
STATS: A Framework for Microprocessor and System-Level Design

Space Exploration

David H. Albonesi Israel Koren

Dept. of Electrical Engineering Dept. of Electrical and Computer Engineering

University of Rochester University of Massachusetts

Rochester, NY 14627 Amherst, MA 01003

albonesi@ee.rochester.edu koren@ecs.umass.edu

Keywords: microprocessor design, performance eval-

uation, memory hierarchies, superscalar processors

Abstract

As microprocessor-based systems grow in complex-

ity, and the processor-memory speed gap widens fur-

ther, more emphasis needs to be placed on early de-

sign space exploration in order to produce the highest

performance systems with minimal schedule impact.

We discuss the critical issues associated with archi-

tectural evaluation of complex microprocessor-based

systems, and present a methodology for the compre-

hensive and semi-automatic evaluation of processor,

cache hierarchy, system interconnect, and main mem-

ory architectural and technological alternatives. We

discuss the implementation of the methodology, and

describe how it can be used in early design space ex-

ploration. The unique aspects of the methodology are

further illustrated through two architectural investi-

gations performed using the toolset.

1 Introduction

The design of commercial microprocessor computer

systems typically begins with the comparative evalua-

tion of architectural alternatives, resulting in architec-

tural speci�cations to guide subsequent design phases.

This procedure plays an important role in computer

architecture research as well in determining the mer-

its of new ideas. Simulation is commonly the vehicle

for architectural analysis due to its simpler resource

requirements and greater
exibility relative to proto-

typing, and (in many cases) higher accuracy relative

to analytical modeling.

Although simulation methods have produced sig-

ni�cant advances in commercial systems development

and architecture research, three architectural and

technological trends threaten to limit the applicabil-

ity of current approaches for designing next-generation

microprocessor systems. The �rst is that due to in-

creasing levels of VLSI integration fueling greater op-

portunities for architectural innovation, the complex-

ity of microprocessor design is increasing rapidly. Mi-

croprocessor designers are faced with more decisions

in the early design phase than ever before, and the

number and complexity of these decisions is growing

rapidly with each new microprocessor generation. To

wade through these various options requires that the

architect be equipped with highly-parameterized tools

that automate the analysis process while providing ex-

tensive performance feedback information to identify

bottlenecks.

The second trend is that performance is becom-

ing more dependent on system-level design due to

the widening speed gap between microprocessor and

system-level technology. As microprocessor clock

rates continue to climb, delays through microprocessor

packages, printed circuit board traces, and board-level

components constitute a larger fraction of expended

microprocessor cycles, and thus have a greater impact

on overall performance. Therefore, it is crucial for ar-

chitects to include these details in evaluating alterna-

tives in order to make informed architectural tradeo�s.

The third is the use of microprocessors in a wide

range of target systems, such as personal computers,

workstations, and multiprocessor servers, which may

vary radically in system-level organization and tech-

nology. This calls for the architect to assess the perfor-

mance of each candidate microprocessor con�guration

using a variety of system-level models to determine its

overall suitability.

The System Tradeo� Analysis Toolset (STATS)

is a highly parameterized,
exible framework for the

early design space exploration of high performance mi-

croarchitectures. STATS encompasses a number of

features not found in other analysis tools including si-

multaneous evaluation of microprocessor and system-

level design alternatives, the inclusion of microarchi-

tectural, technological, and topological considerations

within a single framework, the use of result databases

to speed design space exploration, and the enabling of

automated design space searches. The result is a
ex-

ible tool incorporating a high degree of design detail

that can be used by an interdisciplinary design team

to explore alternatives in the early, high-impact, archi-

tectural de�nition stage of the development process.

The rest of this paper describes STATS in detail in-

cluding its features, implementation, and limitations,

and demonstrates its applicability to the design of high

performance microarchitectures.

2 Related Research

Simulation-based computer architectural analysis

has been a rich area of research, most of which has

focused on the design of a single subsystem such as

the processor (e.g., [10, 12, 21]) or cache hierarchy

(e.g., [11, 18, 19, 24, 28]). Most of these studies fo-

cus on a small portion of the design space, and only

a small subset take technology and implementation

constraints into account in the analysis. Olukotun's

studies of primary cache design for a multi-chip mod-

ule (MCM) based Gallium Arsenide microprocessor

[18, 19] include a linear equation for calculating the

delay between the processor and primary cache chips

on the MCM. Jouppi and Wilton [11] use a detailed

cycle time model in addition to simulation to study

the performance of two-level on-chip caching relative

to a single level of on-chip cache. Uhlig [24] includes

on-chip implementation-related parameters such as la-

tency and bandwidth in analyzing various two-level

on-chip cache structures. Values for these parame-

ters are obtained from existing processor designs, or a

range of latency and bandwidth values is explored.

Some architectural evaluation tools and studies

have attempted to span a wider scope of machine ar-

chitecture. For example, the PowerPC performance

simulation tool [20] allows the architect to simultane-

ously evaluate processor, cache, and bus design trade-

o�s

1

. VMW [4] is an architectural simulator that

is designed to include simulator retargetability, vi-

sualization of results, and interactive control in per-

formance analysis, and encompasses multiple subsys-

tems as well. A cost/performance analysis of the de-

sign of an experimental 300MHz microprocessor using

Gallium Arsenide technology [25] includes a number

of processor hardware parameters, including instruc-

tion and data cache sizes and number of execution

pipelines.

Although these techniques have been used with

much success in evaluating architectural alternatives,

there remains the need to provide a more compre-

hensive approach that allows a wide range of options

within multiple subsystems to be simultaneously eval-

uated, and which incorporates implementation con-

straints and multiple target system designs into the

methodology. The remainder of this paper describes

how STATS builds on the ideas of this earlier work to

more completely address the trends discussed in Sec-

tion 1.

1

Interestingly, the author states that in the future, micropro-

cessor designers should work more closely up-front with system

designers to achieve better overall performance.

Application

Program

Timing

Analyzer

Processor and

Cache Analyzer

Architectural
Parameters

System

Topology

Physical

Parameters

Electrical

Parameters

Workload

Parameters

Inputs

System

Analyzer

MultiprocessorUniprocessor
PerformancePerformance

Analysis
Tools

Figure 1: High-level organization of STATS.

3 Organization of STATS

Figure 1 shows the overall STATS organization. Ar-

rows indicate the
ow of input parameters and inter-

mediate results between the various analysis tools. Re-

sults required by these tools are de�ned by input tem-

plates read by Perl scripts that direct the
ow of inputs

and results during analysis. This modular structure

facilitates expansion and customization of the toolset,

as well as automated design space exploration as will

be described later in Section 4.

The toolset currently encompasses over 800 archi-

tecture, technology, and system topology input pa-

rameters covering a wide design space. Architec-

tural parameters cover the processor, cache hierarchy,

system interconnect, and main memory subsystems

2

.

Technology parameters (incorporated within Physical

and Electrical Parameters in Figure 1) cover micropro-

cessor and system-level ASIC VLSI technology, pack-

aging at the chip, daughtercard, board, and backplane

levels, and SRAM and DRAM speci�cations. System

topology parameters describe the overall connection of

the various system components, and include a single-

board con�guration, a daughtercard-motherboard ar-

rangement, or a backplane in which multiple boards

are plugged. This
exibility allows the architect to ex-

periment with tradeo�s with di�erent types of pack-

aging, and to model a number of uniprocessor and

multiprocessor systems.

Although the prospect of specifying 800 parameters

2

The I/O subsystem is currently only modeled as one or more

ASICs loading the external bus.

Clock Multiple
Calculator

Interconnect
System

Analyzer

Memory System
Analyzer

Analyzer

Cache Delay
Analyzer

Time
Calculator

Latencies and
Transaction

Times

Processor
Cycle
Time

Latency/Trans

Off-Chip Cache

Inputs

Figure 2: Timing Analyzer organization.

may appear daunting, it forces the architect to real-

istically account for technology and implementation

constraints by consulting technology experts and/or

speci�cations early in the design process, instead of

relying on guesswork or possibly outdated values from

previous designs. The result is a more accurate as-

sessment of the performance of candidate con�gura-

tions, with fewer surprises in the later implementa-

tion phases of the design process. In addition, the

bulk of these parameters are either architectural pa-

rameters, or parameters that need only be speci�ed

initially, considerably simplifying this process.

At the heart of STATS are three main analysis

tools: the Timing Analyzer, the Processor and Cache

Analyzer, and the System Analyzer, which are de-

scribed in the following subsections.

3.1 Timing Analyzer

An important feature of STATS is the integration of

timing analysis with very detailed microarchitectural

simulation and architectural-driven benchmark com-

pilation. The Timing Analyzer (Figure 2) estimates

the cycle time of the processor and the latencies and

transaction times of the cache hierarchy, system in-

terconnect, and main memory. The O�-Chip Cache

Analyzer determines the address and data bus delays

of o�-chip SRAM arrays (both asynchronous and syn-

chronous RAMs are supported), adding in designer-

provided speci�cations for clock to output delay, setup

time, and clock skew. This information is passed to

the Cache Delay Analyzer, which evaluates the criti-

cal cycle time path delays within the cache hierarchy,

using an enhanced version of CACTI [29] to estimate

on-chip cache delays. The enhanced version models

pipelined caches by optimally inserting registers be-

tween the various major substages of the cache. The

substages include data and tag decode, data and tag

array access, data out drive, tag compare, multiplexer

drive, and data select. The last two stages are for

a set-associative cache and are replaced by a single

valid out signal stage for a direct mapped cache. Up

to 4 data stages, and 5 (direct mapped) or 6 (set as-

sociative) tag stages are allowed. For caches speci�ed

to have less than the maximum number of stages, the

model �nds the optimal register placement in terms of

minimizing cycle time. The cycle time is the largest of

the access time plus precharge time of the tag array,

access time plus precharge time of the data array, and

the register-register timing of each stage. For model-

ing multi-ported caches, the designer inputs the num-

ber of duplicate arrays per cache and ports per array

as well as a scaling factor that corresponds to the in-

crease in cell area incurred with each added port. This

factor is used to scale the size of the cell and resulting

word and bitline capacitances as well as the increased

cell capacitance due to the presence of multiple output

port transistors.

Worst case delays of the external system bus, and of

control and data paths of main memory DRAM-based

arrays are estimated by the System Interconnect An-

alyzer and the Main Memory Analyzer, respectively.

These tools and the O�-Chip Cache Analyzer use the

automated Spice-based methodology shown in Fig-

ure 3. Spice timing path models are constructed from

input parameters, including detailed technology spec-

i�cations, by the Spice Model Builder, and results are

extracted from the Spice Simulation Database if this

con�guration has been previously analyzed. Other-

wise, Spice runs are performed (both rise/fall transi-

tions using min/max transition times), the worst-case

delay determined by the Output Extractor from the

result �les, and the database updated. The use of

Spice ensures that transmission line e�ects, such as

re
ections, are properly accounted for, and the output

results are stored so that the designer can view them

graphically if desired. For buses with more than one

source (such as the system bus) the designer has the

option of analyzing all possible sources or only char-

acterizing the longest end to end path, allowing the

designer to trade o� a more comprehensive analysis

for greater analysis speed.

The Clock Multiple Calculator determines the clock

multiplier factor that the external bus and main mem-

ory subsystems will operate at by dividing the ex-

Builder
Spice Model

Found?

Spice

Inputs

Database
Update

No

Yes

Simulation
Database

Spice

Output
Extractor

Timing
Delays

Figure 3: Automated Spice-based timing tool.

ternal bus latency by the processor cycle time, and

rounding up to the next highest integer. The La-

tency/Transaction Time Calculator then determines

latencies and transaction times for the cache hierar-

chy, system interconnect, and main memory subsys-

tems. Timings for the latter two subsystems are cal-

culated in terms of the external interface clock multi-

ple. Thus, the granularity of system-level operations,

such as system bus and main memory transactions,

is impacted by the relative speeds of the on-chip and

o�-chip clocks.

3.2 Processor and Cache Analyzer

The Timing Analyzer estimates are used as inputs

to the Processor and Cache Analyzer (Figure 4), an

integrated microarchitectural compilation and simu-

lation analysis environment which like the Timing

Analyzer, uses databases to avoid duplication of ef-

fort to speed design space exploration. If the con-

�guration has been previously analyzed, then the re-

sults are returned by the Processor/Cache Simulation

Database. Otherwise, a lookup is done in the Compi-

lation Database. A compilation is required if the ap-

plication program has not been previously compiled

or the processor organization (including issue width,

number and types of functional units, latencies for

each instruction type, and producer-consumer laten-

cies) has not been previously analyzed. (Cache and

Found?

Found?

Run Program

Compilation
Database

Yes

No

Machine Model
Builder

Trace
Compiler

Emulation and
Instrumentation

Library

Update
Database

Uniprocessor
Performance

Database
Update

No

Yes

Simulation
Database

Processor/Cache

Inputs

Figure 4: Processor and Cache Analyzer organization.

other parameters are provided as inputs to the com-

piled program.) If a compile is required, the Machine

Model Builder organizes these processor-speci�c pa-

rameters in the format required by the Trace Com-

piler, a version of the Multi
ow Trace Scheduling

Compiler [13] targetted to the Digital Alpha architec-

ture. The compiler uses this information to generate

code optimized for the processor architecture, ensur-

ing that individually optimized benchmark executa-

bles are generated for each machine con�guration.

Linked with the benchmark object �le are library

routines within the Emulation and Instrumentation

Library that instrument the code to measure static

cycle counts (e.g., due to functional unit latencies)

and model dynamic behavior (e.g., due to branches

and cache accesses). A large amount of
exibility has

been built into these library routines. For example,

the cache hierarchy routines allow all important orga-

nizational parameters (size, associativity, block size,

etc.) to be varied. Support for nonblocking caches,

write and victim bu�ers, and one, two, or three lev-

els of cache hierarchy is also included. Execution of

the program invokes parameter input and emulates the

target machine. The resulting cycle count information

is combined with cycle time estimates from the Tim-

ing Analyzer to predict uniprocessor performance for

Analysis Tools

Input Files

STATS

Input
Modifications

Search Algorithm Designer
Direction

Performance
Results

Figure 5: Using STATS to automatically search the

design space.

each con�guration. Detailed performance information

is saved to allow the architect to analyze bottlenecks

and direct the search process.

3.3 System Analyzer

The System Analyzer is a detailed Mean Value

Analysis (MVA) model of the System Interconnect

and Main Memory subsystems. The model uses la-

tency and transaction time values from the Timing

Analyzer, and reference rate information from the Pro-

cessor and Cache Analyzer to compute multiprocessor

system performance. Multiprocessor workload param-

eters (such as the probability that on a load miss the

desired block is in a \modi�ed" state in another cache)

are provided by the designer. MVA modeling of shared

memory multiprocessors is described by Vernon [26]

and Jog [9] among others.

4 Design Space Exploration with

STATS

The integrated nature of STATS and the text �le

input parameter interface facilitates automated design

space exploration as is shown in Figure 5. Here, a

search algorithm is used to modify STATS's input pa-

rameter �les and call STATS for each candidate con-

�guration. For example, an exhaustive search of a

portion of the design space can be performed by cre-

ating a simple script �le that modi�es input param-

eters and calls STATS for each con�guration, using

a nested loop for each parameter to be explored. A

more complex search may be performed using a ge-

netic algorithm [23] to prune the search tree, and to

dispatch work among a network of workstations [22],

each of which runs STATS on a di�erent candidate

con�guration. In the next section, we describe two

architectural investigations we have performed using

STATS and a simple exhaustive search approach.

Levels Size

L1I L1D L2 L3

1 256KB 256KB | |

1 512KB 512KB | |

1 1MB 1MB | |

2 8KB 8KB 256KB |

2 8KB 8KB 512KB |

2 8KB 8KB 1MB |

2 8KB 8KB 2MB |

2 16KB 16KB 256KB |

2 16KB 16KB 512KB |

2 16KB 16KB 1MB |

2 16KB 16KB 2MB |

2 32KB 32KB 256KB |

2 32KB 32KB 512KB |

2 32KB 32KB 1MB |

2 32KB 32KB 2MB |

3 8KB 8KB 96KB 256KB

3 8KB 8KB 96KB 512KB

3 8KB 8KB 96KB 1MB

3 8KB 8KB 96KB 2MB

3 8KB 8KB 128KB 256KB

3 8KB 8KB 128KB 512KB

3 8KB 8KB 128KB 1MB

3 8KB 8KB 128KB 2MB

Table 1: Candidate Cache Con�gurations

5 Applications of STATS

We describe in this section the application of

STATS to superscalar processor and memory hier-

archy design, and demonstrate the coverage of mul-

tiple subsystems and the impact of technology con-

straints on architectural tradeo�s. Because we use the

SPEC92 benchmarks, which are limited in their e�ec-

tiveness in analyzing cache behavior [7], our analysis is

intended to serve as an example of the capabilities of

the toolset rather than an endorsement of particular

design options. For space reasons, we provide only a

sampling of the results from these studies. A complete

description of our assumptions and results, and other

tradeo�s we have investigated is provided in [1, 2].

5.1 Technology Considerations in Single

and Multi-Level Cache Design

We use STATS to investigate the impact of technol-

ogy considerations and the number of levels in cache

hierarchy design. The processor pipeline is a two-

way superscalar design similar to that of the Alpha

21064A microprocessor [5]. We consider 23 di�erent

cache topologies (Table 1) of various sizes and which

incorporate between one and three levels of hierar-

chy. Each option uses a board-level cache, whose

timings are precisely characterized using the Timing

Analyzer and actual SRAM speci�cations, enabling

o�-chip cache latency and bandwidth e�ects to be

accurately accounted for. Seven board-level cache

con�gurations are examined using three types of fast

asynchronous SRAMs (32K�8 [15], 64K�4 [16], and

96kB 128kB 256kB 512kB 1MB 2MB
L2 Cache Size

500

1000

1500

2000

B
an

dw
id

th
 (

M
B

/s
ec

)

32kB L1 Dcache

16kB L1 Dcache

 8kB L1 Dcache

96kB 128kB 256kB 512kB 1MB 2MB
L2 Cache Size

7

8

9

10

11
L

oa
d

L
at

en
cy

 (
cy

cl
es

)

32kB L1 Dcache

16kB L1 Dcache

 8kB L1 Dcache

(a) (b)

Figure 6: L2 Cache (a) Load Latency and (b) Bandwidth

128K�8 [17]). For two and three-level con�gurations,

we use a total of either 9 or 18 of the 32K�8 or

128K�8 SRAMs for the data array, and assess the

relative performance of these di�erent cost and band-

width alternatives together with the various on-chip

cache con�gurations

3

.

Figure 6 shows how load latency and bandwidth

vary for on (96KB and 128KB) and o�-chip (256KB

to 2MB) L2 caches and how this is impacted by the

size of the L1 Dcache. Due to their smaller size and

lower delays, the on-chip L2 caches have considerably

lower load latency and higher bandwidth than their

o�-chip counterparts. The general increase in load la-

tency observed for the o�-chip L2 caches is due to the

use of more and/or denser (and slower) SRAMs to

construct larger caches. For the 256KB, 512KB, and

2MB L2 caches, load latency increases at the 8KB

L1 Dcache points because the smaller cycle time at

this design point increases the number of cycles re-

quired to access the L2 cache. Similar variations are

observed with bandwidth (Figure 6(b)). These in-

tuitively second-order e�ects have signi�cant perfor-

mance rami�cations for some benchmarks. Figure 7

shows the performance in instructions/second of the

various cache alternatives for the su2cor benchmark.

The performance di�erence between two-level con�g-

urations with 8KB and 16KB L1 Dcaches is 15% with

a 1MB L2 cache, and jumps to 30% with a 2MB

L2 cache due to these e�ects. In addition, a pro-

nounced dip is observed for two-level con�gurations at

the lower-bandwidth 1MB L2 cache design point. The

absence of a dip for the three-level curves is due to the

lower bandwidth requirement imposed on an L3 cache

3

The bandwidth variations are due to di�erences in data

bus width, SRAM access times, and SRAM package dimensions

(which impacts the length of the address and data buses).

512kB 1MB 2MB
Off-Chip Cache Size

0

50

100

150

200

250

In
st

ru
ct

io
ns

/s
ec

 (
x1

0^
6)

 96kB L2 Cache
128kB L2 Cache

3 Levels

 8kB L1 Dcache
16kB L1 Dcache
32kB L1 Dcache

2 Levels 1 Level

Figure 7: Performance of su2cor for Each Cache Hier-

archy Option.

due to the presence of the on-chip L2 cache

4

. Thus,

by using a two-level on-chip cache, system design costs

may potentially be reduced by requiring fewer expen-

sive SRAM components and a smaller microprocessor

package due to this lower board-level cache bandwidth

requirement.

5.2 Multiple Subsystem Design Tradeo�s

As a second example, we consider the design of an

8-way in-order superscalar engine modeled after the

21164 microprocessor [6] used in a single processor

workstation, and examine trading o� the number of

arithmetic functional units for L1 Dcache size, three

L1 Dcache multi-porting alternatives, and two system

topology options (Figures 8-10). Figure 8 shows two

area-equivalent on-chip options: one with 12 arith-

4

The single-level caches also don't have this limitation as

their data width is set at 64 bits to match the width of the

21064A's single load/store unit.

16K
B

 L
1

D
C

A
C

H
E

IC
A

C
H

E
8K

B
 L

1

CACHE
512KB L2

IUIUIUIU IU IU

FPAUFPAUFPAU

FPMUFPMUFPMU

CACHE
512KB L2

IUIUIUIU

IC
A

C
H

E
8K

B
 L

1

32K
B

 L
1

D
C

A
C

H
EFPAU

FPMU FPMU

FPAU

(a)

(b)

Figure 8: FU and L1 Dcache Options: (a) 12 FUs,

16KB L1 Dcache, (b) 8 FUs, 32KB L1 Dcache

Port 3Port 1

Port 2

(a)

(b)
(c)

Port 2

Port 3

Port 1

Port 2

Port 3

Port 4
Port 4

Port 1

Figure 9: L1 Dcache Multi-Porting Options: (a) 1TP,

(b) 4SP, (c) 2DP.

L3
Control

MMC

(a) (b)

BIU

Microprocessor

Memory
ASIC

SIMM
Modules

System Bus

ASIC
I/O

ASIC
I/O

...
SRAMs

L3

BIU

Microprocessor

System Bus

Modules
SIMM

ASIC
I/O

ASIC
I/O

MMC

Figure 10: System Topology Options: (a) L3 Cache

and (b) Main Memory.

metic functional units (FUs) consisting of 6 integer

units (IUs) and three
oating-point add (FPAU) and

three
oating-point multiply (FPMU) units coupled

with a 16KB L1 Dcache, and another with a total of

8 FUs and a 32KB L1 Dcache. As an 8-way issue pro-

cessor demands high bandwidth L1 Dcache access, we

explore three multi-porting alternatives shown in Fig-

ure 9 which vary in cycle time and port-use
exibility:

a single triple-ported array (1TP), four single-ported

arrays (4SP), and two dual-ported arrays (2DP). Fi-

nally, Figure 10 illustrates the two memory hierarchy

and system topology options that we explore: the use

of package pins for a 4MB L3 cache (with the Main

Memory Controller (MMC) implemented in a sepa-

rate ASIC), and a direct connection to Main Memory

SIMM modules [14] (no L3 cache).

Figure 11 shows how performance varies from

benchmark to benchmark with the various L1 Dcache

multi-porting options. Processor elapsed time is plot-

ted for the 4SP and 2DP caches, normalized with re-

spect to the elapsed time of the 1TP cache organiza-

tion. (Figure 11(a) is normalized to the 8 FU con-

�guration, and Figure 11(b) to the 12 FU con�gura-

tion.) Both the 2DP and 4SP con�gurations execute

all benchmarks faster than the 1TP design. For four

of the benchmarks, the cycle time advantage of the

4SP cache overrides the port-use
exibility of the 2DP

cache. Nevertheless, the 2DP scheme outperforms the

4SP design overall, and performs markedly better with

workloads with high L1 Dcache load and store activity

(li and tomcatv), for which the compiler scheduler is

less constrained by cache port limitations. The single

store per cycle limitation of the 4SP cache is a partic-

ularly severe bottleneck for tomcatv, for which there is

a signi�cant performance improvement with the more

balanced 2DP design. In addition, the 2DP design

requires 15% less area than the 4SP con�guration [1].

li eqntott espresso spice2g6 swm256 su2cor tomcatv
Benchmark

0.90

0.92

0.94

0.96

0.98

1.00

N
or

m
al

iz
ed

 P
ro

ce
ss

or
 E

la
ps

ed
 T

im
e

4 single-ported arrays
2 dual-ported arrays

li eqntott espresso spice2g6 swm256 su2cor tomcatv
Benchmark

0.90

0.92

0.94

0.96

0.98

1.00

N
or

m
al

iz
ed

 P
ro

ce
ss

or
 E

la
ps

ed
 T

im
e

4 single-ported arrays
2 dual-ported arrays

(a) (b)

Figure 11: Normalized Processor Time for Multi-Porting Options with (a) 8 FUs, 32KB L1 Dcache and (b) 12

FUs, 16KB L1 Dcache.

li eqntott espresso spice2g6 swm256 su2cor tomcatv
Benchmark

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

 E
la

ps
ed

 T
im

e

 8 FUs, 32KB L1, 3 Levels

 8 FUs, 32KB L1, 2 Levels

12 FUs, 16KB L1, 3 Levels

Figure 12: Elapsed Time of Three Con�gurations Nor-

malized to the 12 FU, 16KB L1 Dcache, 2-Level Con-

�guration.

Figure 12 demonstrates the performance tradeo�s

of functional units versus L1 Dcache size and the

two system topology options (two levels of cache with

an integrated MMC versus three levels with a sepa-

rate MMC ASIC). Results are normalized to the 12

FU, 2-level con�guration. With all benchmarks given

equal weight, the 3-level cache organizations require

marginally less total time (2% and 4% for the 8 and

12 FU con�gurations, respectively) than the 2-level or-

ganizations, although the di�erence is substantial for

swm256 and tomcatv, two of the most cache-intensive

benchmarks.

Overall, the 12 FU, 3-level cache con�guration out-

performs the 8 FU, 3-level cache con�guration by 7%,

indicating that increasing L1 Dcache cache size at

the expense of functional units does not yield best

performance. However, three of the
oating point

benchmarks (swm256, su2cor, and tomcatv) perform

best with the larger L1 Dcache, demonstrating the ex-

pected application dependency on this tradeo�. The

main point is that STATS provides the framework for

making these types of tradeo�s with very little addi-

tional work required of the architect compared with

less comprehensive approaches.

6 Conclusions and Future Develop-

ment

In this paper, we have described STATS, an archi-

tectural evaluation framework developed to address

the problems of searching the ever-increasing design

space of microprocessors, accurately modeling technol-

ogy and implementation constraints in architectural

evaluation, and characterizing candidate microproces-

sor designs using multiple target system models. We

have demonstrated how STATS can be used to take

SRAM and packaging technology limitations into ac-

count in cache hierarchy design, and to simultaneously

explore processor, cache hierarchy, and system topol-

ogy options in microprocessor systems design.

STATS currently contains several limitations which

need to be addressed in future versions. First, the

cycle time model assumes that the critical path lies

within the cache hierarchy. Although this may be true

in many machines, highly parallel architectures ex-

ploiting instruction level parallelism may severely in-

crease processor timing paths [8], calling for additional

pipeline stages and/or an increase in cycle time. Ac-

curate characterization of these timings requires more

e�ort than with caches due to the prevalence of com-

plex control logic. However, performing detailed de-

sign of the perceived processor critical timing paths for

a multitude of processor options inhibits the objective

of rapidly covering a broad design space. The goal is

to �nd the middle ground between accuracy and e�ort,

by creating parameterized critical timing path models

representative of general processor designs from which

reasonably accurate cycle time and latency estimates

can be quickly produced.

Second, the Multi
ow compiler and Alpha code

generator restrict the types of compiler optimizations

that can be performed as well as the instruction set

architectures supported. Modifying STATS to use the

SUIF compiler [27], which is publicly available, sup-

ports modern compiler optimizations, and has been

ported to most major platforms, would remove both

of these limitations. In addition, SUIF supports par-

allelization of sequential code for multiprocessor sys-

tems [3], which would help improve the modeling of

�ner grain parallel processing than is currently repre-

sented in STATS.

Finally, STATS is constrained by an in-order issu-

ing model, limited branch prediction mechanisms, and

a system bus as the only interconnect option, all of

which will be addressed in later versions of the toolset.

STATS will need to be continually upgraded to re-

ect the current state-of-the-art in microprocessor and

system-level design.

Acknowledgements

The authors thank Tryggve Fossum, Michael Adler,

Joel Emer, Geo� Lowney, Bob Nix, and David Webb

of Digital Equipment Corporation for developing and

licensing the compilation and simulation infrastruc-

ture that we adapted for STATS. We also thank Nor-

man Jouppi and Steve Wilton for making CACTI

available, and to Steve for explaining its intricacies.

References

[1] D.H. Albonesi. Architecture and Technology

Tradeo�s in the Design of High Performance

Microprocessor-Based Systems. PhD thesis, Uni-

versity of Massachusetts, Amherst, MA, Septem-

ber 1996.

[2] D.H. Albonesi and I. Koren. Architecture

and technology tradeo�s in the design of next-

generation multiprocessor servers. Proceedings of

the 7th IEEE Symposium on Parallel and Dis-

tributed Processing, pages 174{181, October 1995.

[3] S.P. Amarasinghe et al. Multiprocessors from a

software perspective. IEEE Micro, 16(3):52{61,

June 1996.

[4] T.A. Diep and J.P. Shen. VMW: A visualization-

based microarchitecture workbench. IEEE Com-

puter, 28(12):57{64, December 1995.

[5] Digital Equipment Corporation. Alpha 21064A

microprocessor product brief. March 1995.

[6] J.H. Edmondson et al. Internal organization of

the Alpha 21164, a 300MHz 64-bit quad-issue

CMOS RISC microprocessor. Digital Technical

Journal, 7(1):119{135, Special Issue 1995.

[7] J.D. Gee et al. Cache performance of the SPEC92

benchmark suite. IEEE Micro, 13(4):17{27, Au-

gust 1993.

[8] T. Hara, H. Ando, C. Nakanishi, and M. Nakaya.

Performance comparison of ILP machines with

cycle time evaluation. Proceeding of the 23rd

International Symposium on Computer Architec-

ture, pages 213{224, May 1996.

[9] R. Jog, P.L. Vitale, and J.R. Callister. Perfor-

mance evaluation of a commercial cache-coherent

shared memory multiprocessor. Proceedings of

SIGMETRICS, pages 173{182, May 1990.

[10] W.M. Johnson. Superscalar Microprocessor De-

sign. Prentice Hall, Inc., Englewood Cli�s, NJ,

1991.

[11] N.P. Jouppi and S.J.E. Wilton. Tradeo�s in two-

level on-chip caching. Proceedings of the 21st

International Symposium on Computer Architec-

ture, pages 34{45, April 1994.

[12] S. Jourdan, P. Sainrat, and D. Litaize. Explor-

ing con�gurations of functional units in an out-

of-order superscalar processor. Proceedings of the

22nd International Symposium on Computer Ar-

chitecture, pages 117{125, May 1995.

[13] P.G. Lowney et al. The Multi
ow trace schedul-

ing compiler. Journal of Supercomputing, 7:51{

142, 1993.

[14] Motorola, Inc. MCM36804 8M�36 bit dynamic

random access memory module product data

sheet. 1995.

[15] Motorola, Inc. MCM6706CR 32k�8 bit static

random access memory product data sheet. 1995.

[16] Motorola, Inc. MCM6709BR 64k�4 bit static

random access memory product data sheet. 1995.

[17] Motorola, Inc. MCM6726C 128k�8 bit static ran-

dom access memory product data sheet. 1995.

[18] K. Olukotun, T. Mudge, and R. Brown. Perfor-

mance optimization for pipelined primary caches.

Proceedings of the 19th International Symposium

on Computer Architecture, pages 181{190, May

1992.

[19] O.A. Olukotun et al. Multilevel optimization in

the design of a high-performance GaAs micro-

computer. IEEE Journal of Solid State Circuits,

26(5):763{767, May 1991.

[20] A. Poursepanj. The PowerPC performance mod-

eling methodology. Communications of the ACM,

37(6):47{55, June 1994.

[21] M. Simone et al. Implementation trade-o�s in

using a restricted data
ow architecture in a high

performance RISC microprocessor. Proceedings of

the 22nd International Symposium on Computer

Architecture, pages 151{162, June 1995.

[22] T.J. Stanley and T. Mudge. A parallel genetic al-

gorithm for multiobjective microprocessor design.

Proceedings of the 6th International Conference

on Genetic Algorithms, July 1995.

[23] T.J. Stanley and T. Mudge. Systematic objective-

driven computer technology optimization. Pro-

ceedings of the 16th Conference on Advanced Re-

search in VLSI, pages 286{300, March 1995.

[24] R. Uhlig et al. Instruction fetching: Coping

with code bloat. 22nd International Symposium

on Computer Architecture, pages 345{356, May

1995.

[25] M. Upton et al. Resource allocation in a

high clock rate microprocessor. Proceedings of

ASPLOS-VI, pages 98{109, October 1994.

[26] M.K. Vernon, E.D. Lazowska, and J. Zahorjan.

An accurate and e�cient performance analysis

technique for multiprocessor snooping cache con-

sistency protocols. Proceedings of the 15th Inter-

national Symposium on Computer Architecture,

pages 308{315, June 1988.

[27] B.P. Wilson et al. SUIF: A parallelizing and op-

timizing research compiler. ACM SIGPLAN No-

tices, 29(12):31{37, December 1994.

[28] K.M. Wilson, K. Olukotun, and M. Rosenblum.

Increasing cache port e�ciency for dynamic su-

perscalar microprocessors. Proceeding of the 23rd

International Symposium on Computer Architec-

ture, pages 147{157, May 1996.

[29] S.J.E. Wilton and N.P. Jouppi. An enhanced

access and cycle time model for on-chip caches.

Technical Report 93/5, Digital Western Research

Laboratory, July 1994.

