
Dynamic Thread Scheduling in Asymmetric Multicores to Maximize
Performance-per-Watt

Arunachalam Annamalai, Rance Rodrigues, Israel Koren and Sandip Kundu
Department of Electrical and Computer Engineering

University of Massachusetts at Amherst
Email: {annamalai, rodrigues, koren, kundu}@ecs.umass.edu

Abstract—Recent trends in technology scaling have enabled
the incorporation of multiple processor cores on a single die.
Depending on the characteristics of the cores, the multicore
may be either symmetric (SMP) or asymmetric (AMP). Several
studies have shown that in general, for a given resource and
power budget, AMPs are likely to outperform their SMP
counterparts. However, due to the heterogeneity in AMPs,
scheduling threads is always a challenge. To address the issue of
thread scheduling in AMP, we propose a novel dynamic thread
scheduling scheme that continuously monitors the current
characteristics of the executing threads and determines the best
thread to core assignment. The real-time monitoring is done
using hardware performance counters that capture several
microarchitecture independent characteristics of the threads in
order to determine the thread to core affinity. By controlling
thread scheduling in hardware, the Operating System (OS)
need not be aware of the underlying microarchitecture, signif-
icantly simplifying the OS scheduler for an AMP architecture.

The proposed scheme is compared against a simple Round
Robin scheduling and a recently published dynamic thread
scheduling technique that allows swapping of threads (between
asymmetric cores) at coarse grain time intervals, once every
context switch (∼20 ms for the Linux scheduler). The presented
results indicate that our proposed scheme is able to achieve,
on average, a performance/watt benefit of 10.5% over the
previously published dynamic scheduling scheme and about
12.9% over the Round Robin scheme.

Keywords-Asymmetric Multicore Processor (AMP), Thread
swapping, Instructions per cycle (IPC).

I. INTRODUCTION
The relentless push in technology scaling driven by

Moore’s law has resulted in more transistors packed into a
very small area. This led to improved transistor performance
and a significant increase in frequency. However, this device
miniaturization has resulted in a larger number of transistors
per unit area leading unfortunately to a severe power den-
sity problem. Computer architects responded by integrating
many cores on the same die [1] and lowering the operating
frequency. To keep power density under check, these cores
are also kept modest in their capabilities.

In general, multicore processors may be symmetric (SMP)
or asymmetric (AMP). An SMP consists of many cores of
the same type while in an AMP, the cores may be different
from one another with respect to their functionality and/or
performance [2]. Recently, a number of studies have shown
that for a fixed budget (area or power or both), AMPs

0

0.01

0.02

0.03

0.04

0.05

0.06

equake fpStress gcc mcf CRC32 intStress
IP
C
/W
at
t

Workloads

Core A Core B

Figure 1. Performance-per-watt achieved for various workloads on two
different core types A and B.

are likely to outperform SMPs [3], [4], [5]. The benefits
of AMPs are intuitive as it is well known that different
workloads have different resource requirements. In addition,
within a workload, the flavor of the application may change
from time to time resulting in distinguishable phases [6]. The
computational resource requirements may often vary signif-
icantly from one phase of a given program to the other. In
such a case, it may be beneficial to have different cores that
cater to the needs of different applications and their phases
such that resource utilization and hence performance/watt is
maximized.

Thread scheduling is usually controlled by the OS and
commonly used scheduling schemes include FIFO and
Round Robin. These schemes work well for SMPs where
the capability of all the cores is the same. However, thread
scheduling in an AMP remains a challenge [7]. Consider,
for example, Figure 1 where the performance/watt of few
workloads executed on each of the two cores we consider
is plotted. For now, let the two cores be called core A
and core B. This figure shows that for some workloads,
core A is the better option (e.g., equake, fpStress) while for
some others core B is better (e.g., CRC32, intStress). There
are also some workloads for which there is no significant
difference in performance/watt achieved by either core (e.g.,
gcc, mcf). Clearly, a correct thread to core assignment can
significantly improve the achieved performance/watt. This
figure demonstrates that traditional OS thread scheduling
techniques may not be optimal for an AMP. This is due to
the heterogeneity in computation capability that the cores in

Instruction

fetch/decode ROB

Weak FPU

ISQ

Strong INT

ISQ

Weak FPU

units

Strong INT

units

 Strong Integer, Weak FP core

CDB

Instruction

fetch/decode ROB

Strong FPU

ISQ

Weak INT

ISQ

Strong FPU

units

Weak INT

units

Strong FP, Weak INT core

CDB

Core 1 - INT Core 2 - FP

Figure 2. A heterogeneous dual-core system.

the AMP provide. To yield a better scheduling, either the OS
needs to be aware of the underlying microarchitecture, which
may significantly complicate the OS scheduler, or hardware
assisted solutions need to be in place.

To address the dynamic hardware resources to thread
matching problem of AMPs, we have recently proposed a
low-cost non-invasive hardware mechanism to morph the
asymmetric cores to provide better sequential performance
whenever necessary [5]. This mechanism estimates the re-
source requirements of the application running on the core,
thus enabling a better thread to core assignment. We have
illustrated the benefits of our approach using an example of
a dual core system (shown in Figure 2) where one core is
designed to better handle integer (INT) instructions while
the other core is capable of handling floating-point (FP)
instructions efficiently. Whenever the threads running on
the cores experience a change in resource demands, the
online performance monitors detect it and as per certain
rules, determine the optimal thread to core assignment. In
this paper, we do not consider morphing and only focus on
thread swapping in an effort to avoid the hardware overhead
associated with morphing and explore the benefits of a swap
only scheme. We elaborate on the proposed technique in
section III. The rules that govern the optimal thread to
core assignment may be based on either performance or
performance/watt metric. We focus on performance/watt in
this paper.

We compare our scheme against a recently proposed
thread swapping technique [8]. There, the thread to core
assignment is done by estimating the performance of a
thread that is running on one core, on the other core in
the asymmetric multicore. This estimation is done at coarse
grain time intervals of once every context switch which is
around 20 ms (40 million cycles on a 2GHz processor) for
the Linux scheduler. They do this to avoid the penalties
associated with thread swapping. However, our results in-
dicate that a more fine grain evaluation of the thread to core
assignment may provide higher performance/watt benefits.

The rest of the paper is organized as follows. In Section II,
we survey the prior research and in Section III we outline
our approach and point out the key differences between this
approach and those previously proposed. In Section IV the

experiments to determine the core parameters are described.
We then describe in detail in Section V the reference dy-
namic scheme which is used for comparison. In Section VI
we discuss our proposed dynamic thread scheduling scheme.
Then, results and analysis are presented in Section VII.
Section VIII presents our conclusions.

II. RELATED WORK

With AMP architectures getting increasingly popular,
there have been a number of proposed thread scheduling
techniques for AMPs. Kumar et al. in [3] proposed an
AMP consisting of cores of various sizes, all running the
same ISA. Whenever a new program is run or a new phase
[6] is detected, a sampling is initiated and the core which
provides the best power efficiency is chosen. However, this
work considered four cores and only a single thread was
considered running which simplifies the AMP scheduling
problem. They later extended this work for performance
maximization of multithreaded applications [9]. A similar
approach was described by Becchi et al. [10] in which
the AMP consists of two types of cores, one small and
one big. The thread to core assignment was determined by
initiating a forceful swap between the big and small cores
to find the corresponding performance ratio. Depending on
the observed ratio, the threads were scheduled such that the
overall system performance is maximized. However, such a
scheduler is not scalable to an AMP with many different
cores. In [11], Annavaram et al. present an AMP where
the Energy Per Instruction (while running multithreaded
applications) is kept within a budget by having a big core
execute the serial portions and small cores execute the
parallel portion of the code. In [12], Chen et al. use cores that
differ with respect to issue width, branch predictor size and
L1 caches. Using their proposed thread scheduling solution,
they achieve Energy Delay Product, energy and throughput
improvements.

Shelepov et al. in [13] do away with the need for
sampling to determine thread to core mapping in an AMP
by introducing what they call architectural signature. This
signature is characterized by cache misses for the various
core configurations and using this, they schedule threads
such that the overall runtime is reduced for the multithreaded
application. These signatures are determined offline via
profiling and are fixed for the lifetime of the program. Hence,
this solution will never be able to take advantage of program
phases. Khan et al. in [14] use regression analysis along
with phase classification to find thread to core affinity in
their considered AMP. In [15], Winter et al. study power
management techniques in AMPs via thread scheduling.
They consider various algorithms and all of them require
sampling on the core types to determine the best thread
to core mapping. Saez et al. [16] propose a comprehensive
scheduler for AMPs consisting of small and big cores, that
targets the performance of both single threaded as well as

multithreaded cases. They define a term called the utility
factor which is the ratio of the time it takes to complete
the task on the base configuration (small cores) to that on
the alternate configuration using the last level cache miss
rate information. In [2], Koufaty et al. determine thread to
core assignment in an AMP consisting of big and small
cores using program to core bias. This bias is estimated
online using the number of external stalls (proportional to
the number of cache requests going to L2 and main memory)
and internal stalls (front end not delivering instructions to the
back end). Using the bias they schedule threads in the AMP
such that the performance is maximized. In [8], Srinivasan
et al. propose a thread to core assignment in an AMP by
estimating the performance of the thread, running on one
core type, on another using a formula.

III. PROPOSED ARCHITECTURE AND DIFFERENCES
FROM OUR PREVIOUS WORK [5]

As mentioned earlier, this work is an extension of our
earlier work [5] where we considered two cores: a FP core
and an INT core in a dual-core AMP (see Figure 2). The
FP core features strong floating-point execution units but
low performance integer execution units, while the INT core
features exactly the opposite. Other differences between the
cores include the number of virtual rename registers, issue
queues (ISQ) and load-store queues (LSQ). The sizes of
these cores were based on certain core sizing experiments
and the details may be found in [5]. In that paper, for
parallel operation, the architecture was able to either run
in the baseline mode (retaining the current thread to core
assignment) or swap threads between the two cores. To
achieve higher sequential performance, resources between
the two cores were morphed such that the architecture was
transformed to a dual-core AMP where one core is strong
on all fronts and the other is weak on all fronts. The strong
core is the INT core which has taken over the strong FP
execution datapath from the FP core and relinquished its own
weak FP execution datapath to the FP core, which forms
the weak core. We observed significant performance/watt
benefits due to core morphing. However, to enable morphing
of resources between the cores, special hardware is required
to allow the INT core to transform into a strong core. To
avoid the added complexity associated with morphing, we
explore in this paper the benefits of only thread swapping
(between the two cores). The swapping is controlled by
performance monitors that record certain characteristics of
the workloads being executed on the cores. Whenever these
monitors detect an event (as defined by certain rules obtained
offline by profiling a subset of workloads), the thread to core
assignment can be changed if deemed beneficial.

IV. DETERMINING THE CORE PARAMETERS

As the design space for a core is extremely large and
includes the sizes of individual structures (e.g., issue queues,

Table I
SELECTED CORE CONFIGURATIONS

Parameter FP INT
DL1 4K 4K
IL1 4K 4K
L2 128K 128K
LSQ (each LD/SD) 32 32
ROB 128 128
INTREG 48 64
FPREG 64 32
INTISQ 32 32
FPISQ 32 16

Table II
EXECUTION UNIT SPECIFICATIONS FOR THE CORES. LATENCIES TAKEN

FROM [17] (CYC - CYCLES, P - PIPELINED, NP - NOT PIPELINED)

Core FP DIV FP MUL FP ALU
FP 1 unit, 12 cyc, P 1 unit, 4 cyc, P 2 units, 4 cyc, P

INT 1 unit, 120 cyc, NP 1 unit, 30 cyc, NP 1 unit, 10 cyc, NP
INT DIV INT MUL INT ALU

FP 1 unit, 120 cyc, NP 1 unit, 30 cyc, NP 1 unit, 2 cyc, NP
INT 1 unit, 12 cyc, P 1 unit, 3 cyc, P 2 units, 1 cyc, P

reorder buffers and rename registers), we need to determine
a set of parameters that would have the largest impact
on the two heterogeneous cores. The size of the floating-
point and integer core parameters should be chosen such
that acceptable performance is achieved for a wide range
of applications. We reused the extensive core sizing ex-
periments done in our previous work [5]. The resulting
configurations of the INT and FP cores are shown in Table I.
The execution latencies for the cores were taken from one of
our earlier studies [17]. We used SESC as our architectural
simulator [18], and power is measured using Wattch [19] and
CACTI [20] with modifications to account for static power
dissipation.

For our experiments, we have selected 37 benchmarks:
15 benchmarks from the SPEC suite [21], 14 from the
embedded benchmarks in the MiBench suite [22], one
benchmark from the mediabench suite [23], and 7 additional
synthetic benchmarks. These 37 benchmarks encompass
most typical workloads, for example, scientific applications,
media encoding/decoding and security applications.

V. THE HARDWARE MONITORING AND PREDICTION
ENGINE SCHEME

We compare our dynamic thread scheduling scheme to
a recently proposed Hardware Monitoring and Prediction
Engine (HPE) based scheduling [8]. By monitoring the
performance characteristics (Cycles per Instruction (CPI)
and stall cycles) of the application running on the current
core, HPE estimates the performance of the application on
other asymmetric cores. Based on this, applications that are
expected to benefit more from a bigger core will be assigned
to that core while those with lower expected benefit are
assigned to smaller cores or cores that operate at lower
frequencies. However, since the thread assignment decisions
are made only every 20 ms in the HPE scheme, it is possible

to miss potential opportunities if applications exhibit phase
changes within the 20 ms interval.

The cores considered in the HPE scheme have the same
computational flavor, i.e., they are all general-purpose cores.
The only difference between the cores is that one core is big
(i.e., has faster execution units, bigger cache units, better
branch prediction unit etc) or runs at a higher frequency,
while the other is small or runs at a lower frequency. Since
the cores used in our AMP have very different flavors, with
one designed to better handle INT instructions while the
other FP ones, the compute and stall scaling factors used in
HPE scheme to estimate the performance cannot be applied
here. We must therefore, extend the HPE scheme so it will
cover cores of different flavors. Furthermore, the original
objective of the HPE scheme has been performance using
the metric CPI while our scheme’s goal is performance/watt.

Extending the HPE to varying flavor cores with perfor-
mance/watt as the objective is not straightforward and an
analytical expression for estimating the performance/watt of
a running application on the INT and FP cores is not likely to
be derived. A procedure that can be used to do the extension
consists of the following steps: (1) Select some application
characteristic parameters that are relevant to the different
flavors of the asymmetric cores. (2) Profile a certain number
of representative benchmarks on the two types of cores,
calculate the values of the parameters (selected in step (1))
and find out the corresponding performance/watt for each at
fixed time interval of size 20 ms. (3) Construct a matrix that
indicates, for the observed values of the selected parameters,
the ratio of performance/watt achieved for the two types
of cores. Comparing the ratio to 1 indicates by how much
will one of the cores outperform the other core. (4) Using
regression analysis derive an approximate expression that
will be used to estimate the expected performance/watt ratio
for any observed values of the application parameters.

Since the two heterogeneous cores in our example dual-
core system differ mainly in their integer and floating-point
execution capabilities, we use the INT and FP instruction
percentages of the applications as the characteristic parame-
ters. In step (2) we selected some representative benchmarks
that are INT intensive (e.g., bitcount, sha, intStress), some
that are FP intensive (e.g., fpStress, equake, ammp) and some
that have a reasonable mix of both INT and FP instructions
(e.g., apsi, ffti, pi). We then simulated these representative
benchmarks on both the cores and collected the values of
the INT instruction percentage, FP instruction percentage
and IPC/Watt every 20 ms for each of these benchmarks.
In step (3), we constructed, using the results collected in
step (2), the matrix that indicates the performance/watt ratio
for the two cores. This matrix, in principle, can already
be used to predict the performance/watt of an application
(currently running on one core) on the other core given
its INT and FP instruction percentages. However, not all
entries in this matrix will contain some value (of the per-

INT\FP 0% - 20% >20% - 40% >40% - 60% >60% - 80% >80% - 100%

0% - 20% 0.61 0.51 0.36 0.3 0.18

>20% - 40% 0.78 0.58 0.41 0.33 -

>40% - 60% 1.14 0.6 0.53 - -

>60% - 80% 1.3 0.63 - - -

>80% - 100% 1.6 - - - -

Figure 3. An example performance/watt ratio matrix. Elements of the
matrix represent the ratio of IPC/Watt on INT core to IPC/Watt on FP
core.

Figure 4. 3-Dimensional plot of the performance/watt ratio expression.
(X1 - %INT, X2 - %FP, Y - Ratio of IPC/Watt on INT core to IPC/Watt
on the FP core)

formance/watt ratio) while other entries may contain several
values. Due to dependencies and stalls in the applications,
even for the same INT and FP instruction percentages, there
would be cases where the performance/watt ratio differs. To
simplify the matrix and reduce its size we categorized the
INT and FP instruction percentages into discrete bins and
replaced the multiple values of the performance/watt ratio
that corresponded to each bin by the statistical mode of
all the values in the bin. Since the time interval between
two decision points is high (20 ms), we found the mean
and mode of the ratio to follow each other very closely.
An example of such a matrix is shown in Figure 3. For
example, if a thread currently being executed on the FP core
has 80% INT instructions and 20% FP instructions, then its
performance/watt on the INT core is estimated to be 1.3
times of its current performance/watt on the FP core.

As an alternative to the ratio matrix, we can perform a 2-
Dimensional curve fitting of all the results obtained in step
(2). Using non-linear regression we derived an expression
that best fits all the collected results. The resulting non-
linear expression is best represented by the 3-Dimensional
plot shown in Figure 4. At each decision point, the obtained
expression can be used to estimate the performance/watt of
the thread on the other core. For both matrix based or curve
fitting based approaches, if the estimated speedup of the
swapped configuration is more than 1.05 (5% speedup), the
threads are allowed to swap. Else, the threads continue their
execution in the current configuration.

VI. DYNAMIC THREAD SCHEDULING SCHEME

Our proposed dynamic thread scheduling scheme con-
sists of two components: an online monitor and a perfor-

mance predictor. The online monitor continuously and non-
invasively profiles certain aspects of the execution char-
acteristics of the committed instructions. The performance
predictor collects the profiled application characteristics and,
using the most recently collected information, determines
whether to continue execution in the current configuration,
or swap the threads.

A. Online performance prediction

Prior knowledge about the computational needs of the ap-
plications is generally unavailable. Hence, an online mech-
anism is needed to characterize the time-varying computa-
tional resource requirements of the applications. Hardware
support is required to detect changes in the application’s
behavior and then decide whether to swap the threads or not.
The key program features that impact the performance/watt
are continuously monitored and then used during dynamic
thread scheduling. Since power is not a property that can be
extracted during runtime, we use other program attributes as
proxy for power when optimizing performance/watt. We use
hardware counters that monitor the instruction composition
(floating-point and integer) of the threads running on the INT
and FP cores which are then used to determine the thread
to core mapping. We next describe the process that we have
followed in order to make the scheduling decisions based
on the instruction composition.

For our experiments, nine benchmarks from the suite of
37 (see Section IV) were chosen such that they included
those that are: (i) INT intensive (bitcount, sha, intStress),
(ii) FP intensive (fpStress, equake, ammp), and (iii) have a
reasonable mix of INT and FP instructions (apsi, ffti, pi).
These were the same 9 benchmarks described in Section V
that were used to obtain the ratio matrix for the HPE scheme.
Threads were run for 500 million instructions on both core
types (INT and FP), and IPC/Watt as well as the instruction
distributions were noted for fixed number of committed
instructions, referred to as window. Once this data was
available for each of the above mentioned benchmarks on
both core types, two threads were chosen from the pool and
after every window, the thread to core mapping that yields
the best IPC/Watt was identified. The instruction distribution
of both the threads in each window was also noted. The
above experiment was repeated for 50 random combinations
of two (out of the 9) threads. Averaging the values of
the obtained FP instruction percentages (%FP) and INT
instruction percentages (%INT) for all the 50 combinations,
we came up with the swapping rules shown in Figure 5.

It can be seen that threads are swapped if the thread
currently running on the INT (FP) core experiences a surge
in FP (INT) instructions and the other thread on the FP
(INT) core experiences a drop in its FP (INT) instructions.
This way, our scheme ensures that swapping benefits both
the threads. When both the threads have the same flavor
of instructions (either INT intensive or FP intensive), it is

Dynamic Thread Scheduling:

1. Threads T1 and T2 assigned randomly to cores

2. Do Swap if:

i. (%INTFP >= 55) and (%INTINT <= 35)

 OR

ii. (%FPINT >= 20) and (%FPFP <=7)

3. If no_swap for 20 ms, do Swap if:

i. (%INTFP >= 55) and (%INTINT >= 55)

 OR

ii. (%FPINT >= 20) and (%FPFP >= 20)

4. End

• %INTFP : INT instruction percentage of thread on FP core

• %INTINT: INT instruction percentage of thread on INT core

• %FPINT : FP instruction percentage of thread on INT core

• %FPFP : FP instruction percentage of thread on FP core

 Figure 5. Swapping conditions for the proposed scheme.

difficult to satisfy the condition mentioned in step (2) of
Figure 5. Hence, to reduce the hampering of the thread
running on the non-affine core, we force a swap every 20 ms
under those scenarios (both threads having the same flavor).
This ensures thread fairness for symmetric workloads as both
threads are given equal opportunity to use the appropriate
computational resources. The 20 ms interval was chosen so
as to be consistent with the HPE scheme and the Linux
scheduler.
B. Accounting for program phase changes

A tentative decision based on the conditions mentioned
in Figure 5 is made at the end of every committed instruc-
tion window. However, to avoid too frequent swaps (and
its associated overhead) we prefer to wait until the new
execution phase of the thread has stabilized and only then
switch from one mode to another. To this end, we base
our reconfiguration decision on the most frequent tentative
decision made (to either swap or not) during the n most
recent instruction windows. The number n of windows based
on which the decision is made is referred to as history depth.

We have conducted a sensitivity study to quantify the
impact of window size and history depth on the quality of the
reconfiguration decisions. The best choice would be the one
that yields the largest weighted performance/watt speedup
over the HPE scheme for the entire program execution.
Different window sizes of 500, 1000 and 2000 committed
instructions were considered and the history depth n was
varied from 5 to 10. For each combination of window size
and history depth, about 80 random combinations of two-
thread workloads were run, assuming an overhead of 1000
cycles per reconfiguration (as described in the next section).
The weighted IPC/Watt improvement for each individual
experiment was then averaged to give a single value that
represents the entire set as shown in Figure 6. It can be seen
that the weighted IPC/Watt improvement is largest (10.5%)
for window size of 1000 instructions and history depth of 5.
Hence, our scheme will rely on the behavior of the threads
during the recently committed 5000 (1000×5) instructions
to make the swap decision. However, the obtained IPC/Watt
benefit for the selected window size and history depth is

0

2

4

6

8

10

12

500_5 500_10 1000_5 1000_10 2000_5 2000_10

%
 I

P
C

/W
a

tt
 i

m
p

ro
v

em
en

t

Window Size_History Depth

IPC/Watt improvement over HPE scheme

Figure 6. Performance/Watt sensitivity analysis for determining window
size and history depth.

greater than the overall average (8.9%) only by 1.6% which
clearly shows that small changes in selected window size
and history depth will only have a marginal impact on the
results.
C. Reconfiguration Overhead

Thread swapping incurs overheads. The overheads stem
from flushing the pipelines, exchanging architectural states
between the cores and warming the caches. These over-
heads can vary from one architecture (with no support for
swapping) to another (one with ISA support for swapping).
Moreover, the cost of swapping could vary significantly
depending on whether a shared cache is used for exchanging
architectural states or not. Srinivasan et al. have set the
core migration overhead to be 450 microseconds [8] which
is about 0.9 million cycles for a 2 GHz processor. To
show the impact of the overhead on the overall achieved
gains, experiments (80 random combinations of two-thread
workloads) were run with a swapping overhead of between
1000 cycles to 1 million cycles. We have observed that the
average weighted IPC/Watt improvement (arithmetic mean
of the weighted IPC/Watt improvement obtained for the
80 random combinations) using our scheme over the HPE
scheme, drops by only about 0.9% when a reconfiguration
overhead of 1 million cycles was used over 1000 cycles.
The results discussed in Section VII are with a swapping
overhead of 1000 cycles.
D. Hardware-based Scheduling versus OS Scheduler

The proposed dynamic thread scheduling scheme is a
hardware-based solution which is autonomous and isolated
from the OS level scheduler which makes it scalable and OS-
independent. We assume that only the initial scheduling is
done by the OS in the baseline configuration. From then on,
the thread to core assignment is managed autonomously by
our scheme with the goal of optimizing performance/watt.
Our scheme can notify the OS whenever a thread swap
happens. As the scheme relies on decision-making at fine-
grained time slices, after the commit of every 5000 instruc-
tions, there are about 100000 decision-making points for an
execution of 500 million instructions. Had we relied on OS
for this service, the resulting overhead would be prohibitive.
Moreover, based on our experimental results (presented in

Section VII), in much less than 1% of the 100000 decision-
making points, swapping of threads actually happened.

VII. EVALUATION

In this section we present the IPC/Watt improvement
achieved using our proposed dynamic thread scheduling
scheme for a wide number of multiprogrammed workloads
over two other dynamic scheduling schemes – the HPE-
based scheduling described in Section V and Round Robin
scheduling. Experiments were run with decision intervals
of 10 and 20 context-switch periods for Round Robin
scheduling similar to [8]. We observed that the Round Robin
scheduling with decision intervals of 10×20 ms performs
better than with a interval of 20×20 ms. Hence, the results
of Round Robin scheduling shown below are with a decision
intervals of 200 ms where the applications are swapped
between the INT and FP cores every 200 ms. From the
pool of all 37 benchmarks, 80 random combinations of two
benchmarks were chosen and run on the dual-core until one
of the threads completed 500 million instructions.

For the sake of clarity, only 30 combinations (out of the
80) are shown in Figures 7 and 8 which depict the weighted
and geometric improvements in IPC/Watt (in percentages)
when using the proposed dynamic thread scheduling scheme
against HPE and Round Robin scheduling, respectively. The
shown 30 combinations include the 10 worse results (out
of the 80), the 10 best results and 10 that showed average
(8% - 19%) benefits with respect to the weighted IPC/Watt
metric. The overall performance/watt of the system could be
degraded if one thread benefits at a greater expense of the
other. To account for the system fairness, we have employed
geometric speedup in our evaluation.

As shown in Figure 7, consistent improvement in
IPC/Watt is obtained using the proposed scheme over the
HPE scheme where the swapping decisions are made at
coarse grain time intervals of 20 ms. The 20 ms fixed time
interval used by the HPE scheme may not be optimal for
benchmarks that either change phases too frequently or when
the observed new phases last only for a short period. These
shortcomings are overcome by our proposed scheme where
the scheduling decisions are made at fine-grained time inter-
vals (once every 5000 committed instructions). This makes
our scheme more efficient as it is able to track and adapt
to the program phases closely. The percentage IPC/Watt
improvement obtained over the Round Robin scheme is even
more significant as it is a static scheme [8]. The employed
Round Robin scheme unconditionally swaps the applications
between the INT and FP cores every 200 ms. Hence, it
is possible that at times, the Round Robin scheme makes
unwanted swaps that reduce the performance/watt of the
applications.

It could be noted that for few combinations like
{swim,fpStress}, {bitcount,ADPCM enc.} in Figure 7 and
{intStress,ADPCM dec.}, {CRC32,bzip2} in Figure 8, the

-20

0

20

40

60

80

100

%
 I

P
C

/W
a

tt
 i

m
p

r
o

v
e
m

e
n

t Weighted Geometric

Figure 7. IPC/Watt improvement using the proposed dynamic thread scheduling scheme over HPE scheme for different multiprogrammed workloads.

-10

0

10

20

30

40

50

%
 I

P
C

/W
a

tt
 i

m
p

r
o

v
e
m

e
n

t

Weighted Geometric

Figure 8. IPC/Watt improvement using the proposed dynamic thread scheduling scheme over Round Robin scheme for different multiprogrammed
workloads.

proposed scheme performs slightly worse than the other two
schemes. There are few possible reasons for this: (i) At
times, fewer swaps happen using the proposed scheme as
both the threads do not comply to the swapping rules at the
same time. This may not be the case with the HPE scheme
where the final swapping decision is driven by the estimated
weighted speedup and with the Round Robin scheme where
swaps happen unconditionally. (ii) As the swapping decision
for the proposed scheme is made purely based on the INT
and FP instruction percentages of the threads, it is possible
for the scheme to sometimes mispredict. The underlying
assumption is that when the INT instruction percentage is
high, we expect the thread to perform better on the INT core.
However, swapping the thread from FP to INT core may
not help when the application experiences dependencies or
memory stalls. We plan to improve upon these scenarios by
including the performance (IPC) and last-level cache miss
rate information into our swapping conditions.

Still, the number of combinations that benefit from our
scheduling scheme is much higher than those that do not.
Only 7 out of 80 combinations (8.75%) showed minor
degradation compared to the HPE scheme while the number
reduced further to 7.5% (6 out of 80 combinations) when
compared to the Round Robin scheme. The benefit of
our proposed dynamic thread scheduling scheme is further

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

5 Worst cases Average of all 80 cases 5 Best cases

IP
C

/W
a

tt
 im

p
ro

v
em

en
t

vs. HPE vs. Round Robin

Figure 9. Worst, Average and Best case IPC/Watt improvements obtained
using the proposed Dynamic Thread Scheduling scheme.

illustrated in Figure 9 which shows the overall average, worst
case and best case IPC/Watt improvements over the HPE and
Round Robin schemes.

As can be seen in Figure 9, the mean of the five worst
cases contribute to a 10% degradation relative to the HPE
scheme and about 6% degradation when compared to Round
Robin scheme. However, on an average, for all the 80 com-
binations put together, we achieve a weighted (geometric)
IPC/Watt improvement of about 10.5% (9.1 %) over the HPE
scheme and 12.9% (12.4%) over Round Robin scheduling.
Moreover, the average weighted IPC/Watt improvement ob-
tained for the five best cases is as high as 65% over the

HPE scheme and 45% over Round Robin scheduling. These
IPC/Watt improvements clearly demonstrate the potential
benefits our scheme offers.

VIII. CONCLUSIONS
We have presented a novel dynamic thread scheduling

scheme for AMPs that consist of cores of different flavors.
Using simple and low-cost hardware performance coun-
ters, we efficiently swap threads between the two cores at
fine-grained time intervals to maximize the overall perfor-
mance/watt. Our results show that the proposed dynamic
thread scheduling scheme outperforms the coarse grain HPE
scheme / Round Robin scheduling schemes on an average
by 10.5% / 12.9% with respect to weighted speedup and by
9.1% / 12.4% with respect to geometric speedup, respec-
tively. The methodology described here for an INT and FP
cores can be followed for other types of asymmetric cores
that can be designed.

REFERENCES

[1] J. Held, J. Bautista, and S. Koehl, “From a few cores to many:
A tera-scale computing research review,” White Paper, 2006.

[2] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in
heterogeneous multi-core architectures,” in Proceedings of the
5th European conference on Computer systems, 2010.

[3] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and
D. Tullsen, “Single-ISA heterogeneous multi-core architec-
tures: the potential for processor power reduction,” in Pro-
ceedings of 36th Annual IEEE/ACM International Symposium
on Microarchitecture, 2003.

[4] E. Grochowski, R. Ronen, J. Shen, and H. Wang, “Best
of both latency and throughput,” in Proceedings of IEEE
International Conference on Computer Design, 2004.

[5] R. Rodrigues, A. Annamalai, I. Koren, S. Kundu, and
O. Khan, “Performance Per Watt Benefits of Dynamic Core
Morphing in Asymmetric Multicores,” in Proceedings of the
20th International conference on Parallel Architectures and
Compilation Techniques, 2011.

[6] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and
prediction,” in Proceedings of the 30th Annual International
Symposium on Computer Architecture, 2003.

[7] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai, “The
impact of performance asymmetry in emerging multicore ar-
chitectures,” in Proceedings of 32nd International Symposium
on Computer Architecture, 2005.

[8] S. Srinivasan, L. Zhao, R. Illikkal, and R. Iyer, “Efficient
interaction between OS and architecture in heterogeneous
platforms,” SIGOPS Oper. Syst. Rev., vol. 45, 2011.

[9] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi, and
K. Farkas, “Single-ISA Heterogeneous Multi-Core Architec-
tures for Multithreaded Workload Performance,” in Proceed-
ings of 31st Annual International Symposium on Computer
Architecture, 2004.

[10] M. Becchi and P. Crowley, “Dynamic thread assignment on
heterogeneous multiprocessor architectures,” in Proceedings
of the 3rd conference on Computing frontiers, 2006.

[11] M. Annavaram, E. Grochowski, and J. Shen, “Mitigating
Amdahl’s law through EPI Throttling,” in Proceedings of the
32nd Annual International Symposium on Computer Archi-
tecture, 2005.

[12] J. Chen and L. K. John, “Efficient program scheduling for
heterogeneous multi-core processors,” in Proceedings of the
46th Annual Design Automation Conference, 2009.

[13] D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova,
N. Perez, Z. F. Huang, S. Blagodurov, and V. Kumar, “HASS:
a scheduler for heterogeneous multicore systems,” SIGOPS
Oper. Syst. Rev., vol. 43, 2009.

[14] O. Khan and S. Kundu, “A self-adaptive scheduler for asym-
metric multi-cores,” in Proceedings of the 20th symposium on
Great lakes symposium on VLSI, 2010.

[15] J. A. Winter, D. H. Albonesi, and C. A. Shoemaker, “Scalable
thread scheduling and global power management for het-
erogeneous many-core architectures,” in Proceedings of the
19th International conference on Parallel Architectures and
Compilation Techniques, 2010.

[16] J. C. Saez, M. Prieto, A. Fedorova, and S. Blagodurov, “A
comprehensive scheduler for asymmetric multicore systems,”
in Proceedings of the 5th European conference on Computer
systems, 2010.

[17] A. Das, R. Rodrigues, I. Koren, and S. Kundu, “A study
on performance benefits of core morphing in an asymmetric
multicore processor,” in IEEE International Conference on
Computer Design, 2010.

[18] J. Renau, “SESC: SuperESCalar simulator,” Tech. Rep.,
http://sesc.sourceforge.net, 2005.

[19] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a frame-
work for architectural-level power analysis and optimiza-
tions,” in Proceedings of the 27th International Symposium
on Computer Architecture, 2000.

[20] P. Shivakumar, N. P. Jouppi, and P. Shivakumar, “Cacti 3.0:
An integrated cache timing, power, and area model,” Compaq
Western Research Laboratory, Tech. Rep., 2001.

[21] “The Standard Performance Evaluation Corporation (spec
cpi2000 suite). http://www.specbench.org/osg/cpu2000.”

[22] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and R. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in IEEE International Workshop
on Workload Characterization, 2001.

[23] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Media-
bench: a tool for evaluating and synthesizing multimedia and
communicatons systems,” in Proceedings of the 30th Annual
ACM/IEEE International Symposium on Microarchitecture,
1997.

