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Abstract: By the end of the decade, as VLSI integration levels continue to increase,
building a multiprocessor system on a single chip will become feasible. In this paper, we
propose to analyze the tradeoffs involved in designing such a chip, and specifically address
whether to allocate available chip area to larger caches or to large numbers of processors.
Using the dimensions of the Alpha 21064 microprocessor as a basis, we determine several
candidate configurations which vary in cache size and number of processors, and evaluate
them in terms of both processing power and cycle time. We then investigate fine tuning
the architecture in order to further improve performance, by trading off the number of
processors for a larger TLB size. Our results show that for a coarse-grain execution
environment, adding processors at the expense of cache size improves performance up
to a point. We then show that increasing TLB size at the expense of the number of
processors can further improve performance.
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1 Introduction

VLSI integration levels continue to rapidly increase, so much so that it has been predicted
that by the end of the decade, a one inch square chip with 0.25 micron technology will be
available[17]. At this level of integration, it will become possible to build a multiprocessor
system with several of today’s microprocessors on a single chip. Microprocessor designers
will have a wide design space to explore, and many tradeoffs to make between processor
architecture, cache hierarchy and TLB organization, interconnect strategies, and incor-
porating multiple processors on the chip. In this paper, we begin to address the design
of such high integration microprocessor architectures. In particular, we evaluate perfor-
mance tradeoffs in allocating chip resources to larger caches versus more processors. We
also investigate how elements of the processor architecture (in particular TLB size) affect
design decisions.

The rest of this paper is organized as follows. First we discuss the multiprocessor or-
ganization and establish performance metrics. We then calculate fixed area overheads for
I/0 logic/pads and the system bus. Next, we determine candidate system organizations



and discuss our modeling approach. We then determine processing power, cycle time, and
total system performance for each configuration. Lastly, we present our conclusions and
discuss possible future extensions to our work.

2 System Organization and Performance Metrics

The overall architecture that we consider is a shared memory multiprocessor system con-
taining n processors, each of which has a private cache. A system bus is used as the
interconnect structure between the caches and the main memory, which may consist of
several interleaved modules. With the technology predicted to be available at the end of
this decade, designers will be able to place this entire structure (for a limited number of
processors and with the exception of the main memory DRAMs), onto a single chip®.

The execution environment that we assume is a coarse-grain, throughput-oriented,
parallel environment. The system might be for example a server running Unix with
many X terminals connected to it. Each of these X sessions runs separate user tasks
and applications, and shares primarily operating system code and data structures and
common application code. Thus the amount of shared data is minimal, and the vast
majority of the time the processors are accessing private data.

The performance metric that we wish to maximize is total system performance which
can be expressed as processing power/cycle time where processing power is defined by
n/(CPI - instr). Here n is the number of processors in the system, CPI is the cycles
per instruction rating for each processor, and #nstr is the number of instructions executed
in the running of the program. This last parameter is a function of the instruction set
architecture. Since this paper does not focus on instruction set architecture design issues,
we eliminate this term and thus obtain n/CPI for processing power.

3 Tradeoffs Between Cache Size and Number of
Processors and the Effect of TLB Size

Having established the general system organization, execution model, and performance
evaluation criteria, we now examine some of the tradeoffs involved in designing single
chip multiprocessors. We consider the problem of whether to use the available chip area
for enlarging the caches or for adding additional processors. We focus on these two
architectural parameters (the size of the caches and the number of processors) since they
have such a great impact on performance. Once we have made area tradeoffs for these
parameters and have a region of the design space narrowed down, we can then address
parameters which have less impact on performance. In this paper, we address the size of
the TLB.

The physical aspects of our study are based on the dimensions of the Alpha 21064
microprocessor[5, 13]. We scale the processor core and cache dimensions of the 21064
to 0.25 micron technology, and assume the use of a one inch square die. We then use
this data to obtain candidate multiprocessor configurations which vary in cache size and
number of processors.

1An experimental version of such a chip has already been designed and fabricated in 0.30 micron
technology[10].



3.1 Bus and I/O Overhead

We use an aggressive bus design, consisting of separate 64-bit wide address and 128-bit
wide data buses distributed to all the caches as well as the main memory controller on
the chip. Based on previous implementations of bus-based multiprocessors, an aggressive
bus design is necessary for a moderately large (8-16) number of processors. We allocate
roughly 20% of the chip area for the bus, external interface, and I/O pads. Based on
empirical measurements, approximately 17% of the area of the 21064 is allocated to
external control and I/O pads. Due to the large number of I/O and power signals expected
on our chip, and because I/O pad size may not scale as well as transistor sizes, we assume
the same overhead on our chip. To determine the area consumed by the bus, we scale
the dimensions of the second layer of metal (Metal 2) on the Alpha chip, since this is the
wider of two metal layers used for general signal distribution. (The third layer is primarily
used for power and clock distribution.) Metal 2 has a width of 0.75um and a pitch of
2.625pm. We consider two means of scaling for comparison purposes: ideal scaling and
V/S. scaling where S, is the scaling factor. The latter has been suggested in [1] in order
to reduce propagation delays as technology is scaled. In our case, since we are scaling a
0.75 micron technology to 0.25 microns, S, has a value of 3. We assume an additional 15
signals beyond those for address and data for arbitration, signaling of operations on the
bus, and acknowledgements. Thus our total bus signal count is 207. We obtain for the
width of the bus using ideal scaling (0.75-107% 4 2.625-1073)-207/3 = 0.23mm and using
/S scaling (0.75 - 1072 + 2.625 - 1072) - 207/+/3 = 0.40mm.

Assuming the bus runs almost the entire length (20mm) of the chip, it consumes 0.7%
and 1.2% of the chip area with ideal and +/S. scaling, respectively. Scaling the metal
dimensions for the bus by /S, instead of ideally has a negligible impact on the overall
chip area. Adding the area for I/O gives us 17.7% and 18.2% for ideal and 4/S. scaling,
respectively. In order to account for additional area lost due to the routing problems
inherent in such a wide bus, we boost our overall figure for the area consumed by the I/0
interface and bus to 20%.

3.2 Candidate Configurations

To determine candidate configurations, we proceed as follows. First, we empirically de-
termine the area of the caches (16kB total) and processor core (the chip minus the caches
and I/O pads) of the 21064. We scale (using ideal scaling) these dimensions to 0.25 mi-
cron technology, and then determine the fraction of a 0.25 micron, one inch square die
consumed by the scaled processor and caches. The area of 32kB, 64kB, and larger caches
is determined by using multiples of the base 16kB cache area. This i1s to a first order,
consistent with area models described in [14, 15], especially for large caches where the
size of the data area dominates the overall size.

We combine the dimensions of these caches with the dimension of the processor core to
construct candidate processor/cache organizations. We then determine how many of these
can be placed on the chip. For smaller configurations, we determine this by dividing 80%
of the total chip area by the processor/cache area. As the number of processors grows, we
assume more area overhead (a few additional percent of the total chip area) is required
for routing.

Based on this method, we obtain the candidate system organizations shown in Table
1. These provide a good range of design points for an initial analysis. Once we have
analyzed these design points, we can make further refinements to arrive at alternative
organizations.



Configuration | Number of Processors | Cache Size
1 7 256kB
2 11 128kB
3 16 64kB
4 20 32kB

Table 1: Candidate System Organizations

Cache Size | Miss Rate | Misses Causing Displacements | Displacement Buffer Hits
32kB 2.05% 23.44% 3.96%
64kB 1.33% 27.54% 3.92%
128kB 0.89% 30.85% 4.37%
256kB 0.55% 33.91% 3.74%

Table 2: Cache Simulation Results

We choose to bound the cache sizes at 256kB and 32kB. For our benchmarks, caches
larger than 256kB produce diminishing returns in terms of miss rate; further increasing
the size of the cache beyond 256kB at the expense of the number of processors clearly
results in worse overall performance. Caches of size less than 32kB on the other hand,
have high enough miss rates to saturate even a very wide data bus. Even the 256kB
and 32kB caches are suspect in terms of these criteria; we include them in order to avoid
inadvertently excluding the optimum configuration.

3.3 Modeling Approach

Due to our execution model assumptions, we use uniprocessor trace driven simulation to
analyze the various cache options, and apply the results to our multiprocessor analyti-
cal models. The traces we use are of the SPEC KENBUS program running on an 1486
processor under the MACH 3.0 operating system. These traces are from the BYU Ad-
dress Collection Hardware (BACH) system[8] and include both user and operating system
references. Our trace length is approximately 80 million references, and we ignore cold
start effects. The results of our simulations are given in Table 2. Besides miss rate, we
also gather information on the fraction of misses that cause a dirty block to be displaced
from the cache, and the fraction of cache misses that hit in the four entry displacement
buffer. This buffer operates as a FIFO and holds recently displaced blocks to reduce
thrashing effects in our direct-mapped caches as described in [11]; our hit rate results are
in agreement with this previous work.

The results from Table 2 are used as inputs to analytical models of our candidate
organizations. We use Mean-Value-Analysis (MVA), an analytical modeling technique
which has been used extensively to study shared memory multiprocessors[4, 18, 19]. Our
model assumptions are given in Table 3. CPlL,.,. is the CPI rate of the processor with no
cache misses. Our block size choice has been shown in [6] to be a reasonable choice for
the KENBUS benchmark for caches in our range. The bus penalties assume that a “dead
cycle” is needed to switch bus masters to avoid driver clashing.



Parameter Value

CPL,oc 1.5

% loads 25%

% stores 10%
Block size 32 bytes
Disp buffer hit penalty | 2 cycles
Bus read penalty 2 cycles

Bus writeback penalty | 3 cycles
Bus data return penalty | 3 cycles
Bus arbitration time 2 cycles

Memory access time 15 cycles

Table 3: MVA Model Parameters
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Figure 1: Average Bus Waiting Time and Processing Power for Candidate Configurations

3.4 Processing Power Results

Figure 1 shows the average bus waiting time and processing power for each of the candi-
date organizations. The larger cache (fewer processor) configurations as expected display
very low waiting times, while the waiting time increases quickly for the smaller cache
configurations. Thus we conclude that up to a point, adding processors at the expense of
cache size is a good tradeoff. We see however that the 20 processor, 32kB cache configu-
ration is clearly not a good design point to consider. The drop in processing power from
the 16 processor, 64kB configuration is due to system bus saturation, and the resulting
increase in waiting time cancels out the benefits received from adding processors.

The 16 processor, 64kB design point is suspect as well, although it provides the highest
processing power. The increase in bus waiting time in this configuration as compared to
the 11 processor, 128kB configuration suggests that this design point may not be optimal.
It may be beneficial to reduce the number of processors in order to alter the processor
organization. One option would be to increase the size of each processor’s TLB while
reducing the number of processors by an amount commensurate with the resulting area
increase. This would result in fewer cache misses and a subsequent reduction in bus
waiting time. In order to assess this impact, we use the results of area models developed



Cache Size | Miss Rate | Misses Causing Displacements | Displacement Buffer Hits
32kB 1.72% 24.24% 4.00%
64kB 1.12% 29.50% 4.34%
128kB 0.77% 33.27% 4.68%
256kB 0.49% 35.90% 3.94%

Table 4: Results of Cache Simulations with 512 Entry TLB

for TLBs and caches[14, 15] to assess the relative area of a 32 entry TLB (used in the 486
from which the traces were gathered) and a 64kB cache. From [15], these area estimates
are roughly 2500 and 375000 rbes (register bit equivalents), respectively. A 512 entry TLB
costs roughly 24000 rbes. Thus, the cost incurred in increasing the TLB from 32 entries
to 512 entries is roughly 21500 rbes per processor. For a 15 processor configuration, this
amounts to 322500 rbe or less than the cost of one 64kB cache. Thus, we see that by
removing one processor and its cache, we can increase the TLB in each of the remaining
15 processors to 512 entries. This should reduce the amount of TLB misses by over 50%
from that of a 32 entry TLBJ[3].

In order to get a lower bound on the impact of this architectural change on perfor-
mance, we use a technique called trace modification to conservatively modify the trace to
emulate a trace taken from a processor with a 512 entry TLB. To accomplish this, we
use a program that marks the TLB misses in the trace[7]. We then make a conservative
estimate as to the number of memory references in the TLB miss code. Our estimate is
35 references, a low estimate based on results of Mach TLB miss behavior[16]. We then
insert a filtering program into our simulator that causes the simulator to ignore every
other TLB miss in the trace. If a second TLB miss is encountered within 35 references of
a filtered TLB miss, we filter it out as well since it results from the first TLB miss. Table
4 shows the results with the larger TLB. Comparing this table with Table 2, we see that
for each cache configuration, the miss rate is lower with the larger TLB as expected.

We now use this data to evaluate the impact the larger TLB has on the bus waiting
time. We look at various design points for the 64kB cache, with the number of processors
ranging from 12 to 16. The larger TLB has a significant effect on the average bus waiting
time, reducing it by 17-19%. When viewed from the perspective of equivalent multipro-
cessor configurations, that is, the number of processors with the larger TLB is one less
than that with the 32 entry TLB, the impact is even greater, around a 28% reduction.
Looking at these equivalent configurations in terms of processing power (Figure 2), we see
that for the smaller configurations, those with the smaller TLB may still provide the best
design points. However, we see that the 14 processor, 512 entry TLB and the 15 processor,
32 entry TLB configurations have roughly equivalent performance, and the 15 processor,
512 entry TLB configuration outperforms the 16 processor, 32 entry TLB configuration.
Because we have obtained a lower bound on the increase in performance due to enlarging
the TLB, the difference in performance may actually be larger than that shown.

3.5 Cycle Time Results

To examine cache access times, we make use of the model developed in [20] which is
based on a 0.8 micron, 5V process. We use a voltage of 3.3V for our analysis, and
scale the capacitance, resistance, and current parameters of this model to produce a 0.25
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Figure 2: Processing Power for Equivalent 64kB Configurations

8

| 45A |
/('é\ = -
E 6+ i
g : 8SA |
% I 16 SA |
3 4r |
< | |

f ]

8kB 16kB 32kB 64kB 128kB 256kB
Cache Size

Figure 3: Cache Access Times for Various Sizes and Geometries

micron technology model?. We examine 4 (the same as the 21064), 8, and 16 subarray
(SA) caches. Our results (Figure 3) indicate that caches larger than 64kB require more
aggressive geometric design to achieve reasonable cycle times. This may result in more
area overhead and less layout flexibility.

We now examine the effects of the number of processor nodes on bus performance.
We assume equal space loading and since the total propagation delay is longer than
the driver rise time, we use transmission line analysis. The loaded propagation delay of a

transmission line is[2] To-4/1 + Cp/Co where Ty and C, are the unloaded transmission line

propagation delay and capacitance, respectively, and Cp is the distributed capacitance
due to each processor node. Cp can be expressed as Cy - s/l where Cy is the node
capacitance, sis the number of line segments (one less than the number of nodes), and [
is the length of the bus (20mm in our example). Following [2], we use Cy = 5fF, Cy =
2pF/cm, and Ty = 0.067ns/cm, and obtain the results shown in Figure 4. We conclude
that shared buses can still achieve good cycle time performance for moderate numbers of
processors. However, to achieve aggressive clock rates with large numbers of processors,

2We note that these models are highly dependent on technology parameters, and thus our method
should only be used to study general trends and not exact cycle time analysis.
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Figure 4: Bus Propagation Delay Variation with Number of Processors

Configuration PP Cycle Time Total System Performance
(Proc, Cache, TLB) Cache Bus Cache Bus
Constrained | Constrained | Constrained | Constrained
7, 256kB, 32 entry | 1.00 1.00 1.00 1.00 1.00
11, 128kB, 32 entry | 1.47 0.80 1.28 1.84 1.15
15, 64kB, 512 entry | 1.85 0.68 1.52 2.72 1.22
16, 64kB, 32 entry | 1.84 0.68 1.57 2.7 1.17

Table 5: Performance Data for Candidate Configurations

interconnect alternatives such as ring-based schemes|9] need to be considered.

3.6 Overall Performance

We now bring together the processing power and cycle time results and compare the overall
performance of our candidate configurations. We use the 7 processor, 256kB configuration
as our base system (and thus assign it unity performance values), and calculate processing
power, cycle time, and total system performance for the other configurations relative to
this organization. We look at two different cycle time scenarios: a cache constrained cycle
time chip, and a bus constrained cycle time chip. In the former, the cache access time
determines the cycle time of the chip; in the latter, the bus propagation delay determines
this.

Table 5 shows the relative processing power (PP), cycle time, and total system perfor-
mance for each of the candidate configurations. Due to their superior processing power
performance, the 15 and 16 processor configurations achieve the best overall performance
in both the cache and bus constrained cases. The 15 processor configuration is overall
the best choice, as it provides the highest processing power, and an equal or faster cycle
time than the 16 processor configuration. We note, however, that for a bus constrained
cycle time chip, the performance of the 11 processor configuration closely matches that of
the 15 and 16 processor configurations. For applications that consume more of the cache,
this configuration may be the best choice. If an even number of processors (or a power
of two) is more beneficial for the application software, then the number of processors can
be reduced accordingly. This may require the designer to allocate more area to TLBs,
interconnect, or other resources.



4 Conclusions and Future Work

The complexity of microprocessor design is growing rapidly as VLSI integration levels
continue to increase. With the technology expected to be available at the end of this
decade, microprocessor architects will be faced with a wide range of design decisions.
An analysis of tradeoffs between the size of the caches and the number of processors in
the system was presented. Our results show that trading off cache size for the number
of processors improves performance up to the point of bus saturation. At this point,
alternatives such as reducing the number of processors in order to increase TLB size,
need to be considered in order to arrive at the optimal design point.

This work can be extended in several different ways. First of all, we assumed an in-
dependent execution model, whereby processors are accessing private code and data and
negligible sharing takes place. We also looked at a single benchmark program. Examining
the effect of a wider range of execution models (e.g., fine-grain parallel processing) and
application programs on the design choices made would be insightful. Secondly, an exam-
ination of the sensitivity of our results to our model parameters (such as memory access
time) should be made. Lastly, we only considered a single level of cache hierarchy. Multi-
level cache hierarchies can be examined as well. The incorporation of multiple processors
on a chip allows the designer to consider other cache options, such as private first level
caches and multiported second level caches shared by two or more processors. Such an
arrangement may make more efficient use of the available chip area than a conventional
organization, and thus should be evaluated as well.
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