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Abstract— Over the past few years, the impact of heating on device
failure rates has become increasingly important in cyber-physical
systems. Such systems are often used in harsh environments and
have weight, volume and power constraints which make it hard
to dissipate heat economically and effectively. Thermal-aware task
scheduling techniques are therefore called for to reduce heat stress
on the computational platform.

In this paper, we outline a thermal-aware task allocation and
scheduling heuristic for use in computational platforms that feature
heterogeneous computational cores. Such systems, consisting typically
of some powerful, out-of-order, cores, together with simple, in-order,
cores, allow the user a wider range of power-performance tradeoffs
than traditional homogeneous multicore systems. We show how using
fairly simple thermal-aware task allocation and scheduling principles
results in a substantial enhancement in the expected lifetime of the
system.

Index Terms— DVFS, Real-time systems, Cyber-physical sys-
tems, Lifetime extension, Heterogeneous multi-core

1 Introduction
Cyber-physical systems (CPSs) are proliferating in life-

critical and cost-sensitive contexts today. The economical
provision of high reliability in such systems is very important.

Thermal stress is an important source of accelerated device
aging, resulting in premature device failure. Indeed, failure
rates are often modeled as exponentially increasing with
absolute temperature. Furthermore, much of the thermally-
induced damage is cumulative, not transient. As technology
has advanced and feature sizes have shrunk, heat density has
increased, making high temperature an important factor in
device degradation and failure.

We focus in this paper on how to allocate and schedule
CPS tasks on heterogeneous multi-core platforms, in a thermal-
aware fashion. Such platforms, such as big.LITTLE from ARM
[1], typically consist of high-performance cores with advanced
pipelining features for enhanced throughput, coupled with
very small cores only capable of simple, in-order, instruction
processing. All cores, simple and complex, on the platform
share the same instruction set so that task migration across core
types is possible. Such platforms are attractive for CPS since
they offer an increased flexibility in scheduling dynamically
varying real-time workloads [2]–[4].

In this paper, we introduce a simple task allocation and
scheduling algorithm for real-time systems using a heteroge-
neous multi-core platform. The aim is to meet all deadlines
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while reducing thermal stress. Our simulations show that
this algorithm significantly enhances the core Mean Time To
Failure (MTTF) over a baseline algorithm.

The rest of the paper is organized as follows. Section
2 reviews related prior work and points out the thermal
impact on lifetime and reliability. Section 3.2 contains our
algorithm. Simulation results illustrating the performance of
this algorithm are presented in Section 4. Section 5 concludes
this paper.

2 Background
2.1 Related Works

Over the past decade, much work has been conducted on
general-purpose, single-ISA, heterogeneous multi-core systems
task scheduling [5]–[10]. In [9], Craeynest et al. developed
a workload-to-core mapping algorithm for single-ISA het-
erogeneous multi-core processors to improve performance by
dynamically monitoring the behavior (through measures like
Cycles per Instruction and Instruction-Level Parallelism) of
tasks. In [10], Zhang et al. proposed an algorithm based on
dynamic execution behavior of workloads, to map tasks to
cores to achieve higher energy-efficiency while maintaining
comparable performance as in [9].

For real-time systems, recent research focuses on algo-
rithms to guarantee an increased amount of workload to be
finished before its deadline. Baruah introduced a polynomial-
time feasibility analysis method that can determine if a set
of real-time tasks can be scheduled on an multi-core sys-
tem and tasks can migrate between cores [2]. Kim et al.
proposed a scheduling algorithm for aperiodic hard real-time
tasks executing on heterogeneous platforms that restrict tasks
to be executed on certain cores according to their expected
completion time [11].

Raravi et al. showed that, if the tasks can only migrate
between the cores of the same type, an optimal algorithm needs
cores that are 1 + β

2 times faster (0 < β < 1) than in a system
where tasks can migrate among multiple core types [3].

Recently, Chwa et al. proposed a task scheduling algo-
rithm for real-time systems with two core types [4]. In their
algorithm, the cores are assumed to share the same instruction
set architecture (ISA) so that tasks can migrate between core
types. A two-phase approach is followed: first, assignment of
tasks to the appropriate core type, and second, a modified
DP(deadline partitioning)-fair [12] method is used to schedule
the workload on each type.



2.2 Thermal Related Reliability and Lifetime
The reliability of VLSI circuits is affected by multiple

mechanisms. Modeling these has been an active research topic
for decades. Electromigration (EM) and Oxide Breakdown
are reported to be dominant permanent failure mechanisms
of VLSI circuits as CMOS technology scales [13] and conse-
quently, these are the modes that we focus on.

According to [14], the Mean-Time-To-Failure (MTTF) due
to the oxide breakdown process is given by:

MTTFbd = Abd ∗ V −(a−bT ) ∗ e
X+(Y/T )+ZT

kT (1)

where V is the voltage applied to the gate oxide, T is the
absolute temperature in Kelvin, k is Boltzmann’s constant and
Abd is a scale factor. The values of the other parameters are
[14]: a = 78, b = −0.0081, X = 0.759eV , Y = −66.8eV ∗K
and Z = −8.37e4eV/K. Note that these parameters, or even
the MTTF model, can be different as the CMOS manufacture
technology developing.

The mechanism behind EM has been studied extensively.
One of the early results that is still widely used for estimating
the MTTF due to EM, was proposed by Black [15]:

MTTFem = Aem ∗ J−ne
Ea
kT (2)

where Aem is a scale factor, J is the current density, Ea
is activation energy and n is a material based constant. For
copper, these values are J = 1e6A/cm [16], Ea = 0.9eV and
n = 1.1 [17].

The failure of a system is a random process and the
reliability of a system at time t is the probability that the
system is functional throughout the time interval [0, t]. The
probability of a device failure occurrence if often modeled by
by the Weibull distribution [18]:

F (t) = 1−R(t) = 1− e−(t/α)β (3)

where F (t) is the failure occurrence probability, R(t) is the
reliability function, β is the Weibull slope parameter (β=2,
[19]), and α is a scale parameter satisfying α = MTTF/Γ(1+
1/β).

The reliability expressions shown above were obtained
from a combination of experimental results and proposed
physical models. In this paper, the approach of [18] is adopted
to calculate the reliability in a dynamic thermal environment
(i.e., under varying temperatures). Time is divided into k time
frames, [0,∆t],[∆t, 2∆t], ..., [(k-1)∆t, k∆t]. Each time frame
is short enough so that the temperature and voltage are roughly
constant within it. The resulting reliability of a functional block
in an IC (e.g., an integer execution unit), denoted by Rblk(t),
is:

Rblk(t) = R(k∆t) =

i=k∏
i=1

[1−(Ri((i−1)∆t)−Ri(i∆t))] (4)

where Ri(i∆t)) = Riem(i∆t)) ∗Ribd(i∆t)); Riem(i∆t)) and
Ribd(i∆t)) are the reliabilities due to electromigration and
oxide breakdown, respectively, and are calculated by Equation
3 using the MTTFs derived from the reliability model using
the temperature of the ith time interval.

The reliability of a core at time t is the product of the
reliability of all the functional blocks of the core at time t.

3 Thermal Aware Heterogeneous Multi-
core Scheduling Algorithm
3.1 System Models

The heterogeneous multi-core system we consider consists
of two core types: out-of-order (“big”) and in-order (“small”)
cores. The former are much more complicated, with sophis-
ticated pipelining techniques to improve performance (at the
cost of power consumption); the latter are simple and slow.
All cores use the same instruction set architecture, meaning
that tasks can, deadlines permitting, execute on any core. All
cores of the same type are identical to one another. As already
mentioned, this structure is commercially realized these days,
one example being the ARM big.LITTLE architecture.

The task set is periodic, with deadlines equal to the period.
This is a common model for real-time systems in practice
[20]; we will later extend it to the case where deadlines are
constrained to be less than or equal to their period. Each task τi
is characterized by the following three parameters: period (pi),
Worst-Case Execution Time (WCET) on a big core (ebi ) and
WCET on a small core (esi ). In this paper, it is assumed that
for all τi, ebi ≤ esi and the utilization on the big core satisfies
ubi =

ebi
pi
≤ 1. If the utilization on small core, usi =

esi
pi

, is
larger than 1, only using small cores is insufficient to meet the
worst-case computational demands of the workload. Tasks can
be migrated from one core to another during execution.

We also assume that the cores share the main memory
and last level cache (LLC). With this assumption, the task
migration overhead is negligible [9]. For systems with many-
cores, the assumption may not be true. However, cores are
usually clustered into groups that share LLC and memory. The
proposed algorithm can be applied to the cores that are lie in
the same group.

The reliability figure-of-merit we use is the product of the
individual reliabilities of all the cores. The expected lifetime
of the system is defined as the point at which this figure of
merit declines to a predetermined level.

3.2 Task Assignment and Scheduling
3.2.1 Baseline Algorithm

To provide appropriate context for our work, we start with a
brief description of a baseline multicore scheduling algorithm.
As already mentioned, Chwa, et al., propose an optimal
task scheduling algorithm for heterogeneous multi-core real-
time systems. Two core types are assumed [4]. Optimality is
demonstrated by proving that as long as a task set can be
feasibly scheduled on a heterogeneous multi-core system, it
can be scheduled by their algorithm. The algorithm proposed
in [4] includes two phases: workload assignment (Hetero-
Split) and schedule generation (Hetero-Wrap). A high-level
description is shown in Figure 1. In [4], it is assumed that some
tasks will execute faster on type-I cores while other tasks will
execute faster on type-II cores. If the utilization of a task τi on
the cores that executes it slower can be greater than 1, there is
a minimum fraction of such a task that must be executed on



Notation:
e1i /e

2
i : WCET of τi on type-I/II core

Γ1/Γ2: list of tasks on type-I/II core
x1i /x

2
i : portion of τi on type-I/II core

M1: list of tasks u1i ∗x1i +u2i ∗x2i = 1 and x1i > 0, x2i > 0
M2: list of tasks u1i ∗x1i +u2i ∗x2i < 1 and x1i > 0, x2i > 0
P1/P2: list of tasks only assigned to type-I/II cores
Hetero-Split:
calculate minimum fraction of each task i on the faster
core using equation (5) and (6)
Γ1 ← {τi|e1i < e2i }, Γ2 ← {τi|e2i < e1i }
IF workload on type-I (type-II) cores is larger than its
capacity
repeat

find the τk with the smallest (largest) e1i
e2
i

move τk to type-II (type-I) cores (lo1k (lo2k) cannot be
moved)
Until workload on type-I (type-II) cores is no larger than
its capacity

Hetero-Wrap:
For tasks in M1, M2 and P1

fill the type-I cores’ slices from the beginning of slice
For tasks in M1, M2 and P2

fill the type-II cores’ slices from the end of slice

Fig. 1. General flow of the algorithm in [4]

the other core type. This minimum fraction (denoted by loi)
is calculated in the following way:

lo1i =

{
u2
i−1

u2
i
−u1

i

, if u2i > 1

0, otherwise
(5)

lo2i =

{
u1
i−1

u1
i
−u2

i

, if u1i > 1

0, otherwise
(6)

where u1i (u2i ) is the utilization on Type I (Type II) core.

In the task assignment phase, the workload is assigned
to the different core types. The first step is to determine the
minimum portion of each task that needs to be executed on
the type of core that executes it faster and allocate that portion
to such a type. If the workload assigned to any type of core
is more than its ability to schedule after such an assignment,
then the algorithm cannot schedule the task set. The second
step will initially assign the rest of the workload (tasks with
utilization smaller than 1 on both types cores and tasks with
utilization larger than 1 on one type of core excluding the
portion dealt with in first step) to the type of core that can
execute it faster. If there is a type of core that cannot finish
its assigned workload on time, the task will then be moved
to the other core type. The order at which tasks are moved
is determined by the ratio of execution times on the two core
types for each task, e.g., when moving from type-I to type-
II core, the task with the largest e1i

e2
i

will be moved first. But
if the moving task has a portion that must be executed on
current core (from equation (5) and (6)), this portion will not
be moved.

In the phase of schedule generation, the algorithm is a
modification of DP-fair [12]. The execution is divided into

slices and each task will be executed for an interval that equals
the product of its utilization on the current core and slice
length, e.g., τi will be executed for 5 seconds on a type-I
core if the slice is 10 seconds and τi has a utilization of 0.5
on type-I core. The situation where a task is scheduled to be
executed on two types of cores at the same time needs to be
avoided. Tasks are divided into four groups: M1 are the tasks
where the sum of utilization on the two core types equals 1;
M2 are tasks where the sum of the utilization on the two core
types is less than 1; P1 are tasks that are only assigned to
type-I cores and P2 are tasks that are only assigned to type-II
cores. The time-slices of type-I cores will be assigned to tasks
in the order of M1, M2 and P1 from the beginning of each
slice. The time-slices of type-II cores will be assigned to tasks
in the order of M1, M2 and P2 from the end of each slice.

3.2.2 Thermal-Aware Task Allocation and Scheduling

The baseline algorithm described above does not take ther-
mal considerations into account. We describe here a thermal-
aware task allocation and scheduling algorithm, which we will
then show has significant lifetime-enhancement benefits. The
system model assumed was described in Section IIIA, namely,
we assume “smaller” and “bigger” cores. Smaller cores do not
have performance-enhancing (but power-hungry) features like
out-of-order execution.

The general principle behind this algorithm is to prefer-
entially assign load to the smaller cores; only that portion
of a task that cannot feasibly be executed on the smaller
cores is assigned to the bigger core. Second, we use offline
task profiling to obtain the average temperature (T iavg) when
running a task on a big core. When some tasks have to
be assigned to big cores, instead of choosing the task with
smallest ebi

es
i

as in [4], we choose the task with smallest

T iavg ∗
ebi
es
i

. (Note: this modification will potentially sacrifice
optimality.)

The pseudo code of the thermal-aware task assignment is
shown in Figure 2. In stage 1, the minimum fraction of each
task that needs to be executed on big cores is allocated to big
cores. If the big cores cannot execute the allocated minimum
workload, the given task sets cannot be scheduled, and the
algorithm returns failure. In stage 2, all the remaining workload
is assigned to small cores. In stage 3, if the small cores cannot
schedule the assigned workload, some workload needs to be
moved to the big cores. In the workload reassignment, the task
τk with the smallest product of esi

eb
i

and the average execution
temperature on the big core will be moved first. If the small
cores still cannot schedule the workload on them after moving
the whole task, the whole τk will be moved to big cores. Oth-
erwise, the algorithm only moves that part of the task such that
the small cores can schedule the workload on them. Once the
task assignment to cores is successfully determined according
to this process, the Hetero-wrap scheduling procedure from the
baseline algorithm is used to generate the task schedule.

3.3 DVFS Algorithm
Dynamic Voltage and Frequency Scaling (DVFS) has long

been used to reduced the thermal impact on processors. In



Notation
ubi /u

s
i : utilization of τi on big/small core

xbi /x
s
i : fraction of τi assigned to big/small core

loi: minimum fraction of τi assigned to big core
ybi /y

s
i : fraction of τi assigned to big/small core excluding

loi
Γb/Γs: list of tasks on big/small core
mb/ms: number of big/small cores
eri: T iavg ∗

esi
eb
i

of τi

Task alloc(T )
Stage 1:
Allocate loi
if
∑
loi ∗ ubi > mb

return not feasible
Stage 2:
for all τi in T

Γs ← Γs ∪ τi
ysi ← 1− loi

Stage 3:
if
∑
ysi ∗ usi ≤ ms

return {xbi |xbi = loi},{xsi |xsi = ysi }
else

while
∑
ysi ∗ usi > ms

find τk with smallest eri in Γs
if
∑
ysi ∗ usi − ysk ∗ usk > ms

ybk ← 1− lok
ysk ← 0
Γs←Γs − τk

else
ybk ←

∑
ysi ∗u

s
i−ms

us
k

ysk ← 1− lok − ybk
if
∑
ybi ∗ ubi > mb −

∑
loi ∗ ubi

return not feasible
return {xbi |xbi = loi + ybk},{xsi |xsi = ysi }

Fig. 2. Thermal Aware task assignment

[21], a DVFS scheme based on Instructions-Per-Clock (IPC)
monitoring is presented to improve the lifetime of processors
by preferentially using slack to slowdown a high-IPC phase
of workload. When executing tasks according to the slice
schedule generated using the method described above, DVFS
is applied using the concept proposed in [21].

As stated above, there are partitioned tasks and migrating
tasks on cores. Applying DVFS on migrating tasks may result
in executing the same task on different cores at the same time,
which is not allowed. Thus, in this paper, only partitioned tasks
are subject to slowdown by voltage scaling. The pseudo code
of the DVFS algorithm is shown in Figures 3 and 4. In Figure
3, at the beginning of every time step, the tasks completed in
the prior time step are indicated using a finishing flag array.
If a new iteration of a task is released, this flag is reset. Also,
at the beginning of each time slice, the schedule is rearranged
based on current uncompleted tasks in the system; the available
slack in the coming time slice is then calculated. The initial
task assignment and scheduling is based on the Worst Case
Execution Time (WCET) of each task. If a task finishes earlier
than its WCET, there is no need to allocate time for this task
in the coming time slices until its next iteration is released.

Algorithm:IPC DVFS
Notation:
Tsys: Tasks in system
P : list of partitioned tasks on core
tsys: system time, initialized at 0
fhigh/flow: processor high/low frequency level
∆t: time step
tslice: length of scheduling slice
F : flag array indicating if task i has finished the current
iteration
IPC: Array recording the IPC of τi in the previous time
step
SA: schedule array for core in each slice after task
assignment

At every time step
For each τi in system

IF τi finished in past ∆t
F [i] = 1

IF tsim mod pi=0
F [i] = 0

IF tsim mod tslice=0
For all τi in Tsys

IF F [i]=0
T ← T ∪ τi

Task Alloc(T )
Generate SA for each core
Alloc Slack()
Set count=0 on each core

On each core
execute τSA[count].index at speed SA[count].speed
set IPC[SA[count].index] to IPC in the ∆t
IF tsys mod tslice=SA[count].end or task finishes

count+=1

Fig. 3. IPC based DVFS

Thus, at the beginning of every time slice, tasks that have not
finished will be reassigned using the task assignment algorithm
described in the previous section. Then, the slack will be used
to slow down partitioned tasks on big cores using the algorithm
shown in Figure 4.

On big cores, the partitioned tasks are arranged to be
executed first in the coming time slices. Firstly, all the uncom-
pleted partitioned are clustered to the front part of the slice
and all the uncompleted migrating tasks are clustered to the
end part of the slice. The gap between these two clusters is
the available slack. As is shown in Figure 4, the IPC of each
task in the prior time step is recorded. The available slack is
then allocated to the task with the highest IPC. Based on how
much slack is available, the task with highest IPC in a given
time slice is either wholly or partially slowed down. If there
is still some slack left after the above process, the task with
the second highest IPC will go through the same process. This
process continues until the slack is used up or all partitioned
tasks are slowed down.



Notation
P : list of partitioned tasks
fhigh/flow: high/low frequency level of core
SA[i].index: index of task that is at position i of array
SA
SA[i].start: start time of the task at position i
SA[i].end: end time of the task at position i
SA[i].speed: frequency level to run task position i

Alloc Slack()
On each big core
Γp={SA[i]|SA[i].index ∈P}
front=0, end=tslice
FOR i in (0..SA.size-1)

IF SA[i] ∈ Γp
l=SA[i].end-SA[i].start
SA[i].start=front
SA[i].end=front+l
front=SA[i].end

FOR i in (SA.size-1..0)
IF SA[i] /∈ Γp
l=SA[i].end-SA[i].start
SA[i].end=end
SA[i].end=end-l
end=SA[i].start

slack=end-front
FOR SA[i] in Γp
//access in IPC in past ∆t descending order

l=SA[i].end-SA[i].start
sn=l* fhigh−flowflow
//slack needed to slowdown the how part of SA[i]
IF slack>sn

SA[i].speed=LV
SA[i].end+=sn
rearrange SA[k]s following SA[i] in SA
slack-=sn

ELSE IF slack>0
sp=slack* flow

fhigh−flow
//workload can be slowed by slack
SA[i].speed=LV
SA[i].end=SA[i].start+slack+sp
insert (index=SA[i].index, speed=LV, start=SA[i].end,

end =start+l-sp) to SA
rearrange SA[k]s following SA[i] in SA
slack=0

ELSE break

Fig. 4. Slack allocation on big core

4 Experimental Results
4.1 Experiment Setup

A system with one out-of-order (big) core and one in-
order (small) core is simulated to compare the thermal-aware
algorithm introduced in the previous section to the baseline
algorithm. The big core has two frequency levels: 2.0 GHz
and 1.2 GHz. Applications from the Mibench benchmark suite
[22] are used as a workload of independent tasks. Task sets are
generated by selecting five tasks randomly from the benchmark
suite. The WCET for each task running on big/small core of
each task is found by using the Gem5 [23] out-of-order/in-

order simulator. The actual execution time of each iteration
is a random number; it is selected to be normally distributed
with mean equal to half the WCET and standard deviation of
0.2 of the mean, conditioned to be no greater than the WCET
value.

To obtain the power consumption of the workload we used
Gem5 and MaPAT [24]. These power traces were then used to
generate temperature traces for each of the cores; we used the
fast thermal simulator TILTS [25] which is a modification of
HotSpot [26]. When a task has an actual execution time that
equals ri of its WCET, its power file will be compressed in
the time domain to this fraction. This ensures simulation of all
the high/low power phases in the execution of a task.

The reliability of each core (thus the system) is initially
set to 1. Recall that our figure-of-merit (FOM) is the operating
time before the reliability of the system (i.e., the product of
the individual core reliabilities) reaches a given threshold; we
illustrate here the lifetimes when the FOM thresholds are 1−
10−6, 1 − 10−7, and 1 − 10−8, respectively. Corresponding
lifetimes are evaluated for the task schedule generated by the
baseline algorithm and the improvement of our algorithm over
the baseline is calculated.

A simple partitioned algorithm is also introduced to be
compared with the algorithm proposed in this paper. Using
the partitioned algorithm, each task is statically assigned to
core and can only be executed on that core. On each core,
earliest deadline first (EDF) [20] is used to schedule tasks.

4.2 Numerical Results
Recall the main steps we used to enhance reliability in

this algorithm: (A1) Assign workload to small cores as much
as possible; (A2) When some tasks need to be executed on
big cores, tasks that execute faster and have a lower thermal
impact on big cores are assigned to big cores first; (A3)
Perform workload reassignment when a task finishes before its
WCET, and (A4) Use dynamic voltage and frequency scaling
so long as that can be done without causing tasks to be
executed on more than one core at the same time. We carry out
experimental studies to evaluate the impact of these approaches
on lifetime enhancement.

In Figure 5(a)-(c), the lifetime improvement without DVFS
(thus using A1, A2 and A3) at different system reliabilities
is shown. As already stated, the algorithm in [4] is used as
baseline. “Partitioned” stands for the simple static algorithm.
“A1,2” indicates that our algorithm is using A1 and A2. “A3”
indicates that the algorithm is using A3. The x-axis, utilization
(Worst Case), is the utilization of the task sets on the big core
when the execution times of tasks equal to WCET. As shown
in Figure 5, when the utilization is low, all algorithms show
gains over the baseline. This is because the baseline algorithm
assigns all tasks to the big core while other algorithms will
assign tasks to the small core. Using A3 gains as much as 27%
improvement under low utilization; under these conditions,
using task reassignment, there are more chances to reassign a
task to the small core and ease the thermal impact on the big
core. Thus, the lifetime of the system is improved greatly. At
high utilization, using A1 and A2 performs better and gains
more than 10% of improvement. This is because when the
system is almost fully utilized, the order in which tasks are
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Fig. 5. Improvement for different reliability thresholds: (a) Reliability of 1-1e8 (b) Reliability of 1-1e7 (c) Reliability of 1-1e6
Improvement for different reliability thresholds with DVFS: (d)Reliabiilty of 1-1e8 (e) Reliability of 1-1e7 (f) Reliability of 1-1e6

assigned can more effectively control the thermal impact on
cores; note that under these conditions, there will not be much
slack for reassignment with dense workload.

Figures 5(d)-(f) show the improvement at different system
reliabilities when voltage scaling is used. “Baseline DVFS”
stands for the baseline algorithm with DVFS. The baseline
algorithm in [4] does not use DVFS . We add the DVFS
capability by evenly assigning the slack generated by early
completion to uncompleted tasks that only executed on the

big core. “Partitioned DVFS” uses the DVFS algorithm in
[27]. “A1-4” uses all the 4 techniques and the algorithm
we proposed in this paper. As is shown in Figures 5(d)-(f),
using the techniques and algorithm proposed in this paper, the
lifetime improvement is much higher than other algorithms. At
high utilization, since the baseline algorithm tends to assign
as much workload to the big core as possible, there is only a
little slack available to apply DVFS and result in a minimal
lifetime improvement. The proposed approach (using the A1-



4 techniques), on the other hand, assigns less workload to
the big core, gets more slack and applies slack to tasks with
higher thermal impact. These result in the the highest lifetime
improvement among the three approaches. When the utilization
is low, there is even more slack for DVFS on the big core using
the proposed approach. Thus, the improvement over the other
two is even higher.

Also note, as is shown in Figure 5, that the lifetime
improvements achieved by the proposed approach at different
reliabilities are almost identical.

5 Conclusion
Thermal issues have emerged as a key consideration in

the management of cyber-physical systems. One increasingly
popular architecture configuration uses high-end and low-end
processing cores on a chip, sharing lower level cache and
main memory. Such a mix allows the user a greater range of
performance-to-power and performance-to-temperature trade-
offs.

In this paper, we have introduced a thermal-aware task
allocation and scheduling heuristic for use in periodic task
workloads running on such heterogeneous platforms. Simula-
tion experiments show that this heuristic provides substantial
reliability benefits. In future work, we plan to extend this
algorithm to cover sporadic tasks as well.
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