the byte in which the permanent fault has occurred and the rounds
during which the permanent fault has manifested itself. There is no overlap with the matrix
shown in Figure 5, except for those cases where the permanent fault manifests itself only
once, thus actually behaving as a transient fault. The remaining 1008 entries include:

e The 240 entries of the fifteen rows corresponding to temporal fault manifestations
which are represented by two equal hex digits (e.g., 0x11, 0x22, ., OxFF). Several
entries in these rows appear multiple times within the same row but are not equal
to any entry of another row. Thus, we can identify the rounds where the permanent
fault has manifested itself but the byte can not be immediately identified. For 12 out
of these 15 rows each entry appears twice within that row (e.g., row 0x11) with the
two candidate bytes at a distance of 8 positions apart. In the two rows 0x55 and
0xAA each entry appears 4 times while in the row 0xFF each entry appears 8 times.

e The 768 entries of 24 pairs of rows, e.g., rows 0x78 and 0x87 (see Figure 6), where
the entries in one row are identical to those in the second row but are rotated by 8
positions. For every fault signature in these 48 rows we have 2 admissible temporal
manifestations (i.e., the same signature appears in two rows) and 2 admissible fault
locations (i.e., the two identical signatures in the two rows appear in two different
bytes and the byte positions are at a distance of 8 apart). The first rows in the

24 pairs of rows include 0xOF, Ox1E, 0x2D, 0x3C, 0x4B, 0x5A, 0x69, 0x78 and
also 0x05, 0xOA, Ox14, 0x28, 0x27, 0x93, 0xC9, OxE4, OxAF, 0xD7, OxEB,
0xF5, 0x1B, 0x8D, 0xC6, 0x63. The index of the corresponding row in each pair
is obtained by rotating the row index by 4 bit positions (i.e., exchanging the two hex
digits).

Although each of the above 1008 fault signatures does not allow an immediate fault local-
ization, we can repeat the encryption process with a different data input (and/or a different
key) which would very likely lead to a different temporal manifestation of the same per-
manent fault. The new fault signature may, in principle, be again one of the 1008 entries
which do not allow us to identify the fault location. However, the likelihood of such an
occurrence is very small. The probability that a permanent fault will result in one of the
1008 signatures is (assuming uniform distribution) 1338 = 0.247. If the second test is inde-
pendent of the first one then the probability that two consecutive tests will fail to identify
the fault location is 0.247% = 0.061.

All the fault signatures in the matrix shown in Figure 6 may also correspond to two
or more transient faults occurring in several randomly selected bytes and during several
randomly selected rounds. For example, consider a permanent fault occurring in the first
byte, similar to the example at the beginning of this section, and manifesting itself only
in the first two rounds. The manifestation of the fault in the second round may cancel
the parity error in the first byte leaving only the second and third bytes with an incorrect
parity. The decimal value of the error matrix will be now 6 instead of 7. The same error
matrix will be obtained if instead of the above permanent fault, two transient faults in the
second and third bytes will occur at the beginning of round 2. In both cases, i.e., the single
permanent fault manifesting itself only in the first two rounds and the two transient faults
indicated above, will yield the same final signature of 33792 (see Figure 6).

Therefore, we can evaluate the probability of successfully identifying the fault location
only under certain assumptions regarding the type of faults which can occur. If we assume
that only single transient faults can occur, then the probability of locating the fault is 1.000,
but if we also allow a single permanent fault to occur, then:

4080 — 1008

P{Properly Locating the Fault|A Single Fault occurred} = —0s0 0.753

If the obtained fault signature after eight rounds is equal to one of the 1008 signatures
discussed above, an immediate identification of the fault is not possible. However, a sec-
ond experiment would usually suffice to resolve the ambiguity. Besides ambiguous fault
signatures we may also mis-identify a permanent fault if two separate transient faults oc-
cur during the eight rounds. We have analyzed the possible fault signatures which can be
obtained for all double transient faults and realized that out of these (138) signatures, 384
also appear in the signature matrix for permanent faults. Thus,

384

[§3)

P{Mis-identifying a Permanent Fault|A Double Transient Fault occurred} = = 0.047

6 Conclusion

In this paper we have developed an analytical error model for the parity-based EDC
for the AES encryption algorithm. The model allows us to achieve two goals: formal

proof of 100% detection coverage for multiple transient faults (at the byte level), and
the development of a procedure for locating single-bit transient and permanent faults.
A possible extension would be to classify all multiple faults yielding a particular error
signature. The fault locating procedures are likely to extend to the implementations of
the key schedule and decryption, since these algorithms share the same basic operations as
encryption.

The availability of a relatively simple and low-cost coding scheme for locating faults in
a hardware implementation of AES opens the way to the introduction of fault tolerance,
based on reconfiguration. Since AES architectures have an iterative or regular structure at
various levels of abstraction, reconfiguration seems feasible and a promising future research
direction.
Acknowledgment: The work of Israel Koren has been supported in part by
DARPA/AFRL NEST program under contract number F33615-02-C-4031.

References

[1] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri and V. Piuri, “Error Detection Procedures
for a Hardware Implementation of the Advanced Encryption Standard,” IEEE Transac-
tions on Computers, Special Issue on Cryptographic Hardware and Embedded Software,
pp- 492-505, April 2003.

[2] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri and V. Piuri, “A Parity Code Based
Concurrent Fault Detection for Implementations of the Advanced Encryption Standard,”
Proc. of the 2002 IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems, pp. 51-59, November 2002.

[3] D. Boneh, R. DeMillo, R. Lipton, “On the Importance of Eliminating Errors in Crypto-
graphic Computations,” Journal of Cryptology, vol. 14, pp. 101-119, 2001.

[4] R. Karri, W. Kaijie, P. Mishra, K. Yongkook, “Fault-based Side-Channel Cryptanalysis
Tolerant Rijndael Symmetric Block Cipher Architecture,” Proc. of the 2001 Defect and
Fault Tolerance in VLSI Systems, pp- 418-426, 2001.

[5] B. Gladman, “A Specification for Rijndael, the AES Algorithm,”
http:/ /fp.gladman.plus.com/, 2001.

[6] M. Akkar, C. Giraud, “An Implementation of DES and AES, Secure against some Attacks,”
Proceedings of CHES 01, pp. 315-325, 2001.

[7] S. Ferndndez-Gomez, J. Rodriguez-Andina, E. Mandado, “Concurrent Error Detection in
Block Ciphers,” Proc. of the 2000 Intern. Test Conference, ITC 00, pp. 979-984, 2000.

[8] F. Bao, R. Deng, Y. Han, A. Jeng, D. Narasimhalu, T. Nagir, “Breaking Public Key
Cryptosystems on Tamper Resistant Devices in the Presence of Transient Faults,” The
Second Workshop on Secure Protocols, (Pads), April, 1997, LNCS, Springer-Verlag, 1997.

[9] R. Lidl, H. Niederreiter, Introduction to Finite Fields and their Applications, Cambridge
University Press, 1986.

[10] J. Bléemer and J.-P. Seifert, Fault based cryptanalysis of the Advanced Encryption Stan-
dard, Cryptology ePrint Archive, Report 2002/075, 2002.

[11] S. Skorobogatov, R. Anderson, “Optical Fault Induction Attacks,” Proc. of 2002 IEEE
Symposium on Security and Privacy, 2002.

