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Abstract

Next generation, wide-issue processors will require

greater memory bandwidth than provided by present

memory hierarchy designs. We propose techniques for

increasing the memory bandwidth of multi-ported L1

Dcaches, large on-chip L2 caches, and dedicated mem-

ory ports while minimizing cycle time impact. These

approaches are evaluated within the context of an 8-

way superscalar processor design and next-generation

VLSI, packaging, and RAM technologies. We show

that the combined L1 and L2 cache enhancements can

outperform conventional techniques by over 80%, and

that even with an on-chip 512KB L2 cache, board-level

caches provide signi�cant enough performance gains to

justify their higher cost.

1 Introduction

Increasing attention has been focused on the

memory hierarchy performance of microprocessor-

based systems due to the growing processor/memory

speed gap and memory bandwidth demands of

modern superscalar designs. In order to prevent

the next-generation of wide-issue, highly-integrated

microprocessor-based systems from becoming memory

performance-bound, improvements to current memory

hierarchy designs must be found. In this paper, we ad-

dress ways to increase the memory bandwidth of the

L1 Dcache, L2 cache, and o�-chip interface.

High bandwidth in L1 cache design is usually

achieved through a combination of pipelining and

multi-porting. However, pipeline depth is limited by

load-use delay considerations, and adding ports may

increase cycle time. The Alpha 21164 microproces-

sor [4] uses two duplicate copies of the L1 Dcache to

produce two read ports without impacting cycle time.

However, stores are limited to one per cycle because of

the need to update both copies. An increase in issue

width may necessitate performing more than one store

instruction per cycle. Sohi and Franklin [18] explore

increasing L1 Dcache bandwidth through multiple in-

terleaved, non-blocking caches. The drawback of this

approach is the latency of the crossbar interconnect

between the processor and cache banks. Wilson [20]

explores conventional multi-ported and pipelined L1

Dcaches for a 4-way processor, while we explore addi-

tional alternatives necessary for the complete hierar-

chy of a wider-issue design. The Alpha 21264 micro-

processor [11] achieves dual-ported operation by per-

forming two L1 Dcache accesses within a single cycle,

resulting in an extra cycle of load-use delay relative

to the 21164. With wider issue processors, increasing

load-use delay may limit the amount of parallelism

that can be achieved due to data dependencies.

Increases in VLSI integration present the oppor-

tunity to implement signi�cantly larger pipelined on-

chip L2 caches than possible today, but with the chal-

lenge of providing high bandwidth L2 cache access

without a cycle time penalty. With a given number of

pipeline stages, the cycle time in general increases with

increasing cache size. Attempting to compensate for

this increase by simply adding more stages increases

the L2 cache latency. Eventually, adding more stages

has no cycle time bene�t once individual elements that

cannot be further pipelined, such as the data array or

the data output selector drivers, dominate the overall

cache delay. Peir [17] proposes using a path balancing

table (PBT) to improve cache access time. The table

stores the most recent cache tag to data array index

and way select mappings in order to decouple the tag

check and data access paths. For cases that hit in the

PBT, their technique signi�cantly reduces cache ac-

cess time for non-pipelined caches. As we discuss in

Section 4, additional techniques are required to reduce

the cycle time of large on-chip L2 caches.



Package pin limitations constrain o�-chip memory

bandwidth. Most recent microprocessors provide a

dedicated port for a board-level cache, while the main

memory system control logic is implemented on a sep-

arate ASIC attached to the external system bus. A

large enough on-chip L2 cache may preclude the pres-

ence of a board level cache, allowing this external port

to be dedicated to a direct connection to main memory

SIMM modules. This has the potential of signi�cantly

reducing main memory access time (and increasing

memory bandwidth), and has the added bene�t of

enabling the construction of dense, highly-integrated,

multiprocessor building blocks.

In this paper, we explore methods for increasing

the memory bandwidth of L1 Dcaches, L2 caches, and

o�-chip accesses for microprocessors with greater in-

tegration levels and issue widths than current designs.

In the next section, we describe the overall system

design. After a presentation of our methodology in

Section 3, we discuss design alternatives in Section 4.

In Section 5, we quantify the performance bene�ts of

the memory bandwidth enhancements, and conclude

in Section 6.

2 System Description

Our simulated design is an extension of the Alpha

21164 microprocessor [4] enhanced to provide 8-way

issue. In-order issue processor designs can potentially

achieve a higher clock frequency than out-of-order de-

signs because of their simpler control logic and inter-

nal data paths [9]. In addition, the relative simplicity

of an in-order design can be crucial in reducing the

design time of a wide-issue processor [8]. However, in-

order designs rely more heavily on advanced compiler

technology, like the Multiow Trace Scheduling Com-

piler [12] used in this analysis, to extract parallelism

from the instruction stream.

An Instruction Fetch Unit (IFU) fetches eight 32-

bit instructions from the L1 Icache and issues them

to three types of functional units: Floating-Point Add

Units (FPAUs), Floating-Point Multiply Units (FP-

MUs), and Integer Units (IUs). These units perform

the same operations as comparable units in the 21164.

A two-level on-chip cache hierarchy is arranged as

split L1 caches backed by a uni�ed L2 cache. Table 1

lists values for some of the cache hierarchy parameters.

The L1 Icache is backed by a prefetching stream bu�er

[10], while the L1 Dcache and L2 cache are each backed

by a Memory Merge Bu�er (MMB). The MMB is sim-

ilar in functionality to the 21164's Miss Address File

[4] and provides non-blocking support and merging of

misses to the same cache block. The internal datapath

Element Parameter Value

L1 Icache block size 64 bytes

L1 Dcache block size 64 bytes

L1 Dcache write policy write through

L1 Dcache Write Bu�er entries 12

L1 Dcache MMB entries 16

L2 Cache block size 128 bytes

L2 Cache write policy write back

L2 Cache MMB entries 8

L2 Cache Victim Bu�er entries 1

Table 1: Cache Hierarchy Parameters and Values.

Parameter Value

die size 350mm

2

minimum feature size 0.3 microns

package pins 975

SRAM organization [14] 128K�8

SRAM access time 5ns

SIMM organization [13] 8M�36

SIMM access time 40ns

Table 2: Technology Parameters and Values.

widths are double that in the 21164 to meet the higher

instruction and data bandwidth requirements of an 8-

way superscalar design. External requests are serviced

by the Bus Interface Unit (BIU) over a 256-bit wide

system bus.

Table 2 summarizes the technology parameters used

in the analysis, based on trends [6, 7] in custom CMOS

microprocessor implementations, packaging technolo-

gies, and board-level components. The microprocessor

and ASICs used for memory and I/O control directly

drive external buses similar to several current micro-

processors [16, 22] and the ASIC designed for the Al-

phaServer 8000 [2].

3 Methodology

Our evaluation methodology combines the use of

the System Tradeo� Analysis Toolset (STATS) [1] for

performance analysis with area and package pin count

calculations. We use the die photograph of the Al-

pha 21164 [3] to determine relative sizes of arithmetic

units and caches. We then use an enhanced version of

Mulder's cache area model [15] to model the 21164's

8KB Icache as a baseline, and use this to determine

relative cache sizes for the 8-way superscalar design.

The modi�ed model includes area estimation of multi-

ported cache structures using multi-ported cell design

and/or duplication of arrays, and takes into account

the area impact of including parity bits (for both data

and tag arrays), and dividing each array into subar-

rays [19, 21].



STATS integrates detailed timing analysis, bench-

mark compilation targetted to the architectural orga-

nizations, and execution-driven performance simula-

tion into an automated analysis framework. We have

expanded CACTI [21] to include pipelining and multi-

porting. The toolset �nds the optimal pipeline reg-

ister placement between the major substages of the

cache for the desired number of stages, and scales the

size of the cell, word and bitline capacitances, and cell

I/O capacitances according to the number of cache

ports desired. Board-level cache, system bus, and

main memory delays are calculated by an automated

Spice-based tool using electrical and physical param-

eters such as spacing between components and VLSI

and SRAM packaging and electrical speci�cations.

Benchmarks are compiled using a modi�ed version

of the Multiow Trace Scheduling compiler [12] tar-

getted to the Digital Alpha architecture. Code gener-

ation is inuenced by the microarchitectural machine

model which includes the number and types of func-

tional units, instruction latencies, and simultaneous

load and store cache access restrictions. Because in-

structions are grouped by the compiler according to

this speci�cation, individually optimized benchmark

executables are generated for each machine con�gu-

ration. Improved simulation accuracy is achieved by

incorporating the detailed timing overheads calculated

by the timing tools into the simulation.

4 Design Alternatives

In this section, we determine design alternatives for

the L1 Dcache, L2 cache, and external memory in-

terface considering the die and pin count constraints

described in Section 2. We �rst allocate as much die

area as possible to an on-chip set-associative L2 cache,

while leaving room for enough functional units and

reasonable size L1 caches. We then consider options

for the size of the L1 Dcache, while keeping the over-

all die usage roughly equivalent. This is accomplished

by allocating die area to other functions for smaller

L1 Dcache con�gurations. Next, we perform a pin-

allocation analysis to determine the number of pins

that can be dedicated to the o�-chip memory inter-

face, and use component speci�cations to determine

viable con�gurations. We focus on load/store band-

width; consideration of improved instruction fetching

hardware is beyond the scope of this paper

1

.

1

Because instruction cache miss ratios for our benchmarks

are very low (less than 1%), even with an 8-way superscalar

design, our performance results are not greatly impacted by the

lack of more elaborate instruction fetch hardware.

Element Area

8KB ICache 0.65%

16KB Dcache (1TP) 3.8%

16KB Dcache (2DP) 5.3%

16KB Dcache (4SP) 6.3%

32KB Dcache (1TP) 6.9%

32KB Dcache (2DP) 9.8%

32KB Dcache (4SP) 11.5%

FPAU 1.3%

FPMU 1.3%

FP Reg File 0.5%

IU 0.8%

Int Reg File 0.5%

512KB L2 Cache 53.8%

Processor Remainder 25.9%

Table 3: Area Costs of Chip Functionality.

12 AU Con�guration 8 AU Con�guration

8KB ICache 8KB ICache

16KB Dcache 32KB Dcache

3 FPAUs 2 FPAUs

3 FPMUs 2 FPMUs

6 IUs 4 IUs

512KB L2 Cache 512KB L2 Cache

Table 4: Two Area-Equivalent Con�gurations Varying

in L1 Dcache Size.

4.1 Area Allocation Analysis

Table 3 shows approximate area costs of various

chip functions expressed as a percentage of the to-

tal chip area (excluding the pad area). A 4-way set-

associative 512KB L2 cache is the largest that can �t

on the die and leave enough room for the processor.

The L1 Dcache area estimates are for three multi-

porting options: a single triple-ported array (1TP),

two dual-ported arrays (2DP), and four single-ported

arrays (4SP). We use area estimates for the 2DP op-

tion only in determining design possibilities, since we

show later that this is the best design choice. The last

item includes the IFU, BIU, clock and bus distribu-

tion, and memory bu�ers and control logic.

Using these area calculations, we determine two

area-equivalent con�gurations which vary in L1

Dcache size (Table 4). For the smaller L1 Dcache

con�guration, we use the remaining area for additional

arithmetic units (AUs) in order to keep the total die

area roughly equivalent. This creates a higher mem-

ory bandwidth requirement for the con�guration with

the 16KB L1 Dcache, as the presence of more arith-

metic units increases the rate at which instructions are

consumed by the processor.



4.2 Package Pin Allocation Analysis

With a 975 pin package, we have 650 I/O pins avail-

able, after allocating a power or ground signal for ev-

ery two I/O signals. The external system bus requires

288 pins including parity bits, plus approximately

20 signals for arbitration and acknowledgement in

a shared-memory multiprocessor environment. Sub-

tracting an additional 10 signals for miscellaneous

functions, we allocate the remaining 332 pins for a

dedicated port to the next level in the memory hierar-

chy, which reduces external loading and contention for

microprocessor resources [22]. In Section 4.5, we con-

sider options for the use of this external port. First,

we consider the upper levels of the memory hierarchy.

4.3 L1 Dcache Multi-Porting Options

Figure 1 shows three options we consider for a

multi-ported L1 Dcache design. Figure 1(a) shows

a triple-ported L1 Dcache (1TP), while Figure 1(b)

shows an extension of the approach used in the Alpha

21164 microprocessor [4]: using multiple single-ported

cache arrays. In this case, we show a cache with four

single-ported arrays (4SP).

The 4SP cache has several advantages over the

1TP design. Its cycle time is lower, design simpler,

and routing less dense. Furthermore, if the L1 I and

Dcaches are the same size, the design and veri�ca-

tion of the Icache can be avoided by using one of the

single-ported Dcache arrays. However, all four ports

are consumed on a store operation in order to update

each of the arrays. In addition, the 4SP cache requires

more area than the 1TP design (Table 3).

Figure 1(c) shows a design which attempts to mit-

igate the disadvantages of the previous approaches by

employing duplicate dual-ported caches (2DP). Here,

up to four loads, two stores, or two loads and one store

can be performed in the same cycle. The 2DP cache

design is less complex and has a lower cycle time than

the 1TP design, yet requires less area and matches

port-use to application load/store requirements bet-

ter than the 4SP cache.

4.4 L2 Cache Pipelining Options

Unlike the L1 Dcache, multi-porting the L2 cache

is not a practical approach to increasing bandwidth

because of the signi�cant area overhead that would

be incurred with multi-porting such a large cache. A

pipelined L2 cache can achieve high bandwidth, but

as was noted in Section 1, a cycle time penalty may

be incurred with large pipelined caches.

With a wave-pipelined L2 cache, the cache con-

troller launches the address to the cache RAMs and

then waits a �xed number of cycles before capturing

the data. The sending of the address of one cache ac-

cess overlaps the data retrieval of the previous cache

access. (We assume in our analysis a one cycle over-

lap in all cases.) Although no cycle time penalty is

incurred for large L2 caches, the downside of this ap-

proach is its lower bandwidth, as is shown in Section 5.

To achieve high L2 cache bandwidth with minimal

cycle time impact, we consider two cache enhance-

ments: sectioning and multi-cycle pipelining (MC

pipelining). With sectioning, the cache is sliced into

two or more smaller caches, each of which handles a

fraction of the data output bits and has its own lo-

cal copy of the tag and status bits. This di�ers from

a cache using multiple subarrays [19, 21] where only

the arrays are sliced (although separate decoders are

used for each slice) in order to reduce bit and wordline

delays. However, in a set-associative cache, the data

output selector driver delay is often the largest com-

ponent of the overall delay [21]. This delay becomes

more severe as L2 cache data bus widths are increased

to accommodate higher bandwidth requirements. Sec-

tioning the cache reduces this delay by duplicating the

selector drivers and reducing the number of multiplex-

ors driven, creating a lower fanout requirement. In ad-

dition, because each data section has a local tag array,

worst case metal lengths between the two are reduced

relative to a single set of tags.

Multi-cycle pipelining involves operating the L2

cache at a fraction, in our case one-half, of the rate of

the L1 cache, analogous to wait states in main mem-

ory systems. This allows each L2 cache stage two pro-

cessor clock cycles to complete, so as not to impact

overall cycle time for caches whose delay is dominated

by one slow stage. In addition, higher bandwidth than

the wave-pipelined cache can be achieved. Thus, MC

pipelining can potentially create a better balance be-

tween bandwidth and cycle time than either pipelined

or wave-pipelined large on-chip L2 caches.

4.5 Dedicated Memory Port Options

We consider two options for use of the dedicated

memory port package pins: as an interface to an o�-

chip 4MB L3 cache, which requires that the Main

Memory Controller (MMC) be located on an ASIC at-

tached to the system bus; or as an interface to memory

SIMM modules through an on-chip MMC; in this case

a two-level cache hierarchy is implemented. While the

L3 cache approach provides a larger cache at the low-

est level of the hierarchy, the on-chip MMC design

reduces main memory latency. In addition, integrat-

ing the MMC onto the microprocessor die allows it to

operate o� the microprocessor clock rather than the
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Figure 1: L1 Dcache Multi-Porting Options: (a) 1TP, (b) 4SP, (c) 2DP.

Porting Option Cycle Time

16KB 32KB

1TP 1.97 2.28

2DP 1.92 2.21

4SP 1.86 2.16

Table 5: L1 Dcache Cycle Time for Di�erent Multi-

porting Options.

divided-down system-level clock, allowing faster state

machine transitions and �ner grain control of mem-

ory timing signals. This reduction in latency increases

bandwidth as data can be transferred out of the main

memory at a faster rate.

5 Evaluation of Alternatives

In this section, we compare the memory hierar-

chy design alternatives described in the previous sec-

tion using seven of the SPEC92 benchmarks: three

of which are integer benchmarks (li, eqntott, and

espresso), and four from the oating point suite

(spice2g6, swm256, su2cor, and tomcatv). Gee [5] has

pointed out the limitations of using SPEC92 to evalu-

ate cache behavior. However, we have chosen several

of the oating point benchmarks, which are more in-

dicative of the cache behavior of user programs [5].

5.1 L1 Dcache Multi-Porting Options

To evaluate L1 Dcache multi-porting alternatives,

we compare cycle time, average instructions per is-

sue group (which measures how well the compiler is

able to schedule instructions considering the port con-

straints), and �nally, elapsed processor time. Cycle

time results for the various options are shown in Ta-

ble 5. As expected, the 1TP con�guration has the

largest cycle time due to its use of triple-ported cells.

In general, each cache port increases cycle time by 3-

4%, which is small relative to the 15-16% cycle time

increase incurred in doubling the cache size. Thus,

adding a small number of ports may provide a perfor-

mance advantage if a considerable increase in the size

of the average instruction issue group can be obtained.

Figure 2 plots average instructions per issue group

for the three multi-porting options for both the 8 and

12 AU con�gurations. In all cases, the 2DP cache

achieves the highest instructions per issue group rat-

ings, while the next best con�guration varies from

benchmark to benchmark. The benchmarks with the

highest percentage of store instructions are li and

eqntott. Although li's performance greatly improves

with the 2DP relative to the 4SP design, eqntott im-

proves much less than several of the other benchmarks

which have fewer stores. This is because eqntott has

about half the percentage of load instructions than the

other workloads, which allows the compiler to schedule

around the port limitations of the 4SP cache.

The behavior of the three multi-porting schemes is

particularly interesting for tomcatv as the number of

arithmetic units is increased from 8 to 12. While the

average instructions per issue group increases for both

the 1TP and 2DP options, no change is observed for

the 4SP design. The single store per cycle limitation of

this scheme creates scheduling constraints that bound

the obtainable speedup.

Figure 3 plots processor elapsed time for the 4SP

and 2DP caches, normalized to that of the 1TP cache

organization for each of the benchmarks. (Figure 3(a)

is normalized to the 8 AU con�guration, and Fig-

ure 3(b) to the 12 AU con�guration.) Both the 2DP

and 4SP con�gurations execute all benchmarks faster
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than the 1TP design. For four benchmarks, the cycle

time advantage of the 4SP cache overrides the port-use

exibility of the 2DP cache. The advantage of the 2DP

con�guration when used with workloads with high L1

Dcache load and store activity is demonstrated by the

signi�cantly lower elapsed times of li and tomcatv. As

noted above, the store limitation of the 4SP cache is

a severe bottleneck for tomcatv; the relative perfor-

mance remains the same when the number of arith-

metic units is increased from 8 to 12. Performance

improves with the 2DP cache, however, as the com-

piler is less constrained by cache port limitations and

is able to take advantage of the higher parallelism af-

forded by the 12 AU con�guration.

In summary, the 2DP scheme performs slightly bet-

ter overall, and provides a considerable performance

advantage for memory intensive applications. It also

requires about 15% less area than the 4SP con�gura-

tion (Table 3). For these reasons, we consider only the

2DP L1 Dcache organization in discussing alternatives

for the remaining levels of the memory hierarchy.

5.2 L2 Cache Pipelining Options

5.2.1 Pipelined L2 Cache

As we mentioned in Section 4.4, the disadvantage of

a pipelined L2 cache is the increase in cycle time in-

curred with increasing cache size. Figure 4 plots the

cycle time of di�erent sizes of pipelined L2 caches.

The 128KB, 256KB, and 512KB caches are 4-way

set-associative, while the remainder are 3-way set-

associative. Four pipeline stages are used for both the

data and tag portions of the caches; increasing the

number of stages beyond four has little or no cycle

time bene�t, and increases cache latency. The dashed
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Figure 5: Bandwidth of Wave-Pipelined L2 Caches.

and dotted lines show the cycle times of 16KB and

32KB 2DP L1 Dcaches, respectively. The cycle times

of the 512KB and 768KB L2 caches are about twice

that of the 16KB L1 Dcache.

5.2.2 Wave-Pipelined L2 Cache

Recall that wave-pipelined caches, although they do

not adversely impact cycle time, are limited in terms

of bandwidth as cache size increases. Figure 5 plots

sustained bandwidth as a function of L2 cache size.

The measure used is bytes/cycle to separate band-

width calculations from cycle time considerations.

On every access, 64 bytes are retrieved (the block

size of the L1 caches), and the data width is 256

bits. The bandwidth of pipelined caches (included

for reference as the dashed line at the top of the �g-

ure) is 2.5 to 5.5 times greater than that of wave-

pipelined caches. While the bandwidth of pipelined

L2 caches is independent of L2 cache size, the band-

width of wave-pipelined caches drops with increasing

cache size. The greater delay of larger caches requires

the wave-pipelined cache controller to wait more pro-

cessor cycles to capture the data after launching the

address. Note also how in general the bandwidth of

wave-pipelined L2 caches decreases with decreasing L1

Dcache size. The decrease in cycle time accompanying

a decrease in L1 Dcache size in general increases the

number of cycles required for each L2 cache access.

5.2.3 MC Pipelined and Sectioned L2 Caches

For an MC pipelined L2 cache with a 256-bit data

path, the bandwidth is 16 bytes per cycle, independent
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of cache size. Although this is half the bandwidth of

a pipelined cache, the bandwidth of the MC pipelined

cache is 25-175% greater than wave-pipelined caches.

Figure 6 shows how MC pipelining and sectioning

reduce L2 cache cycle time. Pipelined caches using

4 stages, and MC pipelined caches using 2, 3, and 4

stages (with each stage operating at half the rate of

the processor) are compared. Cycle times of the two

L1 Dcaches are plotted as dashed and dotted lines. We

seek to decrease the L2 cache cycle time below these

values so as not to impact overall cycle time.

For a non-sectioned cache, the cycle times of 2

and 3-stage MC pipelined caches are 2/3 and 1/2, re-

spectively, that of the corresponding pipelined caches.

However, in some cases, sectioning alone eliminates

the L2 cache cycle time penalty. This is the case for

a 512KB L2 cache sliced into 4 sections when coupled

with a 32KB L1 Dcache. With a 16KB L1 Dcache, the

best L2 cache option is the 2-stage MC pipelined cache

sliced into 2 sections, since the sectioned pipelined L2

cache incurs a 16% cycle time penalty. The 3 and

4-stage MC pipelined caches provide no cycle time

advantage over the 2-stage option when used with a

16KB L1 Dcache, and have a higher L2 cache load

latency (due to their additional pipeline stages).

Note that the cycle time decrease levels o� when

a sectioned cache with two sections is further divided

into 4 sections. When a non-sectioned 512KB L2 cache

is sliced into two sections, the output selector delay is

reduced to the point where the array access stage now

becomes the critical path. Because sectioning is more

e�ective at reducing the output selector delay than

the array access delay, at this point further sectioning

Cache Levels L1 DCache Size Read Miss Penalty

2 16KB 34 cycles

3 16KB 61 cycles

2 32KB 30 cycles

3 32KB 56 cycles

Table 6: Read Miss Penalty of Lowest Level Cache for

Two and Three-Level Cache Con�gurations.

produces diminishing returns.

5.3 Dedicated Memory Port Options

As we described in Section 4.5, using only 2 levels of

cache allows the microprocessor pins that would be al-

located for an o�-chip L3 cache to be used to drive the

main memory DRAMs directly. Table 6 shows that for

our system con�guration this results in a large reduc-

tion in the read miss penalty of the lowest level cache

2

.

Despite this di�erence in read miss penalties, with all

benchmarks given equal weight, the 3-level cache orga-

nizations outperform the 2-level organizations by 2%

and 4% for the 8 and 12 AU con�gurations, respec-

tively. This is because the 512KB L2 cache is small

for many benchmarks resulting in substantial miss ac-

tivity, while miss ratios for the L3 cache are very small

(at most, a few percent). A signi�cantly greater per-

formance improvement (over 10%) is achieved with

the 3-level con�guration with swm256 and tomcatv,

which have the highest L1 and L2 cache miss ratios

of our benchmarks (25% and 11%, respectively, for

loads with tomcatv and the 12 AU con�guration). Pro-

grams which exhibit higher cache miss ratios than the

SPEC92 benchmarks would even more strongly favor

the 3-level con�gurations. For the two-level con�gu-

ration to outperform the three-level con�guration re-

quires L3 cache miss ratios of over 50%, based on the

values in Table 6 and an 11 cycle L3 cache hit time.

Because future denser SRAMs enable the construction

of even larger board-level caches, we expect that these

will prevail until denser process technologies enable

the construction of multi-megabyte on-chip caches.

Table 7 summarizes the combination of L1 Dcache,

L2 cache, and external memory port features that pro-

duces the best performance for each of the two con�g-

urations. In the next section, we determine the perfor-

mance improvement obtained by combining L1 Dcache

2DP multi-porting and L2 cache sectioning and MC

pipelining enhancements.

2

The increase in read miss penalty with the 16KB L1 Dcache

shown in Table 6 occurs because the faster processor clock ne-

cessitates further dividing down the system clock.



Con�guration L1 Cache L2 Cache Memory Port Use

Arrays Ports/Array Sections Stages Clk Freq

12 AUs, 16KB L1 Dcache 2 2 2 2 1/2 L3 Cache

8 AUs, 32KB L1 Dcache 2 2 4 4 1 L3 Cache

Table 7: Final Cache Hierarchy Con�gurations.
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Figure 7: Elapsed Time of Enhanced and 1TP-WP Cache Organizations Normalized to the Baseline Cache

Con�guration with (a) 8 AUs and (b) 12 AUs.

5.4 Performance Improvement With

Combined Cache Enhancements

Figure 7 quanti�es the performance improvements

obtained with both the L1 and L2 cache enhance-

ments. Elapsed times normalized to those of a base-

line 1TP L1, non-sectioned pipelined L2 cache orga-

nization are plotted for the enhanced cache organiza-

tions and for comparison purposes, a 1TP L1, non-

sectioned wave-pipelined L2 cache organization (1TP-

WP). (Figure 7(a) is normalized to the 8 AU con�g-

uration, and Figure 7(b) to the 12 AU con�guration.)

A three-level cache organization is used in all cases.

For the 8 AU con�guration, the enhanced cache orga-

nization executes each benchmark an average of 15%

and 59% faster than the 1TP-WP and the baseline

cache organizations, respectively. The di�erences for

the 12 AU con�guration (which uses a smaller, 16KB

L1 Dcache) are more dramatic: 30% and 81%.

For su2cor and tomcatv on the 12 AU con�guration,

the elapsed time of the wave-pipelined L2 cache orga-

nization is not much less than that of the pipelined L2

cache organization, despite the fact that the pipelined

organization has a cycle time that is almost twice

that of the wave-pipelined organization. The high

miss ratios of the 16KB L1 Dcache produce a high L2

cache bandwidth requirement, creating a performance

bottleneck for the wave-pipelined organization. The

sectioned MC pipelined L2 cache organization better

balances cycle time and bandwidth than the other

two organizations, outperforming the wave-pipelined

L2 cache organization by 69% and 55% for su2cor

and tomcatv, respectively. Thus, L1 Dcache 2DP

multi-porting combined with L2 cache sectioning and

MC pipelining produces a signi�cant performance im-

provement over conventional techniques.

6 Conclusions

Next generation, wide-issue processors present sev-

eral challenges to the memory hierarchy designer, in-

cluding providing a su�cient number of L1 Dcache

ports with minimal cycle time and load-use delay im-

pact, developing large, high bandwidth on-chip L2

caches with lower cycle times than the smaller L1

caches, and making the best use of limited package

pins. In this paper, we propose L1 Dcache and L2

cache bandwidth enhancements and evaluate them us-

ing a combination of area and pin count analysis, de-

tailed timing analysis including pipelined and multi-

ported cache cycle time evaluation, application com-

pilation targetted to the speci�c machine organiza-

tion, and execution-driven simulation. The combined



enhancements outperform conventional techniques by

over 80%. We also explore using a dedicated external

memory port for an L3 cache or a direct main mem-

ory interface, and determine that even with an on-chip

512KB L2 cache, board-level caches provide signi�cant

enough performance gains to justify their higher cost.

This will likely remain the case until microprocessor

process technology enables the construction of multi-

megabyte on-chip caches.
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