A Web/DVD-Based Multimedia
Architecture Simulator

Erica Asai, Israel Koren and C. Mani Krishna

Abstract—

This paper describes a Web/DVD-based Mul-
timedia Architecture Simulator and courseware
which we have developed for a course module titled
“Multimedia Architectures.” The goal of this mod-
ule is to study architectural enhancements to mi-
croprocessors to support multi-media applications.
The course-ware provides lecture material includ-
ing audio/video lecture recordings and slides, ref-
erences to relevant websites, a search engine, and
various Java applets and the Multimedia Architec-
ture Simulator. The Simulator is Web/DVD-based
and runs on-line.

Most of the existing simulators require the user
to go through the steps of downloading, installing,
and configuring the software. Our on-line simulator
has the advantage of being able to run directly from
the web browser without any configuration.

The Simulator has the complete functionality of a
multimedia oriented computer system which effec-
tively simulates an SIMD (Single Instruction Mul-
tiple Data) architecture, The simulator can com-
pile, run, and debug image processing programs
which can readily be presented on the screen. Us-
ing program examples and projects, studenis can
experiment with the concepts introduced in the lec-
ture.

The integration of the web-based simulators, lec-
tures, references and search mechanism on-line has
created an effective course environment.

Keywords— Web-Based Simulator, Distant Learn-
ing.

I. INTRODUCTION

Various online lectures series are available to date
[1], but only a few provide a platform that allows the
student to experiment with the concepts that the lec-
tures introduce, such as a full-fledged computer ar-
chitecture simulator. The learning process consists
of forming abstract concepts from the information
provided and then experimenting with the concepts

Department of Electrical and Computer Engineering, Univer-
sity of Massachusetts, Amherst, MA 01003, E-mail: {easai, kr-
ishna, koren }@ecs. umass.edu

in a real environment. Simulators provide the ideal
environment for experimenting with the conceptual
model.

Most existing simulators cannot be invoked from a
web browser [2]. Moreover, the contents of the lec-
tures are not always reflected in the actual implemen-
tation of the simulator.

To achieve the goal of integrating course material
and a platform where students can experiment with
the concepts introduced in the lectures, we have de-
veloped a Web/DVD-based Multimedia Architecture
Simulator, as a part of a course module. The goal
of this module is to study architectural enhancements
to support multi-media applications. The main pur-
pose of the simulator is to demonstrate the benefits of
these architectural enhancements in practical multi-
media programs. The simulator is an effective tool to
identify such benefits.

The simulator supports all the significant features of
a complete computer architecture. It has the capabil-
ity to edit, compile, run and debug programs and then
execute two algorithms in parallel for comparison. It
is ready to run in the location where the information
is, and can access any files available online. The sim-
ulator is machine-independent and thus open to the
widest public.

Several image-processing programs are included
with the simulator for demonstrating the algorithms
introduced in the course. These programs are im-
plemented with and without multimedia extension
instructions to illustrate the performance impact of
these instructions.

The rest of the paper is organized as follows: Sec-
tion II briefly describes the complete course environ-
ment. Section III describes the functions of the simu-
lator., Section IV concludes the paper.

I1I. THE COURSE WEBSITE

The website contains the following course material:

Lecture Slides — The slides presented in the lecture,
with audio/video narration. This also includes

animation algorithms and on-line simulators.

Supplementary Lectures on the web —

Additional slides for supplementary information
that augment the lecture contents. The materials
included are: introductory computer architecture
tutorials on pipelining, cache, and case studies for
Intel, AMD and Sun multimedia architecture [3],
[4].

Review Questions — Review questions to summarize
the lectures.

Terms and Abbreviations — DBrief explanation of
terms and abbreviations.

The Multimedia Architecture Simulator — The sim-
ulator can run demonstrations and sample pro-
grams. Its manual includes tutorials and sample
programs, and an its instruction set programming
manual.

Links and Reference — Links and references to rele-
vant sites including industrial and academic sites.

Search Engine — Search engine that can search the
entire set of slides within this site for a keyword.

The lecture slides contain the slides presented in

the lecture and the corresponding audio/video nar-
ration. The audio/video clips are encoded in RTSP
(Real Time Streaming Protocol) to minimize the re-
quired bandwidth. The synchronization of the slide
images and the narration is specified in SMIL (Syn-
chronized Multimedia Instruction Language).

ITI. SIMULATORS

Several simulators have been developed and are cur-
rently available on the course website for simulating
the algorithms introduced in the lectures. The advan-
tages of web-based simulators are:

o No installation is necessary. The simulator can
run directly from the web browser.
» It can process images on the website on any com-
puter platform.
o Manuals and references are available online.
From the point of view of the website administrator,
web-based applications eliminate platform-dependent
problems and lower distribution costs. The materials
and resources can be distributed over the network. It
is architecture-neutral and is suited to diverse educa-
tional environments.
The simulators are implemented in Java [5] on an
Intel-based Linux platform. The COP (Object Ori-
ented Paradigm), the GUI (Graphical User Interface)

library, and the network programming capability of
Java allowed us speedy development and user friendly
presentation. The GUI is based on the Java AWT
library for network compatibility. Further details re-
garding the implementation and the class hierarchy of
the simulator can be found in on-line manual [6).

A. Java Applets

The Java applets on the course website complement
the lectures. Students can experiment with example
images using the online simulators. The three applets
are:

Color Saturation Arithmetic Simulator — This ap-
plet shows the effects of saturated and unsatu-
rated arithmetic on color manipulation.

Conditional Selection Simulator — This applet sim-
ulates conditional selection of background color
and the concept of masking an image.

Image Filtering Simulator — Four image filters can
be simulated using this applet.

The latter two applets which perform image pro-
cessing also show the hexadecimal numerical values of
the image pixels and the result of the execution of the
algorithm.

B. Multimedia Architecture Simulator

The Multimedia Architecture Simulator is a full-
fledged, web-based simulator which simulates SIMD
instructions. It has the capability to edit, execute,
and debug assembly programs. The assembly instruc-
tions include multimedia extension SIMD instructions
that can operate on multiple data at the same time.
The data types supported by the SIMD instructions
include byte, word, double word, quad word integer
and single precision floating-point numbers.

The simulator also includes a tutorial, an operation
manual, and a reference manual for the instruction
set available on the website. The demonstration and
sample programs provide guidance on how to use the
simulator and its components, and how to write a pro-
gram in its assembly code.

The purpose of the simulator is to evaluate the
effect of multimedia SIMD instructions such as
pack/unpack, and pempeg. To clarify the impact of
these instructions, two programs can be executed in
parallel. The performance of the programs can be
compared in terms of their total execution cycles.

The simulator can load program files from the server
machine or from other machines on the network. The
simulator can also edit a program online, and execute
it over given input images. The simulator can load
any images available online as well as images on the
Server.

The simulator has its own macro language which
enables execution of commands in batch mode.

Figure 1 shows the main code input screen of the
Multimedia Architecture Simulator. Using this screen
the user prepares an image processing program, de-
bugs it if necessary and then executes it. The code
shown in Figure 1 increases the green pixel value by
46 percent.

Fig. 1. The simulator main code input screen.

The leftmost column shows the labels. In the sam-
ple code, the :loop label is used. The second column
includes the opcodes, and the next two columns are
operands. Labels are compiled in run-time.

The checkbox on the left of the label column sets
breakpoints. The line with the breakpoint will be
highlighted.

At the bottom of the screen, the status line indi-
cates the file name of the code being executed and
the current execution status.

The code can be directly edited on the screen. Each
line is checked for valid syntax (type check) after its
entry. Illegal entries are highlighted in red. The op-
codes and its operand types are specified in an exter-
nal file. The Del button will delete the whole line.
Ins will insert an empty line. The Clear button will
reset the entire line.

Table I lists the remaining six windows which the
simulator uses, and indicates their function. The

TABLE I
THE SIMULATOR'S WINDOWS.

| Window | Function |

Code Displays the assembly code in
plain text form for cut & paste

Debug Displays the contents of the
register for debugging

Pseudo-C Displays the assembly code in
pseudo-C format

EmuFrame Displays the original and pro-

cessed images

Displays the memory contents
in hexadecimal figures
Displays the color component
value of the image in a graph

Memory Monitor

Wave

Code window allows copying and editing of an as-
sembly code. One of the difficulties we had with the
web-based simnulator is the ability to store programs
locally for future use. The simulator which is located
on a server machine does not have access to the local
files unless the necessary permission is given on the
local machine.

To circumvent this problem, we implemented the
code window to allow for the cut and paste of a code
entered online. Figure 2 shows the code which was
copied from the main simulator screen. After copying
the code to the code window it can be further edited
there and then loaded back into the simulator screen
for debugging and execution. A local copy of the sim-
ulator can be made and run locally. In such a case,
the simulator has direct access to the local files and
the processed images can also be stored locally.

To assist the users in debugging their programs we
developed the debug window shown in Figure 3. It
displays the contents of all the registers and status
words. Furthermore, any altered value of registers
are highlighted in red. The displayed registers in-

my fp@ wi.46

add regh 1

add regB 1

xor reqg@ regd
Id.b regd [regRl
st.q [regD] regl °
fild ¥p1 H1mmu%

fpl

Id reg@
cmp regd x¥f

gl st

av regd xff
st.b m&mamu regf
add regl 4

add regB 4

cmp regA regl9
Jl =loop

halt

Fig. 2. The Code window.

clude 19 general-purpose registers, eight floating-point
registers, and eight multimedia registers which are
mapped onto the floating-point registers [7]. The pro-
gram counter shows the current line of the code, the
status word shows the result of a cmp operation.

Fig. 3. The Debug window.

In addition, the Debug window controls the break-
point mode execution as well as single step execution
of the code. In the debug-mode execution of the pro-
gram, the current line is highlighted and an arrow on
the left side of the column is shown. The program
can be executed in one out of four modes (see Ta-
ble II). The Single Step executes one instruction
at a time. The Breakpoint mode stops execution
at user-specified breakpoints whereas Non-Stop ex-

ecutes the program regardless of the setting of break-
points. The condition for breakpoints can be set from
the simulator screen menu. The Pause/Reset but-
ton suspends/resumes the execution of the program.
The Reset button clears the result of the previous
execution.

TABLE IT
EXECQUTION MODES.

| Mode
Single Step

| Description

Execute one instruc-
tion at a time. The
current line to be exe-
cuted is shown on the
simylator screen indi-
cated with an arrow on
the right.

The code is executed
without breaks.
Breakpoint The

execution is stopped at

each breakpoints.

Run (Non Stop)

Pause This button toggles
pause and resume.
Reset Resets the pre-

vious execution of the
program.

To increase the readability of the assembly code,
we have implemented the Pseudo-C window (see Fig-
ure 4) which shows the “pseudo C” equivalent of the
code. In it the memory is represented as an array:
image0[| - image3[] and the registers are represented
as variables: r0 - r19 for general-purpose registers, m0
— m7 for multimedia registers, and f0 — {7 for floating-
point registers.

Three separate windows are used to show the re-
sults of executing the program. EmuFrame shows the
original/input image and the processed image (e.g.,
Figure 5). The Memory Monitor window shows the
hexadecimal values of the image. The Wave window
shows the pixel values in a graph form.

Figure 5 shows the results of the execution of the
program for median filtering. The image on the left
is the original. The result of the program execution
is shown on the right. The gaussian noise has been
removed from the image. The image and the window

percent-mec. axm — flosting point sultiplication for

1. Imtel caser Fp registers
2« AHD caxe: wax single Fp data type

Erica fsal ceass/iecs.umass, edu?
Hedd Sep 27 20:38:39 2008

@ = yl.46;
LR T
BLo#= 15

g “x g

-.Dln_aH ; TW.F- 7 amrr
Inage3{i3] = riy 44 r o
= image3[13)s

b ‘umﬁ._wu Cint = §1
inageld[i int= £y

rd = Inaged[i3]s

if (r@rmxffy goto il 4/ saturated?
ré = xff;

imagei[i1] = rés

i +m 4

11 += &4

If {18>281Z) goto :loop
L R 41T

16 bit repd—temp
R Vi3 memory

Fig. 4. The Pseudo-C window.

are resizable.

Fig. 5. EmuFrame Window: Median Filter Execution Re-
sults.

The Memory monitor window (Figure 6) shows the
contents of the memory in hexadecimal. As the pro-
gram is executed, the gradual alteration of the con-
tents of the memory is displayed.

Figure 7 shows the image screen after execution of
the assembly code shown in Figure 4. This example
shows the comparison of two programs with and with-
out the multimedia SIMD instructions, which have
been executed in parallel [7].

The total execution cycles are 100003 without the
extension and 62503 cycles with the pack/unpack in-
structions. This difference in the execution cycles
quantifies the advantage of SIMD instructions.

The Wave window {Figure 8) shows the wave form

Fig. 6. Memory Monitor Window

Fig. 7. Comparison of two image processing programs run-
ning in parallel: addition with and without saturation.

of the image memory. Shown in the figure are the
original and the altered image pixels.

Finally, we present the results of several other image
processing programs which have been prepared and
executed using the simulator to further illustrate its
capabilities. Figure 9 shows the results of an image
smoothing program. Figure 10 depicts the output of
a conditional selection program which superimposes
one image on top of another image. Figure 11 shows
the result of an edge-detection program.

IV. CONCLUSIONS

The Multimedia Architecture Simulator is full-
fledged, web-based simulator which simulates multi-
media SIMD instructions. It has the capability to
edit, execute, and debug assembly programs. The as-
sembly instructions include multimedia extension in-
structions that can operate on multiple data at the

— =

Fig. 9. Smoothing filtering execution results.

same time.

We have shown that the integration of the on-line
multimedia course materials and the web-based Mul-
timedia Architecture Simulator provides an effective
course environment.

ACKNOWLEDGMENTS

This project was funded in part by the National
Science Foundation under grant EIA-9812589 and by
the University of Massachusetts, Amherst. We would
like to thank Andy Wolan for the design of the GUI,
and Professor Wayne Burleson and other members of
the VLSI Lab for help with the multimedia materials.

Conditional selection execution results.

Fig. 10.

Fig. 11. Edge detection execution results.

REFERENCES

[1] A. Schapira, K. De Vries, and C. Pedregal-Martin, “Manic:
An open-source system to create and deliver courses over the
internet,” in Symposium on Applications and the Internet.
2001, IEEE Computer Society Press.

[2] D. A. Hennesy and J. L. Patterson, Computer Architecture:
A Quantitative Approach, Morgan Kaufmann Publishers
Inc., 2nd edition, 1996.

[3] S. Oberman, G. Favor, and F. Weber, “Amd 3dnow! tech-
nology: Architecture and implementations,” IEEE Micro,
1999.

[4] L. Kohn et al,, “The visual instruction set(vis) in ultra-
sparc,” IEEE, 1995,

[6] J. Gosling and H. McGilton, “The java language envi-
ronment,” http://java.sun.comfdocs/white/langenv/, May
1996.

[6] E. Asai, “Multimedia architecture simulator manual,”
http://vsp2.ecs.umass.edu/dvd/doc/moduled/
Simulator /manual /simulator tf.html, 2001.

[7] A. Peleg, S. Wilkie, and U. Weiser, “Intel mmx for multi-
media pcs,” Communications of the ACM, 1997,

