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Abstract: Several approximate Mean Value Analysis (MVA) shared memory multipro-

cessor models have been developed and used to evaluate a number of system architectures.

In recent years, the use of superscalar processors, multilevel cache hierarchies, and latency

tolerating techniques has signi�cantly increased the complexity of multiprocessor system

modeling. We present an analytical performance model which extends previous multiproces-

sor MVA models by incorporating these new features and in addition, increases the level of

modeling detail to improve exibility and accuracy. The extensions required to analyze the

impact of these new features are described in detail. We then use the model to demonstrate

some of the tradeo�s involved in designing modern multiprocessors, including the impact of

highly superscalar architectures on the scalability of multiprocessor systems.

Key Words: Shared memory multiprocessors, Mean Value Analysis, performance evalua-
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1 Introduction

An analytical modeling technique that has been frequently used to evaluate shared memory

multiprocessors is approximate Mean Value Analysis (MVA)

(14)

. In MVA, a set of equations

1

A preliminary version of this paper appeared at the 1995 International Conference on Parallel Archi-

tectures and Compilation Techniques

(2)

.
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is developed which describe the mean values of various system parameters. These equations

have circular dependencies and must be solved iteratively. The power of MVA modeling

lies in its computation e�ciency. Convergence is usually achieved within a few seconds,

independent of the number of processors and memories in the model. Many models of

multiprocessor systems have been created using this technique and have been used to evaluate

the performance of both research prototypes

(11; 15)

and commercial

(12)

multiprocessors. The

results obtained from approximate MVA models have been shown

(7)

to match well with those

obtained from trace-driven simulation models.

Since these models have been constructed, superscalar microprocessor-based multipro-

cessor systems using latency reduction techniques such as nonblocking caches and data

wraparound on cache misses have been introduced. These new aspects of modern multi-

processors impact both the system latencies and waiting times at each design level, and as a

result, require extensions to the basic techniques used in MVA modeling of shared memory

multiprocessors.

In this paper, we extend existing models of these systems to include the above aspects of

high performance, superscalar-based multiprocessors. We describe the modi�cations to the

latency and waiting time calculations, and in addition, propose modi�cations to the basic

assumptions that have been used in past models. We also discuss additional features that

we have incorporated into our model in order to increase the exibility and accuracy of the

model. We show that the features incorporated and the modeling assumptions used have a

great impact on the performance results obtained.

The rest of this paper is organized as follows. In the next section, an overview of basic

MVA techniques is provided. We then describe previous MVA models, and then discuss

extensions to these models to take into account the e�ects of superscalar processors and

latency reduction techniques. Next, we use the model to examine the performance impact

of modifying system parameters included in the model but not in previous models. Then we
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describe the underlying assumptions and limitations of the model, and conclude and discuss

future extensions to our work.

2 MVA Modeling

This section provides a brief overview of the equations used in MVA modeling. A more

thorough treatment is available

(14; 22)

.

In MVA, a set of equations that represent the mean response times and mean waiting

times of various performance elements are derived using the mean values of various system

parameters as model inputs. A basic cycle of operation of each processor is de�ned, within

which the processor executes some number of instructions. Traditionally, this cycle has been

de�ned as the average time to execute a single instruction, or the cycles per instruction (CPI)

rating of the processor, as scalar processors have been assumed in previous models. The mean

utilization, queue length, and busy probability of various machine resources (buses, memory,

etc.) are calculated and used in the calculation of the mean waiting times of these resources.

The equations constructed have circular dependencies and must be solved iteratively.

For example, the following is a set of MVA equations that takes into account the mean

waiting time of a shared multiprocessor system bus

(12; 22)

:
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where

� r is the bus request type (read, writeback, etc);

� Q

r

and U

r

are the mean queue length and partial bus utilization respectively due to a

type r request;

� p

r

, T

r

, and d

r

are respectively the probability of, the bus transaction time for, and

the total system delay (which includes bus waiting and transaction times) of a type r

request;

� N is the number of processors;

� U is the total bus utilization;

� p

busy bus;r

is the probability that an arriving request �nds the bus busy servicing a type

r request;

� CPI

proc

is the mean instruction execution time with no cache misses;

� CPI is the mean instruction execution time including cache misses and system delays;

� w

bus

is the mean bus waiting time.

Equation (1) adds the bus overheads due to each memory operation to the base CPI of the

processor to obtain the overall CPI. The bus utilization of each request type is calculated

in equation (2) by computing the time all processors use the bus for the request within the

basic cycle of operation. The mean bus queue length observed from a particular processing

node due to each request type (equation (3)) is approximated as the fraction of time (waiting

plus transaction) all other processors (N � 1) use the bus for this request. The N � 1 factor

is used as it is assumed in these equations that a particular processing node generates only
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one request at a time. The probability that a processing node observes that the bus is busy

due to a particular request type is approximated in equation (4) as the fraction of time that

the bus is utilized for this request by the N � 1 other processors, divided by the fraction

of time the bus is not utilized by this processing node. Finally, the mean bus waiting time

(equation (5)) is calculated by summing over all request types the mean queueing time due

to all requests of this type except for the one currently in service ((Q

r

� p

busy bus;r

) �T

r

) plus

the mean queueing time due to the request in service (p

busy bus;r

�T

r

=2). Examining the above

equations, the need for iterative solution techniques becomes apparent, as the calculation of

CPI (equation (1)) requires the computation of bus waiting times (embedded in d

r

), which

in turn requires the calculation of CPI.

Having described the basic MVA techniques, we now discuss previous research which uses

MVA in the calculation of multiprocessor performance.

3 Previous Work

Several MVA models of bus-based, shared memory multiprocessors have been previously

developed to study architectural tradeo�s and coherency protocols. The model developed

by Vernon et al

(22)

was one of the �rst MVA multiprocessor models to appear in the literature.

The results of the model were compared with those obtained using Generalized Timed Petri

Nets and good agreement (within 3%) was shown. Chiang and Sohi

(7)

compare the results of

an MVA model were with those obtained through trace-driven simulation. A large number

of con�gurations were modeled and good agreement (within 3% in most cases for processor

throughput) was achieved. In another paper by the same authors

(8)

, the same model was used

to examine tradeo�s involving block size, associativity, and other parameters. A prototype

commercial multiprocessor was modeled and analyzed by Jog et al

(12)

, and several design

tradeo�s using the model were explored. Inputs to the model were derived from hardware

5



measurements and simulation. Albonesi and Koren

(3)

develop an MVA multiprocessor model

which is used along with cache and bus cycle time models to analyze performance/area

tradeo�s in the design of single chip multiprocessor systems.

Models of larger scale multiprocessors have been developed as well. An MVA model

(16)

of

the Wisconsin Multicube

(11)

was developed in order to examine design tradeo�s and issues

such as scalability of the architecture. Another similar model

(23)

was used to analyze the

performance of a multiprocessor system using a hierarchy of caches and buses. An open

queueing network model

(21)

loosely based on the DASH

(15)

multiprocessor was developed,

and used to evaluate the e�ect of data locality, cluster bandwidth, and other parameters on

system performance.

All of these models share several common characteristics which limit their applicability

to the analysis of modern multiprocessors. All are based around scalar processors which

generate misses serially and whose caches are blocking. In addition, the models are all fairly

high level in terms of design detail (although Jog et al

(12)

go into more detail than the rest).

For example, cache overheads are typically lumped into a single average number instead

of being calculated using detailed knowledge of the underlying hardware operations of the

hierarchy. Writebacks of dirty blocks are also assumed to cause the processor to stall for the

entire duration of the operation as support for bu�ering is not included.

There are several signi�cant di�erences between these models as well. Di�erent levels of

exibility are incorporated. For example, since Vernon et al

(22)

use their model to evaluate

coherency protocols, several protocols are supported, while in other models, a single protocol

is assumed. Some models attempt to model cache interference while others ignore this e�ect.

Jog et al

(12)

go into greater detail in modeling the system hardware than the other models,

by including processor overheads for various requests. The DASH model

(21)

accounts for

the fact that the full network latency may not need to be paid on every transaction. We
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combine the merits of these previous models and in addition, expand them signi�cantly to

incorporate new features inherent in modern multiprocessors.

4 Model Description

4.1 General Features

The general philosophy behind the development of the model was to build in as much exi-

bility as possible in order to be able to analyze a wide design space and model in detail the

hardware at various levels (processor, caches, etc) of the system.

Either scalar or superscalar-based multiprocessor systems can be modeled. The degree of

superscalar execution and the amount of load/store activity generated by the processor and

workload can be varied

2

. Unlike previous models which simply incorporate cache hit rates

in their equations, we model the cache hierarchy explicitly. Two general cache hierarchy

con�gurations are supported: a single level of writeback, allocate-on-write cache (as used in

most current HP-PA implementations, e.g., the PA7100

(6)

), or a multilevel cache hierarchy.

The single cache can be optionally backed by a displacement bu�er for hiding the latency

of dirty block writebacks. The multilevel hierarchy consists of either uni�ed or split (Icache

and Dcache) L1 caches and one or two additional levels of uni�ed, writeback, allocate on

write cache. The lower level L2 and L3 caches can be optionally backed by a displacement

bu�er.

The write policy for the L1 data cache for the cache hierarchy is writethrough, non-allocate

on write (as for example in the Alpha 21064

(13)

), and the cache is optionally backed by a write

bu�er. Support for writeback L1 cache write policies (as in the Pentium

(5)

) is currently being

2

Our intent is not to provide a detailed superscalar processor analytical model, but rather to represent

the increased L1 cache utilization and system tra�c of a superscalar processor. A detailed superscalar

uniprocessor model can be found in the work by Dubey et al

(9)

.
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implemented. The overheads due to maintaining the write and victim bu�ers is variable,

as is the cache coherence protocol. (Write update, write invalidate, or hybrid

(20)

protocols

are supported.) Modeling a superscalar processor and a cache hierarchy explicitly a�ords

signi�cant advantages over previous models: we are able to rapidly explore the design space

of a much wider range of machine parameters, and quickly gain insight into the interactions

of processor and cache hierarchy architecture with multiprocessor performance.

The level of design detail provided in the model is much greater than that in previous

models. This allows great exibility in the studying of candidate architectures, and the

precise modeling of hardware overheads at each design level. Every level contains parameters

for calculating latencies and waiting times for each individual operation type (instruction

read, data read, data invalidate, data writeback, etc). The motivation behind this is three-

fold. First of all, resource overheads and latencies vary according to the operation being

performed. For example, if the Icache and Dcache block sizes are di�erent, then the duration

of main memory instruction and data read operations will di�er as well. Secondly, a higher

degree of design detail can increase the accuracy of the model. Lastly, for nonblocking caches,

waiting times and latencies need to be separately calculated for each operation type. The

reasons behind this are further discussed in a later section.

Remote cache interference is modeled in detail as well. The workload parameters include

entries that reect the probability that an operation interferes with another cache. For

example, the parameter P

L2Rem du hit

is the probability that a cache update operation hits

in the remote L2 cache. Separate overhead and latency parameters exist for each of these

remote operation types as for example, the overhead of a write invalidate may di�er from

that for a write update. The model also supports various cache tag organizations for bus

snooping. If duplicate tags are assumed, then only those bus transactions that \hit" in these
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tags interfere with the cache

3

. If no duplicate tags are present, then the main tags must be

checked for all transactions. Di�erent overheads exist for transactions that hit, and those

that miss.

We use the same approach to modeling cache interference as bus and memory contention.

We treat each cache as a resource that is shared by the processor and the bus. Queueing,

utilization, and waiting times are calculated in the same way as for the bus and memory,

except that in the case of the caches, the waiting times for processor transactions will be

less than those for bus transactions. This is because the processor more heavily utilizes the

cache, and thus the probability of a busy cache due to processor operations is much higher

than that due to bus transactions. The overheads calculated from cache interference are

included in the summation in equation (1).

4.2 Modeling Superscalar Processor-Based Systems

The main di�erence between a scalar processor and a superscalar one (from a modeling

standpoint), is that a superscalar processor consumes more than one instruction simultane-

ously. If the processor contains multiple load/store units, then it may also perform multiple

loads or stores (or a combination of the two) simultaneously. Thus, the instruction and

data level bandwidth requirements of the processor grow as the degree of superscalar exe-

cution increases. In order to compare various superscalar and scalar processors, we use an

instruction fetch cycle as the basic cycle of operation executed by the processor, and use

the measure cycles per instruction fetch (CPIF) to describe the length of this basic cycle.

We use the input parameters N

Ifetch

to describe the average number of instructions that are

fetched by the processor each CPIF interval, and CPI

proc

as the cycles per instruction rating

of the processor with no memory system overhead. Thus, the value of CPIF is determined

3

We also model the overhead required to maintain consistency between the main and duplicate tags.
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by multiplying CPI

proc

and N

Ifetch

, calculating reference rates of instruction and data cache

operations for this interval, and adding in any additional factors due to memory system

overheads induced by these references. In other words,

CPIF = CPI

proc

�N

Ifetch

+

X

r

p

r

� d

r

(6)

where p

r

and d

r

are now calculated with respect to an instruction fetch cycle. Note also that

the term CPI in equation (3) is replaced by CPIF, reecting the fact that queueing delays

are calculated within an instruction fetch cycle. The overall CPI value including memory

overhead can be computed by dividing CPIF by N

Ifetch

.

A superscalar processor containing multiple load/store units can perform more than one

load or store each CPIF. This requires that the Dcache be multiported, banked

(19)

, or re-

stricted to performing multiple Dcache operations in the same cache block. The input

parameter N

Daccess

is the average number of Dcache accesses each CPIF and is a function of

both the workload characteristics (average number of loads and stores in the program), and

the architecture's ability to �ll the load/store units. This parameter is used in calculating

the portion of cache utilization due to load and store operations.

4.3 Modeling Latency Reduction E�ects

Several techniques exist for hiding the latency inherent in high performance multiprocessors,

including:

� Providing concurrency in the hardware, including returning the desired instruction or

data in a cache block �rst when a miss occurs, and bypassing the cache with the desired

instruction or data while loading the cache block in parallel;

� Non-blocking loads;
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� Non-blocking stores (write bu�ers);

� Victim bu�ers.

We now discuss each of these in turn in terms of how latency calculations are performed.

We then address how waiting time calculations need to be modi�ed to account for these

e�ects.

4.3.1 Hardware Concurrency

Previously developed multiprocessor models use the transaction time of a resource to calcu-

late both its utilization and its latency. For example, if the bus data transaction time is 3

cycles, then a data transfer across the bus consumes 3 cycles of that resource and requires

3 cycles of latency. The problem with this approach is that it does not correctly represent

the hardware concurrency of modern systems, in which operations at di�erent design levels

are overlapped with those in others. An example of this occurs when, on a cache miss, the

desired word (the actual word within the block which caused the cache miss) is transferred

at the head of the block, and once received, the processor can resume execution while the

rest of the block is written to cache. Thus, the bus which we just described when operating

in this manner may still have a transaction time of 3 cycles, but a stall time of only 1 cycle.

The stall time is that portion of the transaction time which contributes to the stalling of

the processor, and corresponds to d

r

in equation (6). In our model, we calculate resource

utilization and waiting time in the usual manner using the transaction time parameters (T

r

in equations (2), (3), and (5)), but we decouple these calculations from the stall time calcu-

lations used in the determination of CPIF. Thus, for each transaction time parameter in the

model there is a corresponding stall time parameter. Whether or not these values are equal

depends on the capabilities of the resource. Furthermore, separate transaction and stall

time parameters exist for each operation type. For example, while Dcache misses may use
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desired word �rst with bypass, Icache misses may require the entire block to return before

the desired word is loaded into the pipeline.

Separate stall and transaction times are assigned at every level of the model, from the L1

cache to the main memory system, and for each operation type. This a�ords great exibility

in the modeling detail that can be described. For example, cache controller overheads can

be precisely described in this way. The transaction and stall times of a cache read operation

may be 4 cycles and 3 cycles, respectively, a cache write operation may be 3 cycles and

2 cycles, respectively, while a remote cache invalidate may require 4 cycles and 6 cycles

(to propagate the acknowledgement), respectively. The di�erences can be more pronounced

for other operations, such as main memory writebacks. When a writeback occurs, the cache

controller may only need con�rmation that the main memory can accept the operation (it has

room in its queue), rather than needing to wait for the actual memory write to occur. Thus,

the transaction and stall times for a memory write operation can di�er dramatically. This,

we believe, more accurately represents the machine hardware than using the transaction time

as the stall time, and as we show in Section 5, can have a great impact on the performance

results obtained. The model contains a total of 76 transaction and 76 stall time parameters

to allow for this level of modeling exibility.

4.3.2 Nonblocking Loads

A data cache that uses nonblocking loads has the ability to handle more than one load miss

simultaneously. The amount of latency that can be eliminated due to this technique depends

on two major factors

(10)

:

� The compiler's ability to schedule non-dependent instructions during the cache miss;

this partially depends on the cache miss latency;

� The hardware implementation.
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The �rst factor represents the compiler's aptitude at overlapping computation with the

load miss service time. This depends on the compiler technology, workload characteristics,

degree of superscalar execution, and the duration of the service time. (Longer service times

require more nondependent instructions to be found to hide the latency.) The second factor

represents the structural limits of the hardware in terms of how many misses it is equipped

to handle simultaneously, and whether these misses can be to the same cache block, in which

case they need not be issued but rather are merged with an already outstanding miss.

Three input parameters are introduced to account for these factors. The parameter

percent

olap

is the average percentage of the load miss service time that is overlapped with

computation. The second, N

before block

is the number of load fetches that can be issued before

the next one blocks. While a miss refers to the absence of a datum that was attempted to

be read from the cache, a fetch refers to the reading of a cache block in response to one or

more misses. With a nonblocking cache with appropriate hardware support, one fetch can

satisfy several misses to the same block

(10)

. For a blocking Dcache, N

before block

is zero. The

probability that a load miss can be merged with another load miss is described by P

load merge

.

A high degree of merges may reduce the average latency of a Dcache miss as well as the rate

of fetches introduced into the system.

With these de�nitions in hand, we now illustrate how to calculate the e�ective stall time or

the amount of stall cycles due to each load miss when the above e�ects are taken into account.

Consider the case shown in Figure 1 in which N

before block

= 2 and percent

olap

= 6=7. Each E

is the time between successive load misses, and T

m

is the average miss service time. The white

areas represent computation time, the lightly shaded areas the time that computation is not

overlapped with the miss service time, or (1� percent

olap

) � T

m

, and the dark shaded areas

additional processor stalling due to architectural limitations. As Figure 1 illustrates, once

a steady-state condition is reached, periods of processor stalling occur at regular intervals.
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Furthermore, we can calculate the average amount of stall time these periods contribute to

each load miss as follows:

stall period = T

m

=N

before block

� E

avg ss

(7)

where E

avg ss

is the average time between successive load misses once steady state is reached.

Thus, the total stall time for each load miss is

T

stall

= stall period+ (1� percent

olap

) � T

m

(8)

Figure 2 shows another example where N

before block

= 3 and percent

olap

= 14=15. Here,

we see that

T

m

= N

before block

� E

avg ss

and so the stall period is zero as shown. Thus, the total stall time is simply

T

stall

= (1� percent

olap

) � T

m

Of course, we could have the situation in which T

m

< N

before block

�E

avg ss

. Here the total

stall time is the same as that calculated from Figure 2. Thus, a lower bound on the total

stall time for a nonblocking Dcache is

T

stall

� (1� percent

olap

) � T

m

(9)

Note that E

avg ss

is easily calculated as

E

avg ss

= CPIF=P

load miss

(10)

where P

load miss

is the load miss reference rate in an instruction fetch interval. Clearly, the

value of CPIF will depend on the total stall time, which in turn depends on the value of

CPIF. Thus, we have the circular dependencies which are the trademark of MVA and must

resort to iterative solution techniques.
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4.3.3 Nonblocking Stores (Write Bu�ers)

In a multilevel cache hierarchy using a writethrough L1 data cache, it is common for a write

bu�er to be placed between the L1 and L2 caches so that writes only cause stalls when the

bu�er is full or when a Memory Barrier instruction

(18)

requires the bu�er to be ushed.

When the former situation occurs, the processor is stalled until enough writes are retired

from the bu�er to allow the new entry to be made. Several input parameters are used to

describe the write bu�er. P

full wbuf

is the probability that the bu�er is found full when a

write occurs; N

wbuf

is the number of entries in the write bu�er when full, and N

wait wbuf

is

the number of entries that must be fully retired (which may require remote invalidations to

propagate out from the L2 cache for example) before the new write can be loaded. Thus,

the stall time for a write is:

T

stall write

= P

full wbuf

� (N

wbuf

� (T

wait L2 EWB

+ T

stall L2 EWB

) +N

wait wbuf

� T

retire

) (11)

where T

wait L2 EWB

is the waiting time at the L2 cache for an empty write bu�er entry

operation, T

stall L2 EWB

is the corresponding stall time parameter, and T

retire

is the time to

retire each write. The latter depends on input parameters such as the L2 cache data write

miss rate, the probability of writing to shared data, the invalidate protocol, the probability

of displacing a dirty block from cache, etc.

We note that the above describes stall time calculations. The transaction time calculations

for writes are carried out using the usual MVA techniques (with a few exceptions as noted

later).

4.3.4 Victim Bu�ers

A victim bu�er (or displacement bu�er) provides temporary storage for dirty blocks displaced

from cache when a miss occurs. The motivation for victim bu�ers is similar to that for
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write bu�ers (prevent displaced blocks from slowing down cache misses). The corresponding

parameters P

vbuf full

, N

vbuf

, and N

wait vbuf

are used along with the stall and waiting times

in the same way as described for write bu�ers.

4.4 Waiting Time Calculation Modi�cations

The models described in Section 2 are suitable for multiprocessor systems made up of scalar

processors. These models assume that requests from a given processor occur serially; in

other words, a request introduced into the system will not encounter any tra�c due to other

requests from the same processor. This is the reason for the N�1 factor in equation (3) and

the numerator value in equation (4). In a multiprocessor system using superscalar processors

with decoupled instruction and data streams and nonblocking data caches, this assumption

may not be appropriate. In this section, we describe modi�cations to these equations in

order to take these factors into account.

The terminology we adopt is the following. Caches can have local and remote requests. A

request is local when it is proceeding down its originating processor's cache hierarchy, onto

the bus, into the main memory system, and in the case of a cache miss, back to itself. A

request that travels up another processor's cache hierarchy (such as a cache invalidate or a

read request for data found modi�ed in the hierarchy) is remote. Thus a local request can

be impeded by remote requests and possibly other local requests.

We de�ne three request categories: Icache request, Dcache load request, and Dcache store

request. Each category consists of several di�erent request types. For example, the request

types in the Icache request category are instruction miss, writeback due to instruction miss,

empty victim bu�er due to instruction miss, and return of cache block due to instruction

miss. Similar types exist for the Dcache load request category, while the Dcache store request

category has additional types due to the many request types (invalidates for example) that
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may result from store operations.

The amount of local tra�c observed by a local request varies depending on the request

type. We note the following three cases:

1. Each request category observes all the local tra�c due to other request categories. For

example, an Icache request can be impeded by Dcache load and store requests from

the same processor since the instruction and data streams are assumed decoupled.

2. Icache request and Dcache store requests can be considered blocking and therefore

observe no other local Icache or Dcache store requests, respectively. Icache requests

are assumed to be handled serially, and the transaction time of Dcache store requests

is generally shorter than the time between successive store requests (except in cases of

workloads with high store instruction rates). Thus, previous store requests are retired

before the next store request occurs.

3. Dcache load requests in a blocking cache observe no other local Dcache load requests.

For a nonblocking cache, other Dcache load requests may be observed depending on the

transaction time duration relative to the duration of time between successive requests.

For case 1, equations (3) and (4) are modi�ed as follows:

Q

r

= N � p

r

� (w

bus

+ T

r

)=CPIF (12)

p

busy bus;r

= U

r

=(1� (U=N)) (13)

Equations (3) and (4) can be used without modi�cation for case 2, with the exception

of the CPIF substitution noted earlier. For Dcache load requests with a nonblocking cache

(case 3) however, we must take into account other local load requests that are present in

the system when the new request occurs, and calculate the fraction of the local Dcache load

request tra�c observed by the new load request.
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To illustrate the calculation of this fraction, we study the example shown in Figure 3,

which depicts the situation of Figure 2 after steady state conditions are reached. Here we

have shown the transaction times (T

t

) which are assumed to be 33% longer than the miss

service times. (The latter are not shown for readability, but can be seen in Figure 2.) Or in

other words, T

t

=E

avg ss

= 3:5. We evaluate the time period between t0 and t2, or the time

during which transaction 10 takes place (T

t10

). We observe that the average total Dcache

load miss tra�c between times t0 and t1 is 3.5, and between times t1 and t2 is 4.0. Thus,

the average total load miss tra�c between t0 and t2 is

tra�c

total

= (3 � 3:5 + 0:5 � 4:0)=3:5 = 3:57.

We also observe that transaction 10 sees an average of one less transaction than the

average total tra�c, or a value of 2.57. Thus, the fraction of the total Dcache load miss

tra�c observed by transaction 10 is (tra�c

total

-1)/tra�c

total

= 2.57/3.57 = 0.72. Thus,

transaction 10 is impeded by 72% of the local Dcache load miss tra�c, as well as all of the

local Icache miss and Dcache store tra�c.

In general, we can calculate the fraction observed as (tra�c

total

-1)/tra�c

total

by using the

following formula to calculate tra�c

total

:

traffic

total

= (b(T

t

=E

avg ss

)c�(T

t

=E

avg ss

)+((T

t

=E

avg ss

)�b(T

t

=E

avg ss

)c)�d(T

t

=E

avg ss

)e)=(T

t

=E

avg ss

)

(14)

This formula holds for the conditions N

before block

> 0 and T

t

> E

avg ss

. The �rst ensures

that the cache is nonblocking, and the second that the transaction time is longer than the

average time between successive Dcache load misses. If one of these conditions does not

hold, then a Dcache load miss sees no other Dcache load misses in the system. Otherwise,

equations (3) and (4) are modi�ed as follows:

Q

r

= (N � 1 + (traffic

total

� 1)=traffic

total

) � p

r

� (w

bus

+ T

r

)=CPIF (15)
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p

busy bus;r

= ((N � 1 + (traffic

total

� 1)=traffic

total

)=N) � U

r

=(1� (U=N)) (16)

The (traffic

total

� 1)=traffic

total

term in equations (15) and (16) reect the additional

tra�c due to nonblocking loads from the local processor.

5 Performance Results

Now that we have described the extensions made to the model, we examine the performance

impact of various system parameters. All of the results reported in this section could not

have been obtained using previous MVA models, as our model extends these to take into

account new parameters. We would like to emphasize that although the capability of the

model has been expanded considerably compared to other models, this has very little impact

on processing time. All of the runs performed for this paper converged within 50 iterations

(in most cases in less than 10 iterations), and each run produced results in less than a second.

Thus, a wide design space could be examined in a small fraction of the time required for

simulation.

5.1 Fixed Parameters and Assumptions

In these illustrative examples, we �x a number of the architectural parameters to limit the

design space. Although the model is capable of modeling single-level caches, multi-level

caches are more common in modern multiprocessors, and therefore we limit our examples

to a two-level cache hierarchy. We also model con�gurations with up to 16 processors,

and unless otherwise noted, we limit the processor architecture to a two-way superscalar

implementation with blocking caches.

The cache coherence protocol that we model is a combined write invalidate and write

update protocol

(4)

. Here, a write to shared data in the L2 cache causes a bus write update

operation to be performed. If the snooping L2 cache has a copy of the block, and its
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associated L1 cache does as well, then it accepts the update and invalidates the copy in the

L1 cache. If it has a copy, but the L1 cache does not, then the copy in the L2 cache is

invalidated. The idea here is to eliminate updates to blocks that may have migrated from

one processor to another

(20)

. We model a system with a duplicate set of L2 cache tags for

bus snooping. This prevents the main L2 cache tags from being interfered with except for

cases in which a coherency operation must be performed.

Unless otherwise stated, each L1 cache is backed by a 4-entry write bu�er and each L2

cache by a 2-entry victim bu�er. With both of these, the probability is 10% that the bu�er

has to be emptied when accessed, and when the last entry is being removed from the bu�er,

the waiting entry can be loaded.

In order to isolate memory contention from the other aspects of the design we were in-

terested in, we allocated twice as many memory modules as the number of processors in all

runs. This ensured that memory interference e�ects would be of second order and not skew

our results.

In the results that follow, the processing power curves include results representative of

those obtained using earlier models. These models use scalar processors, blocking caches,

no local tra�c, no write or victim bu�ers, and use transaction times for stall times (no

hardware concurrency). The curve labeled \Old model (no L2)", uses a single level of

writeback cache, while the one labeled \Old model (L2)" uses the same multilevel hierarchy

as the new results. Both use the default parameter values for the caches. The purpose of

providing these curves is to quantify the increase in performance when calculated using the

new parameters incorporated into the model, and to demonstrate the additional results the

model is able to obtain.

Tables 2 through 7 at the end of this paper give default values for most of the parameters

used in this section. Only the main memory stall and transaction time parameters are

provided for brevity. Parameters which are not applicable to the organizations we have
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chosen are omitted as well.

5.2 Hardware Concurrency

In this section, we investigate the impact of the level of hardware concurrency on the pro-

cessing power (de�ned as n=CPI where n is the number of processors and CPI the total

cycles per instruction count of each processor) and bus utilization of the machine. The

latter is monitored in order to assess to what degree scalability projections are a�ected by

concurrency variations.

We compare two con�gurations, one in which the stall time parameters are equal to the

transaction time parameters, and another in which it is assumed that all caches use bypass,

all resources transfer the desired word �rst in a block, and overlap occurs when transferring

information from one resource to another. These organizations represent the two extremes

of hardware concurrency, and thus provide an upper bound on their performance di�erence

(for the assumptions and parameters we have described in the previous section). As shown

in Figure 4, this upper bound is quite large, the upper curve yielding an increase of 65-

70% in processing power over the lower. This performance improvement however increases

bus utilization (Figure 5) by about 65%, and causes a slight leveling-o� of performance

compared with the con�guration with no concurrency. Thus, both processing power and

scalability projections can be greatly impacted by the degree of concurrency in the machine

hardware. A large amount of concurrency in the hardware improves the processing power,

but as a result, requires more aggressive interconnect resources in order to connect large

numbers of processors.

We also see how results for the old models compare with the present one. The presence of

an L2 cache as expected has a large impact on the processing power obtained. The presence

of a 2-way superscalar processor and hardware bu�ers has an even greater impact, almost

doubling the performance of the old model with an L2 cache. Thus, we see that the new
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architectural parameters we have incorporated into the model have a signi�cant impact on

the performance results obtained.

5.3 Nonblocking Caches

The impact of incorporating processors with nonblocking caches on multiprocessor perfor-

mance is now examined. The nonblocking cache organization operates under an enhanced

hit under miss scheme in which the processor can continue until a second fetch is required

or the merge capability is exhausted. The latter can occur due to limited hardware re-

sources allocated for merges for example, or a workload in which load misses are spatially

\scattered" and not clustered into recently referenced cache blocks. We initially compare

two organizations: one with a blocking cache and another with a nonblocking cache with

percent

olap

= 0:85 and P

load merge

= 0:0. As shown in Figure 6, a signi�cant performance im-

provement is obtained with a nonblocking cache, but the cost is an increase in bus utilization

(Figure 7). This increase limits the number of processors that can be connected before bus

saturation occurs to about 12 or 14, whereas the limit for the blocking cache con�guration

occurs at about 16 processors. Intuitively, we would expect that a high degree of merges

would signi�cantly reduce the increase in bus utilization, since the amount of Dcache load

misses would be reduced. However, as seen in Figure 7, the reduction in bus utilization is

very slight. The explanation for this is that the presence of a nonblocking cache reduces

the latency of each processor, increasing its processing rate, and consequently, the rate at

which all misses occur. This increased processing rate is the dominant e�ect in the increase

in bus utilization obtained with a nonblocking cache, while the lesser e�ect (the increase in

the number of Dcache load misses) is the e�ect improved by merging. Thus, in this example,

the impact of merging on bus utilization is small, as is its impact on processing power (only

about a 1% improvement). The latter is due to the fact that with a large L2 cache providing

a high hit rate, almost all of the miss latency is hidden by allowing a single outstanding
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miss, and not much more improvement can be gained by merging.

For more aggressive superscalar designs which generate higher cache miss rates and whose

performance is more dependent on latency reduction, merging may be more bene�cial. For

example, the Alpha 21164 microprocessor

(17)

, a 4-way superscalar design, provides aggres-

sive support for merging through its 6-entry Miss Address File. We examine the e�ect of

nonblocking caches by comparing four 4-way superscalar-based multiprocessor con�gura-

tions based around the following cache organizations: a blocking cache, a nonblocking cache

with no merging, a nonblocking cache with 50% merging, and a nonblocking cache with

80% merging. In order to reect the impact of a higher degree of superscalar execution on

cache miss rates (due to higher bandwidth requirements that cause it to sweep through the

caches at a higher rate), we use degraded cache miss rates as shown in Table 1. As Figure

8 shows, the performance of the 4-way superscalar-based multiprocessor improves greatly

with the addition of a nonblocking cache and a high degree of merging, although, as ex-

pected, performance levels o� more quickly due to bus saturation. Whereas with a 2-way

superscalar-based multiprocessor a 50% merging rate o�ered little additional performance

bene�t over a nonblocking cache without merging, the 4-way superscalar system shows a

signi�cant (about 20%) improvement in performance with 50% merges, and an additional

smaller, but still noteworthy (about 8%) improvement when the merging rate increases to

80%. A higher issue rate processor places greater demands on the memory hierarchy and

therefore improvements in its design has a larger impact on overall performance. Thus, the

results we were able to obtain using the model appear to validate the decision to support

aggressive merging on the Alpha 21164

4

. Bus utilization (Figure 9) is also reduced by merg-

ing (about 6-7% from no merging to 50% merging), but even so, the bus utilization increase

from a blocking cache to any of the nonblocking con�gurations is dramatic, around 35-40%

4

With an L3 cache (optional on the 21164), latencies would be reduced and the need for merging would

perhaps be less.
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up to the point of saturation. This as mentioned previously, is largely due to the simple

fact that the processor is executing at a faster rate, and generating misses at a higher rate

as well. The result is that for the same bus con�guration, the nonblocking cache organi-

zations reach bus saturation much more quickly than the blocking cache con�guration. A

high degree of merging helps to mitigate this impact to some degree. Reexamining Figure

9, the bus utilization of the blocking cache con�guration with 12 processors is roughly the

same as the 80% merging con�guration with eight processors, and the nonblocking con�gu-

ration with no merging with about seven processors. We note also that the bus utilization

values for the 4-way superscalar-based multiprocessor are much greater than those for the

2-way superscalar-based system (Figure 7). Thus, these examples illustrate how the degree

of superscalar execution has a very large impact on the design of the memory system and

interconnect in a multiprocessor system.

Note once again on these �gures, the di�erence between results for the old models and

the present one. Up to the point of bus saturation, the 4-way superscalar processor with a

nonblocking cache and 80% merging has a processing power that is �ve times that for the

old model with an L2 cache.

5.4 Write Bu�ers

The presence of a write bu�er helps to hide the latency of writes, allowing read misses to

proceed ahead of them. Choosing a size for the write bu�er is a tradeo� between minimizing

the percentage of time the bu�er is full when a write occurs and the stall time in emptying

the bu�er when it is full. To illustrate this tradeo�, we compare the performance of three

systems: one without a write bu�er, one with a 4-entry bu�er which is full on a write 20% of

the time, and one with 8 entries that is full 10% of the time. We make several observations

based on the results obtained in Figure 10. First of all, the performance improvement when
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employing a write bu�er is smaller than that of other parameters we have studied so far, but

still signi�cant (about 11%). Secondly, we see that the 4-entry bu�er performs slightly better

than the 8-entry bu�er due to the latter's higher penalty for emptying. We note however,

that we assumed that the 8-entry bu�er would be full half as much as the 4-entry bu�er.

This assumption is highly dependent on workload characteristics, processor architecture,

and the L2 cache's emptying algorithm. Thirdly, the impact of a write bu�er stays relatively

constant as the number of processors is varied. This is due to the fact that in the model,

while stall time calculations are varied with write bu�er organization, transaction times,

which are calculated using conventional MVA techniques, do not. Thus, in our model, the

write bu�er does not reduce tra�c (the writes are simply delayed), only stall time. This is

a limitation of MVA techniques as will be explained in Section 6.

Victim bu�ers can be studied in a similar manner, but the performance improvement

obtained is smaller than that from write bu�ers due to the fact that they lie further down

the cache hierarchy. Their impact would be greater for a single level of cache hierarchy, and

the model allows this organization to be studied as well.

5.5 Combined E�ects

Figure 11 shows how combinations of the previously studied e�ects can impact performance.

In addition, we include the e�ects of cache interference. The curve labeled \New base model"

represents a 2-way superscalar model with no hardware concurrency, no write or victim

bu�ers, cache interference ignored, and blocking caches. Each successive curve progressively

adds new features to the previous curve. We make two observations from this �gure:

� The use of large amounts of hardware concurrency, and the implementation of non-

blocking caches have the greatest impact on performance;
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� E�ects which alone have a smaller performance e�ect (such as write and victim bu�ers)

can add together to produce a much more signi�cant impact.

6 Limitations of the Model

The model, although very exible, is not without limitations, as we rely on several assump-

tions which we discuss in this section.

A fundamental assumption of the superscalar aspects of the model is that the cache data

path widths scale as the degree of superscalar execution is increased. For instance, an n-way

superscalar implementation will fetch half the amount of instructions from the Icache each

CPIF as a 2n-way superscalar processor. This necessitates the increase in datapath width to

meet the increased bandwidth. Thus, the impact of increased superscalar degree is primarily

reected in increased cache miss and bu�er emptying rates, as the processor is able to sweep

through these structures at a higher rate.

Because MVAmodeling relies on average values to compute performance, certain e�ects are

di�cult to represent using this method. We assume that remote cache interference cannot

be hidden through the existence of invalidate request queueing for example. (In systems

employing a cache hierarchy, L1 cache invalidate requests can be queued and, in most cases,

the emptying of the queue is delayed until the cache idles due to a miss.) Similarly, by

calculating transaction and waiting times due to writes using conventional MVA techniques,

we assume that the presence of a write bu�er between the L1 and L2 caches only serves to

reduce write latency and not to reduce L2 cache contention (through emptying the bu�er

during idle periods). A similar assumption holds for displacement bu�ers.

We have found in our modeling of nonblocking caches that when an L2 cache is present,

the average analysis used in MVA modeling a�ects the amount of performance bene�t re-
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ceived from allowing multiple outstanding misses. An L2 cache (with a reasonably low miss

rate) reduces the average stall time of a Dcache load miss. This combined with a uniform

distribution of these misses limits the bene�ts obtained from aggressive nonblocking schemes

which allow many outstanding misses to be serviced simultaneously. This limitation arises

because there is little overlap to hide, and allowing one outstanding cache miss serves to hide

almost all of it. In real machines, misses may be \clustered" and therefore greater bene�t

received from allowing many misses to be outstanding. It is a subject of further investigation

to more throughly investigate this aspect of the model.

7 Conclusions

An approximate Mean Value Analysis model which incorporates the features of modern

multiprocessor systems has been developed. The model is extremely detailed and includes

the e�ects of superscalar microprocessors and latency reduction techniques and has been

used to study a wide variety of design tradeo�s. We have demonstrated how the model

expands on earlier developed models, and how this e�ects the performance results obtained.

Using the model, we have examined the impact of using superscalar processors and non-

blocking caches in multiprocessor systems. The model has been used to determine the impact

of the degree of superscalar performance on the scalability of multiprocessor systems. We

have demonstrated how contrary to intuition, a high degree of merging of outstanding load

misses in a nonblocking cache has little impact on bus utilization and explained the reasons

for this result. We have also shown how the model can be used to study the way bu�ering

and other e�ects can a�ect system performance and scalability.

The model has been used to explore tradeo�s in the design of next-generation multipro-

cessor servers

(1)

. Future plans are to expand the model to include writeback L1 caches and

27



additional snooping tag structures.
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Parameter Value

P

L1 ir miss

0.05

P

L1 dl miss

0.20

P

L2 ir miss

0.02

P

L2 dl miss

0.10

P

L2 ds miss

0.12

Table I: Miss Rates for 4-Way Superscalar-Based System

Parameter Description Value

P

load

Prob instruction is a Load 0.25

P

store

Prob instruction is a Store 0.10

P

L2 write shared

Prob Store hit to shared data 0.05

P

L2 write private

Prob Store hit to private data 0.01

Table II: Default Values for Local Cache Workload Parameters

Parameter Description Value

P

L1Rem di hit

Prob L1 data invalidate hit 0.02

P

L2Rem di hit

Prob L2 data invalidate hit 0.01

P

L2Rem du hit

Prob L2 data update hit 0.02

P

L2Rem dpriv hit

Prob L2 data mod hit (load) 0.01

P

L2Rem dmod hit

Prob L2 data mod hit (store) 0.03

Table III: Default Values for Remote Cache Workload Parameters

Parameter Description Value

CPI

proc

CPI with no memory overhead 0.7

N

Ifetch

# of instructions fetched each CPIF 2.0

N

Daccess

# of Dcache accesses each CPIF 0.7

Table IV: Default Values for Processor Parameters
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Parameter Description Value

P

L1 ir miss

Prob of L1 Icache miss 0.03

P

L1 dl miss

Prob of L1 Dcache load miss 0.13

P

L2 ir miss

Prob of L2 cache instruction miss 0.01

P

L2 dl miss

Prob of L2 cache data load miss 0.05

P

L2 ds miss

Prob of L2 cache data store miss 0.08

P

L2 ir victim

Prob L2 instr miss causes wrback 0.20

P

L2 dl victim

Prob L2 load miss causes wrback 0.25

P

L2 ds victim

Prob L2 store miss causes wrback 0.25

N

wbuf

# of write bu�er entries 4

N

wait wbuf

# entries retired before new write 3

P

full wbuf

Prob full wr bu�er on data store 0.01

N

vbuf

# of victim bu�er entries 2

N

wait vbuf

# entries retired before new write 1

P

full vbuf

Prob full victim bu�er on wrback 0.01

Table V: Default Values for Cache Hierarchy Parameters

Parameter Description Value

N

proc

# of processors x (variable)

N

mem

# of main memory modules 2x

T

arb

# of cycles for arbitration 2

Table VI: Default Values for Bus Parameters
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Parameter Description Cycles

T

stall ir

Icache miss stall time 25

T

stall dl

Dcache load miss stall time 25

T

stall ds

Dcache store miss stall time 25

T

stall dlwb

Dcache load miss wrback ack time 6

T

stall dswb

Dcache store miss wrback ack time 6

T

trans ir

Icache miss trans time 27

T

trans dl

Dcache load miss trans time 27

T

trans ds

Dcache store miss trans time 27

T

trans irwb

Icache miss wrback trans time 22

T

trans dlwb

Dcache load miss wrback trans time 22

T

trans dswb

Dcache store miss wrback trans time 22

Table VII: Default Values for Memory Stall/Transaction Time Parameters

Tm1

E8

...

...

Tm2

Tm3

Tm4

Tm5

Tm6

Tm7

E1

time

E2 E3 E4 E6E5 E7

Figure 1: E�ective Stall Time - Example 1. White areas represent computation time, lightly

shaded areas the time that computation is not overlapped with the miss service time, and

dark shaded areas additional processor stalling due to architectural limitations.
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Tm1

E9

...

Tm2

Tm3

Tm4

Tm5

Tm6

Tm7

Tm8

time

E1 E2 E3 E4 E5 E6 E7 E8

Figure 2: E�ective Stall Time - Example 2. White areas represent computation time, lightly

shaded areas the time that computation is not overlapped with the miss service time, and

dark shaded areas additional processor stalling due to architectural limitations.
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Tt7

E14

Tt8

Tt9

Tt10

Tt11

Tt12

...

Tt13

t0 t1 t2

time

E10 E11 E12E7 E8 E9 E13

Figure 3: Local Dcache Load Miss Tra�c. White areas represent computation time, and

shaded areas additional processor stalling due to architectural limitations.
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Figure 4: E�ect of Hardware Concurrency Level on Processing Power
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Figure 5: E�ect of Hardware Concurrency Level on Bus Utilization
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Figure 6: Processing Power of 2-Way Superscalar-Based Systems
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Figure 7: E�ect of Merging on Reduction of Bus Utilization (2-Way Superscalar)
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Figure 8: Processing Power of 4-Way Superscalar-Based Systems
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Figure 9: Bus Utilization of 4-Way Superscalar-Based Systems

38



2 4 6 8 10 12 14 16
Number of Processors

0

2

4

6

8

10

Pr
oc

es
si

ng
 P

ow
er

Old model (no L2)
Old model (L2)
No write buffer
8 entry buffer, 10% full
4 entry buffer, 20% full

Figure 10: Processing Power of Various Write Bu�er Con�gurations
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Figure 11: Impact of Combinations of E�ects on Processing Power
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