
An Opportunistic Prediction-based Thread
Scheduling to Maximize Throughput/Watt in AMPs

Arunachalam Annamalai, Rance Rodrigues, Israel Koren and Sandip Kundu
Department of Electrical and Computer Engineering, University of Massachusetts at Amherst

Email: {annamalai, rodrigues, koren, kundu}@ecs.umass.edu

Abstract—The importance of dynamic thread scheduling is
increasing with the emergence of Asymmetric Multicore Proces-
sors (AMPs). Since the computing needs of a thread often vary
during its execution, a fixed thread-to-core assignment is sub-
optimal. Reassigning threads to cores (thread swapping) when
the threads start a new phase with different computational needs,
can significantly improve the energy efficiency of AMPs. Although
identifying phase changes in the threads is not difficult, deter-
mining the appropriate thread-to-core assignment is a challenge.
Furthermore, the problem of thread reassignment is aggravated
by the multiple power states that may be available in the cores. To
this end, we propose a novel technique to dynamically assess the
program phase needs and determine whether swapping threads
between core-types and/or changing the voltage/frequency levels
(DVFS) of the cores will result in higher throughput/Watt. This
is achieved by predicting the expected throughput/Watt of the
current program phase at different voltage/frequency levels on
all the available core-types in the AMP. We show that the benefits
from thread swapping and DVFS are orthogonal, demonstrating
the potential of the proposed scheme to achieve significant
benefits by seamlessly combining the two. We illustrate our
approach using a dual-core High-Performance (HP)/Low-Power
(LP) AMP with two power states and demonstrate significant
throughput/Watt improvement over different baselines.

Index Terms—Asymmetric Multicore Processor (AMP); dy-
namic thread scheduling; Hardware Performance Counters
(HPCs); phase detection; throughput/Watt prediction

I. INTRODUCTION

Advancements in technology has resulted in improved tran-

sistor performance and the ability to pack more transistors

into a smaller area. The increased device density and rising

frequency led, unfortunately, to a power density problem in

processor ICs which paved the way for the multicore era [1].

Most current multicore processors consist of many symmetric

cores (SMP) with more modest computational capabilities that

are suited for thread level parallelism (TLP). But, performance

suffers whenever sequential applications with high instruction

level parallelism (ILP) are encountered [2].

Asymmetric Multicore Processors (AMP) with the capabil-

ity to cater to the diverse needs of workloads were introduced

as a potential solution to this conundrum. They have been

shown to outperform their SMP counterparts within a given

area and power budgets [3]–[6]. Often, these cores are of two

types: big and small. The big cores provide higher performance

while the smaller ones are more power efficient. However, the

benefits of AMPs are highly dependent on a proper thread-

to-core assignment and a non-optimal assignment may even

make them worse than SMPs.

Baseline
LP core

(in-order)
Predictor Scheduler Predictor

Baseline
HP core
(OOO)

Decision about the best thread-to-core
assignments and core operating conditions

Stable phase change

trigger

HPCs HPCs

Application 1 Application 2

Fig. 1. High-level view of the proposed thread scheduling scheme.

Further, the current multicores widely employ Dynamic

Voltage and Frequency Scaling (DVFS) to minimize energy

consumption [7] and/or maximize performance [8], [9]. For

example, a memory bound application typically does not have

sufficient ILP to keep the core busy while waiting for the long-

latency memory accesses to complete. Reducing the voltage

and/or clock frequency of the core in such a case results in a

cubic power reduction without greatly impacting the overall

performance [7]. Intel’s Turbo Boost technology enhances

the performance of a high-performing core through dynamic

voltage and frequency boosting when the other cores are

inactive [8]. Therefore, there is a need to adapt the operating

conditions (voltage/frequency levels) of the cores to match the

time-varying program behavior to increase throughput/Watt.

To this end, we propose a novel prediction-based dynamic

scheme that holistically addresses the above two requirements

of determining the best thread-to-core assignment and core

operating conditions to suit the current program phase. By op-

portunistically making thread scheduling decisions only when

a new phase is encountered, we keep the associated overheads

at bay. The central idea of our proposal is the online prediction

of the expected throughput/Watt of the current phase on all the

other core-types in the AMP and at different voltage/frequency

levels, while it is being executed on the current core. Thus,

by examining all the alternatives, our scheme makes an

informed decision about the thread-to-core mapping and the

core operating conditions. The prediction is made possible

by employing hardware performance counters (HPCs) of the

current core. A relationship is established between the values

of these counters in the core executing the application and the

expected throughput/Watt of this application if it would run on

the other cores in the AMP and at different voltage/frequency

978 -1-4799-1021-2/13/$31.00 ©2013 IEEE 63

levels. By making a decision about the best core-type and

the operating conditions, our scheme can closely track phase

changes in the applications. The available compute resources

are then matched to the threads’ requirements resulting in

increased throughput/Watt.

To illustrate our approach, we consider a dual-core AMP

comprising of a 4-way issue out-of-order high performance

core (HP core), and a 2-way issue in-order low power core (LP

core). Our choice of the asymmetric cores is in line with recent

studies [10]–[12]. The two baseline cores operate at different

frequencies which is the reason for choosing throughput/Watt

as the optimization metric. Figure 1 presents a high-level

view of the proposed approach. Whenever a new stable phase

is encountered by any of the threads, the proposed scheme

determines the best thread assignment based on the predicted

throughput/Watt. We compare the proposed scheme against

a static baseline (the same dual core AMP with no thread

swapping or DVFS capabilities), a baseline with swap-only
capability, a baseline with DVFS-only capability and a greedy

oracular scheduler. Our results indicate that the proposed

scheme achieves significant throughput/Watt and throughput

benefits over the non-oracular baselines.

The key contributions of this paper are:

1) A novel prediction-based dynamic thread scheduling

scheme for AMPs to determine the best thread-to-core

assignments and core operating conditions at runtime.

2) A mechanism to accurately predict the expected through-

put/Watt of the current program phase if it would run

on other core-types in the AMP and at different volt-

age/frequency levels.

3) An efficient heuristic to determine the optimal number

and choice of performance counters to estimate through-

put/Watt.

II. RELATED WORK

The prior thread scheduling schemes can be broadly clas-

sified into those that employ offline profiling, online learning

via sampling and online estimation.

Khan et al. [13] propose regression analysis along with

phase classification to identify thread to core affinity. Shelepov

et al. [14] profile applications offline to determine architectural

signatures based on cache misses. In [15], Chen et al. use

multi-dimensional curve fitting to determine the optimal thread

to core assignment for AMPs. All these approaches rely

on offline profiling and are not practical, since they require

knowledge of the workloads that will be run on the multicore.

Online learning-based schemes offer a more practical solu-

tion to the AMP scheduling problem. Kumar et al. [3] pro-

posed an AMP consisting of cores of various sizes. Whenever

a new program phase is detected, sampling is initiated and the

core which provides the best power efficiency is chosen. A

similar approach was proposed by Becchi et al. [10], where

an optimal thread scheduling was determined by forcing a

thread swap between baseline cores. Although these schemes

are a practical alternative, it is clear that with an increase in

the number of core types in the system, the number of samples

for each phase detected will be large resulting in a significant

overhead.

Online estimation-based schemes [12], [16], [17] are an

improvement over the learning schemes since they avoid

sampling and the associated overhead. Here, based on the

current characteristics of a workload being executed, its per-

formance on other core types is estimated. Saez et al. [12]

propose a comprehensive scheduler for AMPs by estimating

the performance on each core-type based on last level cache

miss rate. It is, however, unclear whether using L2 misses

alone is sufficient to make thread to core assignment decisions

such that performance/power is optimized. The work closest

to ours is that proposed by Srinivasan et al. [16], Koufaty

et al. [11] and Rodrigues et al. [18]. In [16], Srinivasan et
al. estimate the performance of the thread currently running

on one core type, on another core, using a closed form

expression. These expressions were developed for specific

cores and a general approach was not provided. Koufaty

et al. [11] determine thread to core mapping in an AMP,

using program to core bias which is estimated online using

the number of external and internal stalls. In both of these

papers, the objective is only performance. Extending the above

techniques to improve throughput/Watt is not straightforward.

Rodrigues et al. [18] presented an estimation-based thread

scheduling scheme using HPCs to improve performance/Watt.

However, they only considered cores operating at the same

voltage/frequency which simplifies the scheduling problem.

Further, their scheme suffers from a high estimation error

(average IPC/Watt estimation error of about 34%). Annamalai

et al. [4], [5] considered thread scheduling in an AMP by using

predetermined rules but the cores that they consider are very

specific and the extension to other types of cores is unclear.

Most of the earlier scheduling schemes focus mainly on

performance and, they do not take into account the multiple

voltage/frequency levels that may be available within the cores.

To the best of our knowledge, our proposed prediction-based

scheme is the first of its kind which makes decision about both

the thread-to-core assignments and core operating conditions

with the objective of maximizing the overall throughput/Watt.

III. METHODOLOGY

To illustrate our approach (detailed in the next two sections),

we selected a dual-core AMP consisting of two core types at

the two ends of the power/performance spectrum - a low-power

core (LP) and a high-performance core (HP). This is one of the

worst cases for a scheme for predicting the throughput/Watt on

the HP core based on the activities observed in the LP core and

vice versa. Furthermore, the considered dual-core AMP would

stress the importance of swapping threads between the cores or

dynamically changing voltage/frequency levels to adapt to the

time-varying program characteristics. For example, a thread

currently being executed on the HP core may have entered a

low-ILP program phase, during which it is better to either run

this thread on the LP core or reduce the voltage/frequency of

the HP core to save power.

64

TABLE I
CHOSEN CORE PARAMETERS

Param LP HP Param LP HP

Issue 2 4 Type In-order OOO
INT/FP REG 64/64 96/80 LSQ NA 32
INT/FP ISQ NA 36/24 ROB NA 128

L1(I/D) 32K 32K L2 512K 2M

TABLE II
EXECUTION UNIT SPECIFICATIONS FOR THE CORES. (P - PIPELINED, NP -

NOT PIPELINED, PP - PARTIALLY PIPELINED)

Core FP DIV FP MUL FP ALU
LP 1 unit, 60 cyc, NP 1 unit, 4 cyc, PP 1 unit, 5 cyc, P
HP 1 unit, 21 cyc, P 1 unit, 5 cyc, P 2 units, 3 cyc, P

INT DIV INT MUL INT ALU
LP 1 unit, 207 cyc, NP 1 unit, 10 cyc, P 2 unit, 1 cyc, P
HP 1 unit, 23 cyc, P 1 unit, 8 cyc, P 4 units, 1 cyc, P

The list of core parameters and execution latencies used

for both the core types are shown in Tables I and II, respec-

tively. Most of the core parameters and latencies were taken

from [19]. It can be seen from Table I that the two cores

are significantly different. Similar to the latest Intel and AMD

processors [8], [9], the two baseline cores can operate either

in normal or boost mode and, the corresponding voltage and

frequency levels in the two modes are shown in Table III.

We used SESC as our architectural performance simu-

lator [20] and employed Wattch [21] and CACTI [22] to

calculate power with modifications to account for static power.

For our experiments, we have selected 38 benchmarks from

MiBench [23], SPEC suite [24] and Mediabench [25] suites.

IV. DYNAMIC THREAD SCHEDULING

The proposed dynamic thread scheduling scheme strives

to maximize throughput/Watt of the applications by deter-

mining the program phase to core affinity and the best core

operating conditions at runtime. As the knowledge about the

computational needs of different program phases are generally

unavailable beforehand, there is a need to determine them

online. To keep the swapping and DVFS overheads at bay,

a good thread scheduling scheme should consider reassigning

threads and/or changing voltage/frequency levels only when

a thread has moved to a new and stable phase. Therefore,

there is a need to detect stable phase changes in a program

even before determining the best thread-to-core affinity or

the appropriate power state (voltage/frequency levels). The

program phase detection mechanism should ignore short-lived

unstable phases that do not warrant thread reassignment or

change in core operating conditions. We describe our phase

change detection mechanism in the next subsection.

A. Phase detection mechanism

A number of phase classification mechanisms have been

proposed in the literature [26], [27]. After certain modifi-

TABLE III
VOLTAGE/FREQUENCY LEVELS OF THE CORES.

Core-type Normal Boost

LP 0.81 V / 1 GHz 0.9 V / 1.6 GHz
HP 1.1 V / 2 GHz 1.3 V / 3 GHz

Instructions

INT
FP

Load
Store

Retired =?

Interval length n

Enable

ITV of current program execution

Last identified phase

>?

% threshold

Repeats
m

times?

ITV

Yes

Yes

Unstable phase

New Phase

Branch

No

Fig. 2. Our phase detection mechanism.

cations, we adopt the phase classification scheme based on

Instruction Type Vectors (ITVs) proposed by Khan et al. [13]

owing to its simplicity. In their scheme, ITVs are formulated

using hardware counters that count the number of committed

instructions of certain types (9 in [13]) during a specified

interval. A fixed number n of committed instructions constitute

the above interval, with the value of n to be determined.

The appropriate instruction counter is incremented whenever

an instruction is retired. After the commit of n instructions,

the resulting 9-element vector is captured and compared to

the ITV of the previously identified phase. If the sum of

differences between the instruction types of the previously

encountered and currently executing phase is greater than a

threshold, Δ (another parameter to be determined), then this

is potentially a new phase. The scheme qualifies a newly

detected phase as stable only when at least m (the last phase

classification parameter that should be determined) consec-

utive intervals have their ITV differences smaller than Δ.

All previously detected stable phases are stored in a phase

table. Since we are interested only in phase change detection,

rather than classification, we do away with the phase table

in our implementation. In addition, due to the nature of the

considered baseline cores (LP and HP), further classifying

integer and floating-point instructions as ALU, multiply or

divide does not offer any significant benefit. Therefore, we

reduce the ITV from 9 to 5 elements corresponding to floating-

point, integer, load, store and branch instructions. Our modi-

fied phase detection mechanism is shown in Figure 2. Khan et
al. determined the phase classification parameters (n, m, and

Δ) by experimentation. Since the baseline core configurations

and the benchmarks that we consider are very different from

those in [13], we have redone the experiments, details of

which could be found in [28]. Based on those experiments,

we have set the phase detection parameters to (i) interval

length n = 100K instructions, (ii) threshold Δ = 12.5% and,

(iii) m = 4 such that maximum throughput/Watt benefits were

achieved when compared to the static baseline heterogeneous

configuration.

B. Determining program affinity online by estimating the
expected throughput/Watt

After establishing the phase detection mechanism, we need

to determine online the affinity of the current program phase to

the core-types and voltage/frequency levels in the AMP. The

objective that our scheme tries to maximize is throughput/Watt

65

(Instructions per second (IPS)/Watt) which is the product of

performance/Watt (IPC/Watt) and frequency. Since the fre-

quency of each power state is known beforehand, the proposed

scheme tries to predict the expected IPC/Watt of the current

phase at different operating conditions on both the core-types.

Hardware performance counters (HPCs) have been observed

to reveal significant information about the characteristics of

the thread currently being executed [29], [30]. We therefore,

decided to develop a scheme to predict IPC/Watt of an

executing application on the host core, as well as on other

cores in the AMP at all the available voltage/frequency levels

using HPCs. To do so, we need to first identify a set of

counters that could be used for estimation and then choose

a small subset that would have the highest correlation with

the IPC/Watt.

The HPCs explored by us can be grouped as follows:

• Instructions per Cycle (IPC): Power consumption of

the processor is dependent on its activity and the IPC counter

provides a good measure of program activity.

• Fetch counters: The IPC metric considers only the

retired instructions, but in a processor, many instructions are

executed speculatively and then flushed from the pipeline. To

account for these, we considered # Fetched instructions (F)
and, Branch mispredictions (BMP).
• Miss/Hit counters: Cache hits/misses play a significant

role in performance or power consumption of a core. In this

regard, the following event counters: L1 hit (L1h), L1 miss
(L1m), L2 hit (L2h), L2 miss (L2m) and, TLB miss (TLBm)
are considered.

• Retired instructions counters: Performance or power

consumption can vary significantly depending on the type

of the retired instructions (integer (INT), floating-point (FP),

Load (Ld), Store (St), Branch (Br)). Hence, we considered the

corresponding retired instructions counters.

• Stalls: The activity of the processor will be low when

it experiences data or resource conflicts frequently. We con-

sider stalls due to reservation stations, re-order buffer (ROB),

load/store queues (LSQ), register renaming and RAT (Register

Alias Table). We refer to this counter as Stalls (S).
In all, we examined 14 different HPCs. It is to be noted that

none of the above counter values would change by changing

the voltage/frequency levels of the corresponding core.

1) Performance/Power Modeling: Power estimation on the

same core has been done before by using 3 to 4 counters

[29], [30]. However, it is not straightforward to estimate the

metrics on the other core by employing the counters of the

host core. Our intent is to use the least number of counters to

predict IPC/Watt at a reasonably high precision. The objective

of this is not to save hardware, but, to minimize the number

of counters that need to be monitored simultaneously.

We next discuss the total number of predictions required

for the considered 2-core (LP and HP) AMP with two power

states each (normal and boost). As power cannot be extracted

at runtime, there is a need to estimate IPC/Watt of the current

phase even on the same core at the current operating condition

(besides at alternate condition). This results in total of 4 pre-

0.54
0.59
0.64
0.69
0.74
0.79
0.84
0.89
0.94
0.99
1.04

1 2 3 4 5 6 7 8 9 10 11 12 13 14

R
2
C

oe
ffi

ci
en

t

Counters

LP-HPCs_HP-IPC/Watt (normal) LP-HPCs_HP-IPC/Watt (boost)
HP-HPCs_LP-IPC/Watt (normal) HP-HPCs_LP-IPC/Watt (boost)
LP-HPCs_LP-IPC/Watt (normal) LP-HPCs_LP-IPC/Watt (boost)
HP-HPCs_HP-IPC/Watt (normal) HP-HPCs_HP-IPC/Watt (boost)

Fig. 3. Variation in the R2 coefficient with increasing number of HPCs while
predicting IPC/Watt at both operating modes on both the core-types. The HPCs
of the first core-type in the legend name is used to estimate the IPC/Watt on
the second core-type in the legend name at the operating mode mentioned
within the parenthesis. For example, legend LP-HPCs HP-IPC/Watt (normal)
corresponds to IPC/Watt prediction on the HP core in the normal mode using
the HPCs of the LP core.

dictions (2 for each core and 2 for each operating mode) within

the same core. Further, to make thread swapping decisions, we

need to predict the expected IPC/Watt of a thread running on

HP (LP) core, on LP (HP) core at both operating modes. This

accounts for another 4 predictions thereby increasing the total

number of predictions required to 8.

Our objective is to identify the smallest set of coun-

ters from the list of 14 that could be used to estimate

IPC/Watt. Once the right set of counters is chosen, we

could employ multi-dimensional curve fitting and regression

analysis to obtain expressions for IPC/Watt using the se-

lected counters. To perform this analysis, we identified 12

representative benchmarks from the set of 38, such that

they include: integer intensive (intStress,bzip2,gzip), floating-

point intensive (fpStress,equake,ammp), load/store intensive

(gcc,whetstone,swim) and, branch intensive (mcf,twolf,art)
benchmarks. These 12 benchmarks were run on both the cores

at the two operating modes for 5 billion instructions, after

skipping the initial 5 billion. The value of the 14 performance

counters along with the observed IPC/Watt were sampled

periodically after the commit of every 100K instructions. All

the obtained counter values were normalized with respect

to the number of instructions (100K) in the interval. This

normalization allows us to use the same IPC/Watt expressions

obtained during the training phase for a different instruction

length (n) while making runtime thread scheduling decisions.

To accomplish the task of making the right choice of HPCs,

we devised an efficient heuristic that searches the counter

space iteratively. During each iteration, our counter selection

algorithm picks a new counter that best fits IPC/Watt along

with the set of counters already chosen in previous iterations.

We tried only linear models for curve-fitting and the best

fit is qualified by the R2 coefficient. During the initial few

iterations, the value of the R2 coefficient increases steeply as

more counters are added, but it tends to saturate later. The best

set of counters is around the region where the R2 coefficient

tends to saturate.

Figure 3 shows the value of the R2 coefficient obtained dur-

66

TABLE IV
TRAINED EXPRESSIONS FOR IPC/WATT PREDICTION IN THE NORMAL

MODE ON BOTH THE CORE-TYPES.

HPCs of/Prediction on Expression

LP/HP -1.2 × BMP - 0.1 × L1m +

0.04 × Br + 3.6 × 10-4 × S + 0.05
HP/LP -0.28 × L1m - 0.04 × Ld +

-0.5 × BMP + 0.1 × TLBm + 0.08

LP/LP 0.2 × IPC - 8 × 10-4 × S + 0.04
HP/HP 0.02 × IPC - 0.01 × L1m + 0.04

ing each iteration of the algorithm while estimating IPC/Watt

for all the 8 cases (4 IPC/Watt predictions on the same core

and another 4 predictions on the other core). It is evident that

a reasonably high value of the R2 coefficient is achieved for

the same core predictions (the top 4 curves) and it saturates

after 2 counters. Consequently, we used only two counters for

IPC/Watt estimation on the same core. However, the value of

the R2 coefficient achieved while predicting the IPC/Watt on

the other core (the bottom 4 curves) by using the HPCs of the

host core is significantly lower than that on the same core (the

top 4 curves). Further, the curves tend to saturate only after the

third iteration indicating that 3 or more counters of the host

core may be needed to adequately predict the IPC/Watt on the

other core. Being an heuristic, our counter selection algorithm

can only provide hints regarding the probable set of counters

to explore. Therefore, we tried the set of 3 and 4 counters

chosen by our algorithm around the saturating region of the

curve and analyzed the increase in estimation accuracy. We

observed that by using 4 counters, instead of 3, the average

percentage error went down by 3.6%. We found this to be a

good trade-off to make and went ahead with 4 counters for

predicting the IPC/Watt on the other core. Based on these

experiments, we obtained expressions for IPC/Watt prediction

corresponding to each of the 8 cases. For the sake of brevity,

we show only 4 out of the 8 expressions that correspond to

IPC/Watt prediction in the normal mode in Table IV.

2) Evaluating the accuracy of IPC/Watt prediction: After

deriving the expressions for estimating the IPC/Watt, we evalu-

ated the accuracy of our prediction using all the 38 workloads,

although only 12 were used during the training phase. The

absolute average percentage error in IPC/Watt estimation for

each of the 8 estimations is shown in Figure 4. Due to better

quality of fit (higher value of R2 coefficient), a much higher

accuracy was achieved for estimating IPC/Watt on the same

core when compared to the other core. The maximum average

percentage error was less than 5% for IPC/Watt estimation

on the same core. In contrast, the maximum average error

was about 16.4% when predicting the IPC/Watt on LP core in

normal mode using the HPCs of HP core.

From Figure 4 we make a key observation that the scheme

faces higher imprecision while predicting the IPC/Watt on LP

core using the HPCs of the HP core. The main suspect for this

is the difference in L2 cache sizes of the two cores. The HP

core has a 2 MB L2 cache while it is only 512 KB in the LP

core. Hence, it is quite possible that the scheme overestimates

the IPC/Watt on the LP core during memory intensive phases.

Overall, our scheme achieves adequate accuracy in predicting

Estimation on other core Estimation on same core

0.0%
2.0%
4.0%
6.0%
8.0%

10.0%
12.0%
14.0%
16.0%
18.0%

LP to HP HP to LP LP to LP HP to HP

A
ve

ra
ge

 %
Er

ro
r i

n
IP

C
/W

at
t

pr
ed

ic
tio

n

Normal Boost

Fig. 4. Average percentage error in IPC/Watt estimation. The HPCs of
the first core-type in the legend name is used to estimate the IPC/Watt on
the second core-type in the legend name. For example, legend “LP to HP”
corresponds to IPC/Watt prediction on the HP core using the HPCs of the LP
core.

-5
5

15
25
35
45
55
65
75

< - - - - 0

Fr
eq

ue
nc

y (
%

)

Error bins in terms of standard deviation

LP-HPCs_HP-IPC/Watt (normal) LP-HPCs_HP-IPC/Watt (boost)
HP-HPCs_LP-IPC/Watt (normal) HP-HPCs_LP-IPC/Watt (boost)

Fig. 5. Distribution of error in estimating IPC/Watt on the other core using
HPCs of the host core. Horizontal axis indicates the number of standard
deviations by which the observations are off from the mean.

the IPC/Watt both on the same core and on the other core at

different operating conditions.

Although the overall average percentage error is low, the

scheme could still end up making wrong thread scheduling

decisions if the prediction error at the time of decision making

is high. Hence, we also analyzed the distribution of the error

in IPC/Watt prediction. For the sake of brevity, only the error

distribution of the worst case, predicting the IPC/Watt on

the other core using the HPCs of the host core, is shown

in Figure 5. It is evident from the figure that most of the

sample points are contained within +/- 1σ, reflecting the high

accuracy of our prediction scheme. About 89% (94%) of the

samples corresponding to IPC/Watt estimation on the HP (LP)

core using HPCs of the LP (HP) core fall within this range.

Therefore, we can expect our prediction scheme to make good

thread scheduling decisions most of the time.

C. The complete thread scheduling framework

Having devised a phase detection mechanism and a scheme

to predict the expected throughput/Watt at both the operating

modes on the two considered core-types, we still need a way

to seamlessly govern these two autonomous mechanisms. We

assume a software layer called Microvisor to coordinate the

predictions and thread scheduling decisions whenever a new

phase is detected for either of the threads. A similar layer

67

Start

Baseline cores begin thread
execution at normal mode

Execution
complete?

Stop

New phase
encountered in any

of the threads?

Estimate throughput/Watt at different
V/f levels on both core types

Determine expected IPS/Watt
gains in alternate configurations

Gain >
decision

threshold?

Employ determined thread-to-
core mapping & core operating

conditions

Yes

No

Yes

Yes

No

No

Phase detection mechanism

Microvisor

Fig. 6. Our complete thread scheduling framework.

called Millicode [31] was developed by IBM and has been

used by Khan et al. in [27].

Figure 6 shows the flowchart of our thread scheduling

framework. The two threads begin their execution in the nor-

mal mode with a random thread-to-core assignment. The phase

detection mechanism in each of the cores monitors the ITV of

the current execution phase. Whenever a stable phase change

is detected for one of the threads, the Microvisor is invoked to

predict the expected throughput/Watt of the current execution

phases of both the threads at different operating modes on the

two core-types. This prediction is done using the current values

of the chosen HPCs of the corresponding host cores. Based on

the above predictions, the Microvisor calculates the projected

geometric throughput/Watt gain (weighted or harmonic metric

could also be used) in moving to each of the possible new

states (combinations of different thread-to-core assignment and

voltage/frequency levels) over the current one. If the maximum

geometric speedup is greater than 5% (called decision thresh-

old to account for the overheads; detailed sensitivity study was

conducted to determine this value), the corresponding new

thread-to-core assignment and core operating conditions are

opted for. Else, the current thread-to-core mapping and core

operating conditions are maintained.

D. Overheads of the proposed scheme

Thread swapping between cores incurs an overhead due to

context switch and cold cache misses. Rodrigues et al. [4] have

estimated this overhead to be 400 cycles. To be conservative,

we assume an overhead to refill about one-fourth of the L1

TABLE V
OVERHEADS ASSOCIATED WITH THE PROPOSED SCHEME

Type Overhead

Thread swap 14 μs
Voltage/frequency downscaling 5 μs

Voltage/frequency upscaling 30 μs
Microvisor invocation 500 cycles

caches in the new core-type upon a thread swap. Considering

the current memory access latencies and the processor-memory

bus width [32], we estimated this to be about 13.8 μs. Hence,

we assume an overhead of 14 μs for every thread swap.

Changing the voltage and frequency of the cores at runtime

incurs an even higher overhead. The processor needs to be

halted while the PLL relocks to the new frequency. The PLL

relock time in the latest Intel processors is 5 μs. In addition to

the PLL relock time, while scaling up the voltage/frequency,

the processor operates at the lower frequency until the voltage

has risen to the new value [33]. This performance under-

driven loss of the processor during the voltage transition time

should also be considered under DVFS overheads. Based on

the DVFS overhead expressions deduced by Park et al. [33],

the performance under-driven loss comes to about 25 μs

for our considered voltage/frequency levels. As indicated in

Section V-A, we observed only about 39 reconfigurations

(dynamic thread swapping and voltage/frequency changing) on

an average for a program execution of 5 billion instructions

which keeps the swap and DVFS overheads at bay.

The final source of overhead is associated with the invoca-

tion of the Microvisor whenever a new stable phase is detected

for any one of the threads. On an average, the Microvisor

was invoked 450 times per run; but the associated overhead

is relatively small as it involves collecting the counter values

from both the cores, evaluating the throughput/Watt expres-

sions, calculating the projected gains and determining the final

thread-to-core assignment and core operating conditions. This

can be assumed to be at most a few hundred clock cycles and

we observed this to have negligible impact on our results. In

our experiments, we have assumed an overhead of 500 cycles

for each Microvisor invocation. Table V presents the summary

of the overheads considered in our experiments.

V. EVALUATION

We now evaluate the benefits of the proposed prediction-

based thread scheduling scheme. A large number of mul-

tiprogrammed workloads were run on the considered dual-

core AMP with two operating modes until both the threads

completed 5 billion instructions (after the skipping the initial 5

billion). We compare the proposed thread scheduling schemes

against the following baselines:

• Static: This is the baseline heterogeneous AMP with a

static thread-to-core assignment. The fixed assignment is based

on oracular knowledge of the best assignment over the entire

run of the workloads and as such is not practical. The cores

operate in normal mode and this baseline lacks the capability

to change the voltage/frequency levels of the cores at runtime.

• Swap-only: In this baseline, the executing threads are

swapped dynamically between the baseline cores, if deemed

68

0.9

0.95

1

1.05

1.1

IP
S/

W
at

t im
pr

ov
em

en
t

Weighted Throughput/Watt improvement
Geometric Throughput/Watt improvement

Worst cases Average cases Best cases

Fig. 7. Weighted/Geometric speedup in throughput/Watt due to the proposed scheme over Greedy Oracle scheme for different multiprogrammed workloads.

beneficial. Dynamic thread swapping is done using our pre-

diction mechanism, i.e., by predicting the expected through-

put/Watt of the current program phase on the alternate core-

type. However, the baseline does not support DVFS. Even

in this baseline, the initial thread-to-core assignment is made

based on oracular knowledge.

• DVFS-only: This baseline has the capability to dynami-

cally boost the voltage/frequency levels of the cores to adapt

to the time-varying program behavior. But, dynamic thread

swapping is not supported. As in the above two baselines, the

threads begin their execution with an oracular best thread-to-

core assignment. It should be noted that the trigger for both

Swap-only and DVFS-only baselines is phase detection.

• Greedy Oracle: To illustrate the accuracy of our online

prediction mechanism, we compare our scheme against a

greedy oracle. This baseline supports both thread swapping

and DVFS at runtime. The trigger is once again based on phase

change detection. However, the thread scheduling decisions

are based on oracular knowledge available at that instant in

time, i.e., it makes 100% accurate throughput/Watt predictions.

Further, we completely discount all the overheads for this

baseline to explore the theoretical maximum gains that could

be achieved.

A. Throughput/Watt analysis

To illustrate the benefits of our approach, we compare the

throughput/Watt achieved using our scheme over the different

baselines. We employ weighted and geometric speedup

metrics for comparison. The considered geometric metric

accounts for the fairness of the system. We first define the

following terms:

S0 = (IPS/Wattthread0)proposed/(IPS/Wattthread0)baseline
S1 = (IPS/Wattthread1)proposed/(IPS/Wattthread1)baseline
The considered speedups are:

1) Weighted: Speedupweighted = (S0 + S1)/2
2) Geometric: Speedupgeometric =

2
√
S0 × S1

From the pool of all 38 benchmarks, 120 random combinations

of two benchmarks were chosen and run on the dual-core using

the proposed scheme as well as each of the baseline schemes.

Although all the baseline configurations start with a best

initial thread-to-core assignment, a random initial assignment

is considered for the proposed scheme. The hope is that

our scheme will detect the best assignment shortly after the

programs begin to run.

As even the baseline configurations (swap-only and DVFS-
only) employ our prediction mechanism, we need to evaluate

the prediction accuracy at the time of decision making. Hence,

we first compare the proposed scheme against the Greedy Or-
acle. Figure 7 shows the weighted/geometric throughput/Watt

speedup of our scheme over the oracle. For the sake of clarity,

only 30 combinations (out of the 120) are shown in the

figure. The shown 30 combinations were carefully chosen to

include the 10 worse results (out of the 120), the 10 best

results and 10 that showed average throughput/Watt benefits.

As expected, for most cases the speedup is less than 1 as we

are comparing against an oracle. It is promising to observe

that even under such scenarios, we fall short of the oracle only

by about 6% in the worst case. The average percentage error

in throughput/Watt prediction at the time of decision making,

corresponding to that combination ({mcf,vpr}) is a reason-

able 17%. The average weighted/geometric throughput/Watt

improvement achieved by our scheme relative to the oracular

scheme is 0.99 considering all the 120 combinations. This

strongly indicates that our scheme closely follows the oracle

and makes the right thread scheduling decisions most of the

time. The average speedup of 0.99 even without considering

the overheads for the oracular scheme infers that the number

of thread swapping and voltage/frequency boosting done using

our scheme is minimal. Considering all the 120 combinations,

we observed an average percentage error of only about 11.3%

in throughput/Watt prediction while making thread scheduling

decisions. Further, there were only about 39 thread swaps and

voltage/frequency changes on an average for an execution of 5

billion instructions. It is interesting to note that the proposed

scheme does better than the oracular scheme in a few rare

cases. The reason for this is that sometimes by taking a wrong

decision (as is done by the proposed scheme), the opportunities

that come up later, as compared to the case where always the

69

1
1.5
2
2.5
3
3.5
4
4.5
5

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

IP
S

im
pr

ov
em

en
t

IP
S/

W
at

t im
pr

ov
em

en
t

Weighted Throughput/Watt improvement
Geometric Throughput/Watt improvement
Geometric Throughput improvement

Worst cases Average cases Best cases

Fig. 8. Weighted/Geometric improvement in throughput/Watt and Geometric speedup in throughput due to the proposed scheme over the static baseline
heterogeneous configuration for different multiprogrammed workloads.

1
1.5
2
2.5
3
3.5
4
4.5

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

IP
S

im
pr

ov
em

en
t

IP
S/

W
at

t im
pr

ov
em

en
t

Weighted Throughput/Watt improvement
Geometric Throughput/Watt improvement
Geometric Throughput improvement

Worst cases Average cases Best cases

Fig. 9. Weighted/Geometric improvement in throughput/Watt and Geometric speedup in throughput due to the proposed scheme over the swap-only baseline
for different multiprogrammed workloads.

1
1.5
2
2.5
3
3.5
4
4.5

0.88
0.98
1.08
1.18
1.28
1.38
1.48
1.58
1.68
1.78

IP
S

im
pr

ov
em

en
t

IP
S/

W
at

t im
pr

ov
em

en
t

Weighted Throughput/Watt improvement
Geometric Throughput/Watt improvement
Geometric Throughput improvement

Worst cases Average cases Best cases

Fig. 10. Weighted/Geometric improvement in throughput/Watt and Geometric speedup in throughput due to the proposed scheme over the DVFS-only baseline
for different multiprogrammed workloads.

70

right (greedy) decision is made, are different. These additional

opportunities at times may provide better benefits.

We next compare the proposed scheme against the non-

oracular baselines. In addition to the performance/power met-

ric (throughput/Watt), we also show the stand-alone perfor-

mance impact by calculating the geometric throughput im-

provement achieved using our scheme.

a) vs. Static: The static baseline lacks the capability to

adapt to the time-varying behavior of the workload and hence,

it never takes advantage of program phases. Though a thread

may have affinity for a certain core or an operating mode over

the entire run, there may be periods where this thread would

be more affine to another core or a power state in the AMP. By

taking advantage of program phases and adapting to the thread

needs, the proposed scheme achieves significant throughput

and throughput/Watt benefits over this baseline (see Figure 8).

Of the 120 combinations, we did not find any case where this

baseline performed better than the proposed scheme. Even for

the worst case, our scheme was better than the static base-

line by 5.5% (5.2%) when considering weighted (geometric)

throughput/Watt improvement. On an average, considering all

the 120 combinations, our scheme achieved a 27.2% (25%)

weighted (geometric) improvement in throughput/Watt over

this baseline. Furthermore, by opportunistically opting for the

boost mode and efficiently making use of the HP core for high-

compute intensive/high-ILP program phases, our proposed

scheme resulted in much higher throughput improvement of

about 190%, on an average, over the static baseline. These

results stress the need for a dynamic scheme that can adapt the

available core resources and operating modes to the program

phase behavior.

b) vs. Swap-only: This is a dynamic baseline that can

swap threads between cores at runtime. As mentioned before,

the trigger and thread scheduling mechanisms are similar to

that of the proposed scheme. As could be seen from Figure 9,

a substantial increase in throughput/Watt is achieved using

our scheme even over the swap-only baseline. Again, we did

not encounter any combination where the swap-only scheme

performed better than ours. We achieved a throughput/Watt

improvement of about 5.3% even for the worst case. Using

the proposed scheme, there was on average 13.7% (13%)

weighted (geometric) improvement in IPS/Watt and about 91%

geometric improvement in IPS over the swap-only baseline.

We analyzed the benchmark combinations at the right end

of Figure 9 for which we achieve maximum IPS/Watt improve-

ment over the swap-only baseline. It is interesting to note that

most of them are either compute-memory intensive benchmark

combinations (e.g., {fbench,basicmath}) or both are com-

pute intensive benchmark combinations (e.g., {adpcm,cpu},

{adpcm,sixtrack}). In the case of {fbench,basicmath}, fbench
is memory intensive with about 58% load/store instructions

while basicmath is compute intensive. For such compute-

memory intensive benchmark combinations, besides determin-

ing the best thread-to-core assignments, our scheme makes use

of DVFS to good extent. During high-IPC/high-ILP phases of

compute intensive benchmark, our scheme pushes the HP core

to boost mode resulting in much faster execution and hence,

better IPS/Watt. This results in a higher IPS speedup for these

combinations over swap-only baseline (speedup of about 3

for {fbench,basicmath}). For cases when both the threads go

through high compute intensive phases at the same time (e.g.,

{adpcm,cpu}), our scheme pushes the HP core to boost mode,

clearing the conflict for better resources (HP core) quickly.

During this time, the performance of the thread executing on

non-affine core is improved by opting for the boost mode

within the LP core. Once the conflict clears up, the latter thread

is migrated to HP core. These cases clearly substantiate the

need for dynamically changing the voltage/frequency of the

cores besides swapping threads.

c) vs. DVFS-only: This is another baseline with some

capability to adjust to the program behavior. Here, the voltage

and frequency of the cores are chosen so as to maximize

throughput/Watt. As is evident from Figure 10, the pro-

posed approach achieves reasonable benefits over this baseline

as well. In contrast to the previous two baselines, there

were few benchmark combinations (e.g., {adpcm,adpcm},

{bitcount,adpcm}) out of the 120, for which our scheme

performed worse than DVFS-only scheme. In the worst case,

we observed a IPS/Watt degradation of about 9.5% using our

scheme. We analyzed these cases and observed a probable

reason for such a behavior. For few rare cases, our scheme ends

up making wrong thread scheduling decisions due to errors in

throughput/Watt prediction. As a result of this, our scheme per-

formed few non-beneficial thread swaps and opted for boosting

the voltage and frequency of the cores at a much later stage

of the program execution. Since it is an opportunistic scheme

that looks for a thread scheduling opportunity only upon a

phase change, a wrong thread scheduling decision made, is

retained for the entire phase, magnifying its impact. However,

these worst case scenarios were infrequent and there were only

10 out of 120 combinations that resulted in degradation of

more than 3%. We also analyzed the cases for which our

scheme performs much better than the DVFS-only scheme.

We observed that most of such cases were for symmetric

workload combinations (both the threads having affinity for the

same core-type, e.g., {gcc,gcc}, {intStress,bitcount} - both are

integer intensive). By swapping threads, our scheme efficiently

shares the affine resource (preferred core-type) while one

of the threads is forced to execute on the non-affine core

throughout its execution in DVFS-only scheme. Hence, there

is a definite need for a scheme to support thread swapping

besides DVFS.

Furthermore, we analyzed the best 10 cases for which

our scheme achieves maximum IPS/Watt speedup over swap-
only (see Figure 9) and DVFS-only (see Figure 10) baselines.

We noticed that there were only 2 benchmarks combinations

({crc32,cpu} and {crc32,cpu}) that were in common between

the two. This is very encouraging for our proposed scheme

as it shows that the benefits of dynamic thread swapping

and DVFS are mostly non-overlapping. As a result, different

kinds of benchmark combinations could benefit from either

of them, indicating the potential benefits of schemes (like the

71

one proposed in this paper) that seamlessly combine the two

approaches.

VI. CONCLUSIONS

We have presented an opportunistic prediction-based thread

scheduling scheme to maximize throughput/Watt in AMPs.

The key idea of the proposed approach is the online prediction

of the expected throughput/Watt of the current program phase

at different operating conditions on all the available core-

types. We leverage the use of performance counters which

are available in almost all processors for such a prediction.

To illustrate our approach, we considered a dual-core AMP

comprising of a high performance HP core and a power

efficient LP core with two operating modes. We presented a

counter selection heuristic to determine the smallest subset of

HPCs to adequately predict throughput/Watt on various core

configurations. Approximate expressions based on the values

of the chosen HPCs were formulated to assist in determining

the best thread-to-core mapping and core operating conditions

to suit the current program phase.

We compared our proposed scheme to a static baseline

with best thread to core assignment, a baseline with swap-
only capability, a baseline with DVFS-only capability, and an

oracular scheme that makes 100% accurate predictions. Our

results indicate that the proposed scheme can achieve signifi-

cant weighted throughput/Watt benefits of about 27.2%, 13.7%

and 8% on an average, over the static baseline, the baseline

with swap-only capability and the baseline with DVFS-only
capability, respectively. Further, the proposed scheme falls

short of the oracular scheme by only about 6% in the worst

case.

VII. ACKNOWLEDGEMENT

This research was supported in part by grants 0903191 and

1201834 from the National Science Foundation.

REFERENCES

[1] J. Held et al., “White Paper From a Few Cores to Many: A Tera-scale
Computing Research Review,” 2006.

[2] M. Pericas et al., “A Flexible Heterogeneous Multi-Core Architecture,”
in Proceedings of the 16th International Conference on Parallel Archi-
tecture and Compilation Techniques, 2007.

[3] R. Kumar et al., “Single-ISA heterogeneous multi-core architectures: the
potential for processor power reduction,” in Proceedings of 36th Annual
IEEE/ACM International Symposium on Microarchitecture, 2003.

[4] R. Rodrigues et al., “Performance Per Watt Benefits of Dynamic Core
Morphing in Asymmetric Multicores,” in Proceedings of the Interna-
tional Conference on Parallel Architectures and Compilation Techniques,
2011.

[5] A. Annamalai et al., “Dynamic Thread Scheduling in Asymmetric
Multicores to Maximize Performance-per-Watt,” in 26th International
Parallel and Distributed Processing Symposium Workshops & PhD
Forum, 2012.

[6] P. Greenhalgh, “Big.little processing with arm cortex-a15 and cortex-a7,”
2011.

[7] G. Keramidas et al., “Interval-based models for run-time DVFS orches-
tration in superscalar processors,” in 7th ACM International Conference
on Computing Frontiers, 2010.

[8] “Intel Corporation. Intel Turbo Boost Technology in Intel Core Microar-
chitecture (Nehalem) Based Processors, White Paper,” 2008.

[9] D. Foley et al., “AMD’s “LLANO” FUSION APU, Hot Chips 2011,
Paper: HC23.19.930.”

[10] M. Becchi et al., “Dynamic thread assignment on heterogeneous mul-
tiprocessor architectures,” in Proceedings of the 3rd conference on
Computing frontiers, 2006.

[11] D. Koufaty et al., “Bias scheduling in heterogeneous multi-core archi-
tectures,” in Proceedings of the 5th European conference on Computer
systems, 2010.

[12] J. C. Saez et al., “A comprehensive scheduler for asymmetric multicore
systems,” in Proceedings of the 5th European conference on Computer
systems, 2010.

[13] O. Khan et al., “A self-adaptive scheduler for asymmetric multi-cores,”
in Proceedings of the 20th symposium on Great lakes symposium on
VLSI, 2010.

[14] D. Shelepov et al., “HASS: a scheduler for heterogeneous multicore
systems,” SIGOPS Oper. Syst. Rev., vol. 43.

[15] J. Chen et al., “Efficient program scheduling for heterogeneous multi-
core processors,” in Proceedings of the 46th Annual Design Automation
Conference, 2009.

[16] S. Srinivasan et al., “Efficient interaction between OS and architecture
in heterogeneous platforms,” SIGOPS Oper. Syst. Rev.

[17] V. Craeynest et al., “Scheduling heterogeneous multi-cores through
performance impact estimation (pie),” SIGARCH Comput. Archit. News.

[18] R. Rodrigues et al., “Scalable thread scheduling in asymmetric multi-
cores for power efficiency,” in IEEE 24th International Symposium on
Computer Architecture and High Performance Computing, 2012.

[19] A. Fog, “The microarchitecture of Intel, AMD and VIA CPU,” Copen-
hagen University College of Engineering, Tech. Rep.

[20] J. Renau, “SESC: SuperESCalar Simulator,” 2005.

[21] D. Brooks et al., “Wattch: a framework for architectural-level power
analysis and optimizations,” in Proceedings of the 27th International
Symposium on Computer Architecture, 2000.

[22] P. Shivakumar et al., “CACTI 3.0: An Integrated Cache Timing, Power,
and Area Model,” Tech. Rep., 2001.

[23] M. Guthaus et al., “MiBench: A free, commercially representative em-
bedded benchmark suite,” in IEEE International Workshop on Workload
Characterization, 2001.

[24] SPEC2000, “The Standard Performance Evaluation Corporation (Spec
CPI2000 suite).”

[25] C. Lee et al., “MediaBench: a tool for evaluating and synthesizing
multimedia and communicatons systems,” in Proceedings of the 30th
annual ACM/IEEE international symposium on Microarchitecture, 1997.

[26] A. S. Dhodapkar et al., “Comparing Program Phase Detection Tech-
niques,” in Proceedings of the 36th annual IEEE/ACM International
Symposium on Microarchitecture, 2003.

[27] O. Khan et al., “Microvisor: A Runtime Architecture for Thermal
Management in Chip Multiprocessors,” T. HiPEAC, vol. 4, 2011.

[28] R. Rodrigues et al., “Improving performance per watt of asymmetric
multi-core processors via online program phase classification and adap-
tive core morphing,” ACM Trans. Des. Autom. Electron. Syst.

[29] G. Contreras et al., “Power prediction for Intel XScale reg; processors
using performance monitoring unit events,” in Proceedings of the
International Symposium on Low Power Electronics and Design, 2005,
aug. 2005, pp. 221 – 226.

[30] K. Singh et al., “Real time power estimation and thread scheduling via
performance counters,” SIGARCH Comput. Archit. News.

[31] L. C. Heller et al., “Millicode in an IBM zSeries processor,” IBM Journal
of Research and Development, 2004.

[32] “The Nehalem Preview: Intel Does It Again.
http://www.anandtech.com/show/2542/5.”

[33] J. Park et al., “Accurate modeling and calculation of delay and energy
overheads of dynamic voltage scaling in modern high-performance
microprocessors,” in Proceedings of the 16th ACM/IEEE international
symposium on Low power electronics and design, 2010.

72

