
Tradeo�s in the Design of Single ChipMultiprocessorsDavid H. Albonesi and Israel KorenDepartment of Electrical and Computer Engineering, University of Massachusetts,Amherst, MA 01003, USAAbstract: By the end of the decade, as VLSI integration levels continue to increase,building a multiprocessor system on a single chip will become feasible. In this paper, wepropose to analyze the tradeo�s involved in designing such a chip, and speci�cally addresswhether to allocate available chip area to larger caches or to large numbers of processors.Using the dimensions of the Alpha 21064 microprocessor as a basis, we determine severalcandidate con�gurations which vary in cache size and number of processors, and evaluatethem in terms of both processing power and cycle time. We then investigate �ne tuningthe architecture in order to further improve performance, by trading o� the number ofprocessors for a larger TLB size. Our results show that for a coarse-grain executionenvironment, adding processors at the expense of cache size improves performance upto a point. We then show that increasing TLB size at the expense of the number ofprocessors can further improve performance.Keyword Codes: C.1.2; C.4; C.5.4Keywords: Multiprocessors; Performance of Systems; VLSI Systems1 IntroductionVLSI integration levels continue to rapidly increase, so much so that it has been predictedthat by the end of the decade, a one inch square chip with 0.25 micron technology will beavailable[17]. At this level of integration, it will become possible to build a multiprocessorsystem with several of today's microprocessors on a single chip. Microprocessor designerswill have a wide design space to explore, and many tradeo�s to make between processorarchitecture, cache hierarchy and TLB organization, interconnect strategies, and incor-porating multiple processors on the chip. In this paper, we begin to address the designof such high integration microprocessor architectures. In particular, we evaluate perfor-mance tradeo�s in allocating chip resources to larger caches versus more processors. Wealso investigate how elements of the processor architecture (in particular TLB size) a�ectdesign decisions.The rest of this paper is organized as follows. First we discuss the multiprocessor or-ganization and establish performance metrics. We then calculate �xed area overheads forI/O logic/pads and the system bus. Next, we determine candidate system organizations



and discuss our modeling approach. We then determine processing power, cycle time, andtotal system performance for each con�guration. Lastly, we present our conclusions anddiscuss possible future extensions to our work.2 System Organization and Performance MetricsThe overall architecture that we consider is a shared memory multiprocessor system con-taining n processors, each of which has a private cache. A system bus is used as theinterconnect structure between the caches and the main memory, which may consist ofseveral interleaved modules. With the technology predicted to be available at the end ofthis decade, designers will be able to place this entire structure (for a limited number ofprocessors and with the exception of the main memory DRAMs), onto a single chip1.The execution environment that we assume is a coarse-grain, throughput-oriented,parallel environment. The system might be for example a server running Unix withmany X terminals connected to it. Each of these X sessions runs separate user tasksand applications, and shares primarily operating system code and data structures andcommon application code. Thus the amount of shared data is minimal, and the vastmajority of the time the processors are accessing private data.The performance metric that we wish to maximize is total system performance whichcan be expressed as processing power/cycle time where processing power is de�ned byn=(CPI � instr). Here n is the number of processors in the system, CPI is the cyclesper instruction rating for each processor, and instr is the number of instructions executedin the running of the program. This last parameter is a function of the instruction setarchitecture. Since this paper does not focus on instruction set architecture design issues,we eliminate this term and thus obtain n/CPI for processing power.3 Tradeo�s Between Cache Size and Number ofProcessors and the E�ect of TLB SizeHaving established the general system organization, execution model, and performanceevaluation criteria, we now examine some of the tradeo�s involved in designing singlechip multiprocessors. We consider the problem of whether to use the available chip areafor enlarging the caches or for adding additional processors. We focus on these twoarchitectural parameters (the size of the caches and the number of processors) since theyhave such a great impact on performance. Once we have made area tradeo�s for theseparameters and have a region of the design space narrowed down, we can then addressparameters which have less impact on performance. In this paper, we address the size ofthe TLB.The physical aspects of our study are based on the dimensions of the Alpha 21064microprocessor[5, 13]. We scale the processor core and cache dimensions of the 21064to 0.25 micron technology, and assume the use of a one inch square die. We then usethis data to obtain candidate multiprocessor con�gurations which vary in cache size andnumber of processors.1An experimental version of such a chip has already been designed and fabricated in 0.30 microntechnology[10].



3.1 Bus and I/O OverheadWe use an aggressive bus design, consisting of separate 64-bit wide address and 128-bitwide data buses distributed to all the caches as well as the main memory controller onthe chip. Based on previous implementations of bus-based multiprocessors, an aggressivebus design is necessary for a moderately large (8-16) number of processors. We allocateroughly 20% of the chip area for the bus, external interface, and I/O pads. Based onempirical measurements, approximately 17% of the area of the 21064 is allocated toexternal control and I/O pads. Due to the large number of I/O and power signals expectedon our chip, and because I/O pad size may not scale as well as transistor sizes, we assumethe same overhead on our chip. To determine the area consumed by the bus, we scalethe dimensions of the second layer of metal (Metal 2) on the Alpha chip, since this is thewider of two metal layers used for general signal distribution. (The third layer is primarilyused for power and clock distribution.) Metal 2 has a width of 0.75�m and a pitch of2.625�m. We consider two means of scaling for comparison purposes: ideal scaling andpSc scaling where Sc is the scaling factor. The latter has been suggested in [1] in orderto reduce propagation delays as technology is scaled. In our case, since we are scaling a0.75 micron technology to 0.25 microns, Sc has a value of 3. We assume an additional 15signals beyond those for address and data for arbitration, signaling of operations on thebus, and acknowledgements. Thus our total bus signal count is 207. We obtain for thewidth of the bus using ideal scaling (0:75 �10�3+2:625 �10�3) �207=3 = 0:23mm and usingpSc scaling (0:75 � 10�3 + 2:625 � 10�3) � 207=p3 = 0:40mm.Assuming the bus runs almost the entire length (20mm) of the chip, it consumes 0.7%and 1.2% of the chip area with ideal and pSc scaling, respectively. Scaling the metaldimensions for the bus by pSc instead of ideally has a negligible impact on the overallchip area. Adding the area for I/O gives us 17.7% and 18.2% for ideal and pSc scaling,respectively. In order to account for additional area lost due to the routing problemsinherent in such a wide bus, we boost our overall �gure for the area consumed by the I/Ointerface and bus to 20%.3.2 Candidate Con�gurationsTo determine candidate con�gurations, we proceed as follows. First, we empirically de-termine the area of the caches (16kB total) and processor core (the chip minus the cachesand I/O pads) of the 21064. We scale (using ideal scaling) these dimensions to 0.25 mi-cron technology, and then determine the fraction of a 0.25 micron, one inch square dieconsumed by the scaled processor and caches. The area of 32kB, 64kB, and larger cachesis determined by using multiples of the base 16kB cache area. This is to a �rst order,consistent with area models described in [14, 15], especially for large caches where thesize of the data area dominates the overall size.We combine the dimensions of these caches with the dimension of the processor core toconstruct candidate processor/cache organizations. We then determine how many of thesecan be placed on the chip. For smaller con�gurations, we determine this by dividing 80%of the total chip area by the processor/cache area. As the number of processors grows, weassume more area overhead (a few additional percent of the total chip area) is requiredfor routing.Based on this method, we obtain the candidate system organizations shown in Table1. These provide a good range of design points for an initial analysis. Once we haveanalyzed these design points, we can make further re�nements to arrive at alternativeorganizations.



Con�guration Number of Processors Cache Size1 7 256kB2 11 128kB3 16 64kB4 20 32kBTable 1: Candidate System OrganizationsCache Size Miss Rate Misses Causing Displacements Displacement Bu�er Hits32kB 2.05% 23.44% 3.96%64kB 1.33% 27.54% 3.92%128kB 0.89% 30.85% 4.37%256kB 0.55% 33.91% 3.74%Table 2: Cache Simulation ResultsWe choose to bound the cache sizes at 256kB and 32kB. For our benchmarks, cacheslarger than 256kB produce diminishing returns in terms of miss rate; further increasingthe size of the cache beyond 256kB at the expense of the number of processors clearlyresults in worse overall performance. Caches of size less than 32kB on the other hand,have high enough miss rates to saturate even a very wide data bus. Even the 256kBand 32kB caches are suspect in terms of these criteria; we include them in order to avoidinadvertently excluding the optimum con�guration.3.3 Modeling ApproachDue to our execution model assumptions, we use uniprocessor trace driven simulation toanalyze the various cache options, and apply the results to our multiprocessor analyti-cal models. The traces we use are of the SPEC KENBUS program running on an i486processor under the MACH 3.0 operating system. These traces are from the BYU Ad-dress Collection Hardware (BACH) system[8] and include both user and operating systemreferences. Our trace length is approximately 80 million references, and we ignore coldstart e�ects. The results of our simulations are given in Table 2. Besides miss rate, wealso gather information on the fraction of misses that cause a dirty block to be displacedfrom the cache, and the fraction of cache misses that hit in the four entry displacementbu�er. This bu�er operates as a FIFO and holds recently displaced blocks to reducethrashing e�ects in our direct-mapped caches as described in [11]; our hit rate results arein agreement with this previous work.The results from Table 2 are used as inputs to analytical models of our candidateorganizations. We use Mean-Value-Analysis (MVA), an analytical modeling techniquewhich has been used extensively to study shared memory multiprocessors[4, 18, 19]. Ourmodel assumptions are given in Table 3. CPIproc is the CPI rate of the processor with nocache misses. Our block size choice has been shown in [6] to be a reasonable choice forthe KENBUS benchmark for caches in our range. The bus penalties assume that a \deadcycle" is needed to switch bus masters to avoid driver clashing.



Parameter ValueCPIproc 1.5% loads 25%% stores 10%Block size 32 bytesDisp bu�er hit penalty 2 cyclesBus read penalty 2 cyclesBus writeback penalty 3 cyclesBus data return penalty 3 cyclesBus arbitration time 2 cyclesMemory access time 15 cyclesTable 3: MVA Model Parameters
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Figure 1: Average Bus Waiting Time and Processing Power for Candidate Con�gurations3.4 Processing Power ResultsFigure 1 shows the average bus waiting time and processing power for each of the candi-date organizations. The larger cache (fewer processor) con�gurations as expected displayvery low waiting times, while the waiting time increases quickly for the smaller cachecon�gurations. Thus we conclude that up to a point, adding processors at the expense ofcache size is a good tradeo�. We see however that the 20 processor, 32kB cache con�gu-ration is clearly not a good design point to consider. The drop in processing power fromthe 16 processor, 64kB con�guration is due to system bus saturation, and the resultingincrease in waiting time cancels out the bene�ts received from adding processors.The 16 processor, 64kB design point is suspect as well, although it provides the highestprocessing power. The increase in bus waiting time in this con�guration as compared tothe 11 processor, 128kB con�guration suggests that this design point may not be optimal.It may be bene�cial to reduce the number of processors in order to alter the processororganization. One option would be to increase the size of each processor's TLB whilereducing the number of processors by an amount commensurate with the resulting areaincrease. This would result in fewer cache misses and a subsequent reduction in buswaiting time. In order to assess this impact, we use the results of area models developed



Cache Size Miss Rate Misses Causing Displacements Displacement Bu�er Hits32kB 1.72% 24.24% 4.00%64kB 1.12% 29.50% 4.34%128kB 0.77% 33.27% 4.68%256kB 0.49% 35.90% 3.94%Table 4: Results of Cache Simulations with 512 Entry TLBfor TLBs and caches[14, 15] to assess the relative area of a 32 entry TLB (used in the i486from which the traces were gathered) and a 64kB cache. From [15], these area estimatesare roughly 2500 and 375000 rbes (register bit equivalents), respectively. A 512 entry TLBcosts roughly 24000 rbes. Thus, the cost incurred in increasing the TLB from 32 entriesto 512 entries is roughly 21500 rbes per processor. For a 15 processor con�guration, thisamounts to 322500 rbe or less than the cost of one 64kB cache. Thus, we see that byremoving one processor and its cache, we can increase the TLB in each of the remaining15 processors to 512 entries. This should reduce the amount of TLB misses by over 50%from that of a 32 entry TLB[3].In order to get a lower bound on the impact of this architectural change on perfor-mance, we use a technique called trace modi�cation to conservatively modify the trace toemulate a trace taken from a processor with a 512 entry TLB. To accomplish this, weuse a program that marks the TLB misses in the trace[7]. We then make a conservativeestimate as to the number of memory references in the TLB miss code. Our estimate is35 references, a low estimate based on results of Mach TLB miss behavior[16]. We theninsert a �ltering program into our simulator that causes the simulator to ignore everyother TLB miss in the trace. If a second TLB miss is encountered within 35 references ofa �ltered TLB miss, we �lter it out as well since it results from the �rst TLB miss. Table4 shows the results with the larger TLB. Comparing this table with Table 2, we see thatfor each cache con�guration, the miss rate is lower with the larger TLB as expected.We now use this data to evaluate the impact the larger TLB has on the bus waitingtime. We look at various design points for the 64kB cache, with the number of processorsranging from 12 to 16. The larger TLB has a signi�cant e�ect on the average bus waitingtime, reducing it by 17-19%. When viewed from the perspective of equivalent multipro-cessor con�gurations, that is, the number of processors with the larger TLB is one lessthan that with the 32 entry TLB, the impact is even greater, around a 28% reduction.Looking at these equivalent con�gurations in terms of processing power (Figure 2), we seethat for the smaller con�gurations, those with the smaller TLB may still provide the bestdesign points. However, we see that the 14 processor, 512 entry TLB and the 15 processor,32 entry TLB con�gurations have roughly equivalent performance, and the 15 processor,512 entry TLB con�guration outperforms the 16 processor, 32 entry TLB con�guration.Because we have obtained a lower bound on the increase in performance due to enlargingthe TLB, the di�erence in performance may actually be larger than that shown.3.5 Cycle Time ResultsTo examine cache access times, we make use of the model developed in [20] which isbased on a 0.8 micron, 5V process. We use a voltage of 3.3V for our analysis, andscale the capacitance, resistance, and current parameters of this model to produce a 0.25
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Figure 2: Processing Power for Equivalent 64kB Con�gurations
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Figure 3: Cache Access Times for Various Sizes and Geometriesmicron technology model2. We examine 4 (the same as the 21064), 8, and 16 subarray(SA) caches. Our results (Figure 3) indicate that caches larger than 64kB require moreaggressive geometric design to achieve reasonable cycle times. This may result in morearea overhead and less layout 
exibility.We now examine the e�ects of the number of processor nodes on bus performance.We assume equal space loading and since the total propagation delay is longer thanthe driver rise time, we use transmission line analysis. The loaded propagation delay of atransmission line is[2] T0�q1 + CD=C0 where T0 and C0 are the unloaded transmission linepropagation delay and capacitance, respectively, and CD is the distributed capacitancedue to each processor node. CD can be expressed as CN � s=l where CN is the nodecapacitance, s is the number of line segments (one less than the number of nodes), and lis the length of the bus (20mm in our example). Following [2], we use CN = 5fF, C0 =2pF/cm, and T0 = 0.067ns/cm, and obtain the results shown in Figure 4. We concludethat shared buses can still achieve good cycle time performance for moderate numbers ofprocessors. However, to achieve aggressive clock rates with large numbers of processors,2We note that these models are highly dependent on technology parameters, and thus our methodshould only be used to study general trends and not exact cycle time analysis.
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Figure 4: Bus Propagation Delay Variation with Number of ProcessorsCon�guration PP Cycle Time Total System Performance(Proc, Cache, TLB) Cache Bus Cache BusConstrained Constrained Constrained Constrained7, 256kB, 32 entry 1.00 1.00 1.00 1.00 1.0011, 128kB, 32 entry 1.47 0.80 1.28 1.84 1.1515, 64kB, 512 entry 1.85 0.68 1.52 2.72 1.2216, 64kB, 32 entry 1.84 0.68 1.57 2.71 1.17Table 5: Performance Data for Candidate Con�gurationsinterconnect alternatives such as ring-based schemes[9] need to be considered.3.6 Overall PerformanceWe now bring together the processing power and cycle time results and compare the overallperformance of our candidate con�gurations. We use the 7 processor, 256kB con�gurationas our base system (and thus assign it unity performance values), and calculate processingpower, cycle time, and total system performance for the other con�gurations relative tothis organization. We look at two di�erent cycle time scenarios: a cache constrained cycletime chip, and a bus constrained cycle time chip. In the former, the cache access timedetermines the cycle time of the chip; in the latter, the bus propagation delay determinesthis.Table 5 shows the relative processing power (PP), cycle time, and total system perfor-mance for each of the candidate con�gurations. Due to their superior processing powerperformance, the 15 and 16 processor con�gurations achieve the best overall performancein both the cache and bus constrained cases. The 15 processor con�guration is overallthe best choice, as it provides the highest processing power, and an equal or faster cycletime than the 16 processor con�guration. We note, however, that for a bus constrainedcycle time chip, the performance of the 11 processor con�guration closely matches that ofthe 15 and 16 processor con�gurations. For applications that consume more of the cache,this con�guration may be the best choice. If an even number of processors (or a powerof two) is more bene�cial for the application software, then the number of processors canbe reduced accordingly. This may require the designer to allocate more area to TLBs,interconnect, or other resources.



4 Conclusions and Future WorkThe complexity of microprocessor design is growing rapidly as VLSI integration levelscontinue to increase. With the technology expected to be available at the end of thisdecade, microprocessor architects will be faced with a wide range of design decisions.An analysis of tradeo�s between the size of the caches and the number of processors inthe system was presented. Our results show that trading o� cache size for the numberof processors improves performance up to the point of bus saturation. At this point,alternatives such as reducing the number of processors in order to increase TLB size,need to be considered in order to arrive at the optimal design point.This work can be extended in several di�erent ways. First of all, we assumed an in-dependent execution model, whereby processors are accessing private code and data andnegligible sharing takes place. We also looked at a single benchmark program. Examiningthe e�ect of a wider range of execution models (e.g., �ne-grain parallel processing) andapplication programs on the design choices made would be insightful. Secondly, an exam-ination of the sensitivity of our results to our model parameters (such as memory accesstime) should be made. Lastly, we only considered a single level of cache hierarchy. Multi-level cache hierarchies can be examined as well. The incorporation of multiple processorson a chip allows the designer to consider other cache options, such as private �rst levelcaches and multiported second level caches shared by two or more processors. Such anarrangement may make more e�cient use of the available chip area than a conventionalorganization, and thus should be evaluated as well.AcknowledgementsThe authors wish to thank the members of the BACH project at Brigham Young Uni-versity, especially Kelly Flanagan, Knut Grimsrud, and Brent Nelson, for providing thetraces and the TLB miss marking tool used in this project. We also thank the anonymousreferees for their helpful comments and suggestions.References[1] H.B. Bakoglu and J.D. Meindl, \Optimal Interconnection Circuits for VLSI," IEEETransactions on Electron Devices, pp. 903-909, May 1985.[2] H.B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI, Addison-Wesley,Reading, MA, 1990.[3] J.B Chen, A. Borg, and N.P. Jouppi, \A Simulation Based Study of TLB Perfor-mance," 19th International Symposium on Computer Architecture, pp. 114-123, May1992.[4] M. Chiang and G.S. Sohi, \Evaluating Design Choices for Shared Bus Multiprocessorsin a Throughput-Oriented Environment," IEEE Transactions on Computers, pp. 297-317, March 1992.[5] D.P. Dobberpuhl, et al, \A 200MHz, 64-Bit, Dual-Issue CMOS Microprocessor," Dig-ital Technical Journal, Vol. 4, No. 4, pp. 35-50, 1992.
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