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Abstract

Since standardization in 2001, the Advanced Encryption Standard has been the subject of
many research efforts, aimed at developing efficient hardware implementations with reduced
area and latency. So far, reliability has not been considered a primary objective. Recently,
several error detecting schemes have been proposed in order to provide some defense against
hardware faults in AES. The benefits of such schemes are twofold: avoiding wrong outputs
when benign hardware faults occur, and preventing the collection of information about the
secret key through malicious injection of faults. In this paper, we present a complete scheme
for parity-based fault detection in a hardware implementation of the Advanced Encryption
Standard which includes a key schedule unit. We also provide a preliminary evaluation of
the hardware and latency overhead of the proposed scheme.

1 Introduction

The AES algorithm has been standardized by NIST in 2001 [15] with the adoption of the
Rijndael algorithm [9], a Substitution-Permutation Network (SPN) cipher whose operations
are based on binary extension fields.

Since then, many software and hardware implementations have been proposed. The for-
mer are targeting various platforms, from x86 architectures down to smart card devices, and
are aimed at reducing the instruction count per encryption by exploiting the specific archi-
tecture instruction set. Hardware solutions have been proposed both for field-programmable
devices (FPGAs) and custom devices (ASICs). The goal of FPGA-based implementations
is minimizing the area consumed while maintaining an acceptable throughput. Most of the
proposed FPGA-based implementations have focused on the substitution unit [17] or the
permutation unit, and generally on sharing resources between the encryption and decryp-
tion routines. Other solutions have focused on careful placement of the functional units on
the device [7].

In contrast, custom ASIC devices are less flexible, but can be optimized for inclusion in
embedded systems. In this case, the focus is on exploiting the maximum parallelism allowed
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by the algorithm and increasing the throughput, e.g., by unrolling the round iterations and
pipelining the operations. Such solutions allow the highest throughput, but often at the cost
of a reduced compliance to the standard (see for instance [2], where the 2-Gbit throughput is
obtained by sacrificing the support for keys longer than 128 bits or cipher modes other than
ECB). Resource sharing is obviously not confined to FPGA implementation: in [16], the
authors explored the sharing between the direct MixColumns and the Inverse MixColumns
operations. Higher throughputs are possible, but the area requirements are much larger:
see for instance [14] and [18].

Recently some schemes for fault detection and tolerance have been proposed. The motiva-
tion has been the increased likelihood of failures in devices as complex as current encryption
units [9], and the development of advanced attack techniques based on the deliberate injec-
tion of faults [1, 3, 6, 8]. Preliminary proposals were based on exploiting the redundancy
of functional units which is typical of encryption/decryption units [10]. Later research has
studied the application of error detecting codes to symmetric block ciphers [4, 11]. Sim-
ple codes like parity allow obtaining very high detection capabilities at a reasonable cost.
Using parity code for fault detection in generic Substitution-Permutation Networks (SPN)
has also been shown in [12].

In this paper we further develop the model presented in [5] and extend the fault analysis
to the Key Schedule unit. We show that the Key Schedule unit has a highly dispersive
behavior that allows an error to propagate quickly, but this does not compromise the
detection rate of the parity code. We also evaluate the hardware costs (area and latency)
of some standard AES implementations when a fault detection capability is included in the
device.

The paper is organized as follows. In Section 2 we provide a brief overview
of the AES encryption algorithm. Section 3 describes the complete error model,
extended to include the Key Schedule part, and presents the results of the soft-
ware simulations of the model. The evaluation of the hardware costs and the
performance impact are presented in Section 4. Section 5 concludes the paper.
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Figure 1. Block diagram of Rijndael:
Key Schedule (a) and Encryption (b).

2 The Rijndael algorithm

The Rijndael encryption algorithm [9] con-
sists of three procedures, namely Encryption,
Decryption (i.e., the inverse of Encryption) and
Key Schedule. NIST imposed an input block
size of 128 bits with the most common version
using a 128-bit-long key, but longer keys are al-
lowed. The ciphered output is 128-bit. In our
analysis, we will always refer to the 128-bit-long-
key version, but the results are still valid when
longer keys are used.

The encryption process consists of 10 itera-
tive rounds executed after a pre-processing key-
mixing phase, where the initial key is added
(modulo 2) to the initial input. The intermedi-
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ate result of the encryption process is stored into a 16-byte square matrix S called state.The
encryption round is a chain of four byte-based transformations, both linear and non-linear,
defined over the Galois Field GF (28) (see Figure 1). These transformations are:

SubBytes: a byte-wise non-linear substitution, it can be computed on-the-fly or imple-
mented by means of a lookup table;

ShiftRows: a byte rotation of the rows of the state S using an offset that depends on the
row itself;

MixColumns: a linear algebraic transformation of each column of the state, over the Galois
Field;

AddRoundKey: a bit-wise addition (modulo 2) of the current round key, provided by the
key schedule, to the state S.

Further details about AES can be found in [4] and [9]. Galois Fields are described in [13]
and [15]. Here we want to focus on the key schedule only; we will consider 128-bit-long keys
for simplicity. After the initial key has been loaded into the key schedule state, it is stored
into a 16-byte square matrix which is organized into 4 32-bit words. At each round, the last
word of the previous round key is rotated by 8 bits and processed through 4 Substitution
Boxes. The first row is XOR’ed with the result from the S-Boxes and a precomputed
constant; the following rows are XOR’ed with their preceding row. The pseudocode can be
found in [9].

3 AES full error model

In this section we describe the generalized fault model of the AES encryption. This
is an extension of the model presented in [5], which lacks the key schedule part. The
implementation of the model is described and validated in Section 4.

3.1 The model

The model presented in [5] considered faults occurring in the datapath only. This was
justified by the fact that the operations used in the key schedule are a subset of those used in
the encryption process, thus the analysis may be replicated without much effort. Moreover,
most fault attacks are aimed at the encryption datapath, since these are of most practical
interest. Giraud [8] proposed a byte fault attack on the AES key schedule; still, attacking
the key schedule is considered more difficult, since the key cache memory is usually tightly
protected against intrusions or side channel information leakage.

We start with a brief review of the model presented in [5]. At round r, each byte s
(r)
i,j

of the state has an associated parity p
(r)
i,j , which is predicted from the state and the parity

in the previous round r − 1. The discrepancy between the parity matrix P and the actual
computed parity Parity(S) is the Error Matrix E:

E(r) = P (r)
⊕ Parity(S(r)) (1)

Each element ei,j signals an inconsistency between the predicted parity and the current
parity, computed from the actual data.

The above model proved to be very useful since each AES transformation updates the
Error Matrix, increasing or decreasing the number of detectable errors, but never canceling
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them completely. The rules for propagating the elements of the Error Matrix through the
various AES operations are:

SubBytes: the parity code bits can be re-generated from the current data, but this approach
forces the validation of the code bits at the input, to avoid possible cancellations. On
the other hand, the input parity code can be used to propagate the error to the output,
for instance by including the parity code in the lookup table [4] and extending the
table addressing with the additional parity bit. This is the approach we will consider
and therefore the matrix E is propagated without any change.

ShiftRows: the rows of the matrix E are rotated according to the same rules used for the
state. This step simply moves the errors, without cancellations or duplications.

MixColumns: each parity ei,j is updated using a linear combination of the elements in the
same column; the exact rule can be found in [4].

AddRoundKey: provided that the key is error-free, this operation propagates E without
any change, i.e., E(r+1) = E(r).

Since the complete round transformation of the E matrix is linear, it can be modeled as
E �→ ZE, where Z is a matrix of GF (2) elements defined in [5]. The above model has
been limited by the fact that it does not deal with key schedule errors. Although errors
in the key schedule can be analyzed following the same approach used in the analysis
of the encryption round, the question whether the key schedule demonstrates the same
characteristics as the encryption round (in particular when injecting just a single fault),
still remains unanswered. We will, therefore, extend in this paper the original model in
order to include the error propagation within the key schedule component.

As was done for the datapath example, we associate a parity bit to each byte of the key

state; hence, we have a matrix K (r), consisting of all the round keys and the matrix P
(r)
K

of the corresponding parity bits. We can thus define the Key Error Matrix EK :

E
(r)
K = P

(r)
K ⊕ Parity(K(r)) (2)

The operations used in the key schedule round are very simple: each column is updated
adding the preceding column (modulo 2), except for the first column of each round. For
this column, the operations involved are: (1) substitution of each byte of the 4th column
of the previous round using the same S-Boxes as in the SubBytes routine. This step, as in
encryption, does not alter EK . (2) rotation of the word just computed. Like ShiftRows,
this step only moves a fault to a different position. (3) exclusive OR with a pre-computed
constant, whose parity is hence known a priori. (4) addition modulo 2 with the original
value of the word being updated. This step is the main cause of dispersion and collapse of
the number of apparent faults.

It is clear that the whole Key Schedule round can be modeled using a linear transfor-
mation of the matrix EK , i.e. EK �→ ZKEK . The matrix ZK is a 16 × 16 matrix on
GF (2):

ZK =




I4 0 0 A

I4 I4 0 A

I4 I4 I4 A

I4 I4 I4 A ⊕ I4


 , A =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0




The matrix A takes its structure mainly from the rotation of the last row of the previous
matrix. The substitution boxes and the addition of a constant do not alter the error; if
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these operations are faulty, they can be modelled by a fault at the beginning of the round.
The lower triangular part, filled by 4-by-4 identity matrices, is due to the fact that each
row is updated by XORing with the previous row. ZK is obviously non singular, since the
Key Schedule is invertible. Through computation, we have verified that Z 15

K is orthogonal
(but note that AES specifies 14 rounds at most), while only Z 60 is the Identity matrix. In
contrast, the matrix Z is the generator of a much smaller cyclic group since Z 8 = I.

We can now merge the two sets of expressions and obtain the general model of an AES
round, under the assumption that faults are injected at the beginning of a round:

E
(r)
K �→ E

(r+1)
K = ZKE

(r)
K (3)

E(r)
�→ E(r+1) = ZE(r)

⊕ E
(r)
K (4)

Under this new model, the constraint of a fault-free key schedule can be now relaxed. A
fault in EK now evolves in the round key as indicated in (3) and affects the state error as
shown in (4), as the key addition is the last round operation after the application of Z (i.e.,
ShiftRows and MixColumns).

3.2 The Simulations

In [4], the error detection capabilities of the proposed parity code were studied using
simulated fault injections into the actual AES encryption algorithm. In these simulations,
a random pair of plain input and key was generated, the encryption procedure was started
and a fault was injected during the encryption. The corrupted data was finally checked
against the parity code bits. In [5], it was proved that the model is accurate enough
to allow simulating the model rather than the entire encryption process, thus simplifying
the analysis. Here, we extend this approach to our new generalized model, in order to
understand the effect of combined faults both in the Encryption datapath and the Key
Schedule.

Since analyzing the error propagation in the model is simpler (and less time consuming)
than injecting faults into the encryption process (and comparing outputs and code bits),
exhaustive simulation was used: up to 4 simultaneous faults were injected, and all the
possible test cases were evaluated. The degrees of freedom for each injected fault were:

• The round;

• Injecting the fault in the round key or in the encryption state;

• The byte (out of the 16 bytes in the state or in the round key); note that in this
model, the maximum granularity is at the byte level.

We focus on AES-128 since it is the most commonly used, but we expect our results to hold
for longer keys as well. Moreover, it must be pointed out that since Z 8 = I, a state fault
shrinks back to a single byte error after 8 rounds. This does not occur for key schedule
faults since the period of ZK is 60, as noted in Section 3.1. For each fault we have 320
possible injection spots, obtained from 10 rounds ×16 bytes ×2 possible matrices. Based
on our simulations we have made the following important observations:

• All single faults are detected; this was already proved when the fault was injected in
the state [4, 5]. It stems from the non-singularity of ZK when the fault is injected in
the Key Schedule.
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Table 1. Absolute results of exhaustive search of the simulation space.
Injected faults 1 fault 2 faults 3 faults 4 faults

Search Space 320 51, 040 5, 410, 240 428, 761, 520
Detected Faults 320 51, 007 5, 410, 114 428, 749, 119
Undetected Faults 0 33 126 12, 401

All faults in State 0 32 0 6,040
Faults in State and Key Sched. 0 0 107 5,919

All faults in Key Schedule 0 1 19 442

• An odd number of faults is always detected when all faults are injected only into the
state. This was claimed in [5] but the new experiments revealed that this does not
hold when some of the faults are injected into the key schedule as well (see Table 1).

• When two faults are injected, they are always detected when one is injected into the
state and the second into the key schedule. They are not detected when they exploit
the periodicity of Z8, i.e., when they occur in the same byte of the state but separated
by 8 rounds.

• The detection capability appears to be double that claimed in [4] (see Figure 2).
This can be explained by the fact that the injection space is doubled (from 160 to
320 possible injection spots), thus halving the average density of the undetectable
fault sets. Moreover, note that the matrix ZK is highly dispersive, which means that
any fault in the key schedule will quickly spread over a larger number of bytes and
will later be added to the state, where it will be further processed by the encryption
process.
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Figure 2. Percentage of undetected faults with exhaustive (full search) and random
injection in State and Key Schedule.
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4 Hardware Evaluation

In this section we evaluate the overhead, in terms of both area and latency, of the
components needed to generate, predict and check the parity code with respect to a similar
architecture without fault detection capabilities. A complete round of AES encryption has
been described in VHDL and synthesized. To simplify the design, a 128-bit-wide datapath
is assumed. This choice means that each single AES operation computes the whole block in
parallel: hence, the SubBytes operation was implemented using 16 lookup tables operating
on 8-bit inputs each, while the MixColumns was implemented using 4 different units, one
for each column of the state. No particular constraints were set, allowing the synthesis tool
to choose the suitable tradeoff between area and latency. Although this may not be the
most efficient choice, it still allows us to evaluate the overhead introduced by the parity
code.

The implementation of the prediction rules is quite straightforward for each round op-
eration, requiring a few gates and proper routing of the signals. The only issue is the
implementation of the SubBytes: the initial model [4] proposed to extend the original
lookup tables to 9-bit-wide inputs and outputs. However, the additional input address bit
would double the size of the table. Moreover, the extra output bit means an additional
12.5% overhead. This was partially overcome by merging all the invalid pairs of byte and
parity into a single sequence with an incorrect parity (a null byte with a parity bit of ‘1’).
This way, the overhead was reduced to just the additional output bit per byte. However,
this means that a specific circuit had to be designed for address decoding. Our new solution
does not store any “wrong” parity. Instead, it uses the 8-bit data input to compute both
the S-Box output and the corresponding parity. Finally, the output parity is XOR’ed with
each single input bit (input and parity). If the input parity was incorrect, this final step
inverts the output parity and hence propagates the error; if there was no (apparent) error,
then the parity is not altered (see Figure 3).

S-Box
Data

S-Box
Parity

SubBytes
Input Data

SubBytes
Input Parity

SubBytes
Output Parity

SubBytes
Output Data8

8

1 1

1

1

Figure 3. Implementation of SubBytes and parity propagation by means of lookup ta-
bles.

The basic architecture is a simple round implementation with 16 substitution tables,
where each round is computed within a single clock cycle. Some logic is included to support
the CBC encryption mode, which can be selected through a dedicated signal. Currently,
the system computes only AES-128, mainly to keep the key schedule simple, in 11 clock
cycles. A multiplexor controls the final output, setting the output to a null value until
the final round is completed. The architecture has been synthesized in STMicro 0.18µm
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technology using Synopsys tools: the critical path requires 8.88ns and about 233, 095µm2;
the library used did not include any wire model.

The architecture was extended to include error detection capabilities. A first imple-
mentation was obtained by including parity generators for the initial input and key, and by
extending each component to include also parity prediction. A parity checker was appended
at the output of the circuit, in order to validate the predicted parity and return the ciphered
text. An error signal is returned when the parity checker detects any inconsistency. This
solution requires about 276, 467µm of silicon (18% overhead), but its main drawback is the
length of the critical path. The presence of the parity checker at the end of the round
increases the latency by up to 12.02ns, which means an overhead of 35%. The number of
required clock cycles is the same as that of the basic architecture.

A second version can be implemented to solve this issue, moving the parity checker out
of the basic round architecture, being thus connected directly to the output of the state
registers. The output will be still controlled by a multiplexor, which will give the correct
result only at the end of the encryption process and if the parity checker validates the
predicted parity. The main advantage would be that the parity checker is separated from
the round datapath, thus shortening the critical path; on the other hand, an additional clock
cycle would be required to validate the parity. This architecture is still under development
and it will be completed soon. We expect an area requirement comparable to that of the
version presented in this paper but a shorter latency.

Table 2. Area and time evaluation of AES-128, with and without error detection capa-
bilities.

Architecture Area (µm) Latency (ns) Throughput (Gbps)

AES-128 w/o EDC 233, 095 8.88 1.31
AES-128 with EDC 276, 467 12.02 0.97

Overhead +18% +35% −26%

5 Conclusions

A complete parity code based scheme for fault detection in hardware implementations
of AES has been described and analyzed, where single Faults in the encryption and in the
key schedule units are detected. The required hardware for the fault detection has been
synthesized and the resulting overheads in terms of area and delay have been evaluated.
We think that the overall throughput can be increased moving the parity checker out of
the critical path.
Acknowledgment: The work of Israel Koren has been supported in part by
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