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Cyber-physical systems frequently have to use massive redundancy to meet application requirements for
high reliability. While such redundancy is required, it can be activated adaptively, based on the current
state of the controlled plant. Most of the time the plant is in a state that allows for a lower level of fault-
tolerance. Avoiding the continuous deployment of massive fault tolerance will greatly reduce the workload
of the CPS, and lower the operating temperature of the cyber sub-system, thus increasing its reliability. In
this paper, we extend our prior research by demonstrating a software simulation framework (AdaFT) that
can automatically generate the sub-spaces within which our adaptive fault tolerance can be applied. We also
show the theoretical benefits of AdaFT, and its actual implementation in several real world CPSs.
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1. INTRODUCTION
Dramatic changes have occurred over the past few years in cyber-physical systems
(CPS). Such systems range in complexity from simple and small-scale to extremely
complex, large-scale systems. The traditional approach to controlling CPSs has been to
use a large number of microcontrollers, each dedicated to performing a certain subset
of the computational tasks, and interacting with one another. For example, an automo-
tive application might have a microcontroller entirely dedicated to braking control, and
another dedicated to cruise control. Yet another subset may be dedicated to managing
the entertainment system.

More recently, in an effort to provide increased reliability and reduce costs, design-
ers have been turning to a more flexible approach, with a shared, integrated, compu-
tational platform. Such a platform is responsible for the totality of the control activity;
individual cores may be shared by different functions. The same computer platform
can run widely varying tasks, whose importance may range from non-critical to life-
critical. Tasks can be remapped from one processor to another depending on prevailing
load conditions and the health of the processor. Such an approach, when handled cor-
rectly, yields a control structure that can degrade much more gracefully when a core
fails. As nodes fail, the totality of the remaining computational resources can focus
on keeping the higher-criticality tasks running, shedding the less vital functions as
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necessary to make room. Recent years have seen the emergence of a theory of schedul-
ing in such mixed-criticality platforms [Vestal 2007][Burns and Davis 2015]. Rather
than a collection of dedicated microcontrollers, the trend is now towards a distributed,
flexible, computation platform composed of multiple, often high-capability, processors.

For obvious reasons, fault-tolerance (FT) is needed for life-critical applications. Tra-
ditional fault tolerance that uses massive redundancy [Koren and Krishna 2007] can
impose a considerable and unnecessary computational burden on the system. Design-
ers have therefore turned to adaptive fault-tolerance [Krishna and Koren 2013][Kr-
ishna 2015][Liu et al. 2008] where the provided level of fault-tolerance is dynamically
adapted to the current needs of the physical plant. These needs are a function of the
current plant state and, consequently, vary with time and circumstance.

Adaptive fault-tolerance allows us to provide fault-tolerance on an as-needed basis
and has the potential to reduce the size of the computational platform. It can also
result in lower processor operating temperatures. Since processor failure rate increase
exponentially with temperature, this often has a significant impact on its reliability.

In order to effectively implement adaptive fault-tolerance, the controlled plant dy-
namics have to be analyzed along with domain-specific knowledge of safety require-
ments to indicate the appropriate level of fault-tolerance at any given time. This paper
describes a simulation framework, AdaFT, to accomplish this. AdaFT generates offline
a table that allows the system, while in operation, to select the appropriate level of
fault-tolerance. It does this by carrying out extensive offline analysis of the controlled
plant dynamics and then uses machine learning techniques to express them as simple
selection rules. Finally, the framework allows the designer to evaluate the impact on
reliability of the thermal stress associated with the fault-tolerant workload. Overall,
AdaFT allows us to increase the system’s lifetime, and conversely, for a given desired
life time, it reduces the amount of redundancy required.

This paper makes the following contributions. It introduces a tool, AdaFT, to identify
the appropriate level of fault-tolerance as a function of the current plant state. Ma-
chine learning techniques are used for a classification process whereby this function
can be compactly expressed. The tool allows for sensor noise as well as reduced-order
models. It allows the user to study the fault-tolerance implications of control task dis-
patch frequency and processor response time.

This paper is organized as follows. In Section 2, the technical background is pro-
vided; this includes a state-space approach to system control and a discussion of ther-
mally induced circuit aging. This sets the stage for a description of the software frame-
work in Section 3. Section 4 describes the technical implementation of AdaFT. Section 5
illustrates the way to construct a simulated fault tolerant CPS using the AdaFT inter-
face. Section 6 presents several case studies. Section 7 compares this work to prior
work. Section 8 brings the paper to a close.

2. TECHNICAL BACKGROUND
2.1. Failures in Cyber-Physical Systems
It has long been understood that failures in CPS can be treated in a more application-
specific way than failures in general-purpose systems. Meyer’s performability specifies
accomplishment levels for the controlled plant and calculates the probability that the
controller will function well enough to meet these accomplishment levels [Goyal and
Tantawi 1987][Meyer 1982][Meyer et al. 1980]. Another approach relies on the fact
that the controller is in the feedback loop of the controlled plant [Shin et al. 1985][Kr-
ishna and Shin 1987]. Therefore, any computational delay contributes to the feedback
delay. The impact of feedback delay on the plant performance is well understood in
control theory. By quantifying this impact on the plant performance, one can obtain
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cost functions to express the degradation of the quality of control. Obviously, the state
of the controlled plant affects the impact of feedback delay on the quality of control.

Note that this approach presupposes the existence of sufficiently accurate models of
the controlled plant. Such models would be needed, in any case, to assess the effective-
ness of any control algorithm used.

2.2. A State-Space Approach to CPS Failure
A Cyber-side failure in a CPS happens when the controller is unable to keep the con-
trolled plant within a designated subset of its state-space, called the Safe State Space,
S3. Full details can be found in [Krishna 2015]; here only the necessary foundation
is provided to follow the rest of the paper. S3 is defined as follows [Krishna and Ko-
ren 2013]: based on the application, the user or application engineer (or application-
domain specialist) can specify the constraints that the plant must satisfy in order to be
considered to be operating safely. These are called the Safety Space Constraints (SSC).
For example, the maximum allowed G-force on an aircraft, together with the aircraft
dynamics, can be used to specify constraints on the pitch, yaw and roll as well as the
rate of change of these variables.

A point is in S3 if (a) the plant satisfies the SSCs at the present time and, (b) based on
the plant control laws, the control algorithm used, the actuator limitations, the control
task execution policy and rates, and the specified limits of the operating environment
impact on the plant, the plant will continue to satisfy these constraints up to a given
horizon, as long as the correct control inputs are applied.

The impact of an erroneous controller output on the plant performance depends on
the current plant state. If the plant is deep within its safe region of the state space, it
may well be able to withstand a certain number of erroneous inputs without impair-
ing safety. Such application error-tolerance translates to a lowered requirement for
controller fault-tolerance.

2.3. Adaptive Fault-Tolerance
We will now show how the state-space approach leads naturally to adaptive fault-
tolerance. We define three sub-spaces within S3 as follows:
S1: No fault-tolerance is required. The controlled plant is in a region of the state-

space where even if the actuators are held at their worst-case incorrect setting until the
next iteration of the control task, the plant will not leave its S3. Hence, only one copy
of the control task needs to be executed. Even if the task fails and produces the worst
possible incorrect control output value, the plant remains safe and can be recovered in
later periods.
S2: It is sufficient for the controller to be fail-stop, i.e., the system generates only two

types of controller output: correct or default (e.g., zero) output. Only error detection
rather than error correction is needed in the control output calculation. For instance,
one could use a processor duplex with two independent control calculations being com-
pared. If a significant mismatch (i.e., outside the range of numerical approximations)
is detected between the two outputs, then an error is declared in the computation and
a zero control input (or other default value) can be applied.
S3: Full fault-masking is required. If the controller produces an incorrect output,

the plant cannot be guaranteed to stay in the safe state-space. Therefore full-strength
fault- tolerance with fault-masking should be used, e.g., a triplex with majority voting
[Koren and Krishna 2007].

Note that all other states outside of S1, S2 and S3, i.e., outside of S3, are either phys-
ically unachievable, or uncontrollable even by a perfect controller. The latter means
that even if an always correct control input is applied, the physical plant might still
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Fig. 1. Software Architecture of AdaFT

enter the unsafe region violating the SSC. In such a case, it still needs the full level of
fault tolerance, but it is not guaranteed to be always safe.

With these sub-spaces, a state-based adaptive fault tolerance can be developed. Since
the controlled plant is in S1 for most of the time, a lower level of fault tolerance can be
used, to reduce the amount of stress on the controller or to use the available released
computational capacity for other tasks [Krishna 2015].

2.4. Impact on Thermal Age Acceleration
It is well known that the workload affects processor reliability. With a higher work-
load, the thermally-induced failure rate increases [Krishna 2015][Moazzami et al.
1989][Schoen 1980][Schroder 2007]. Operating at higher temperatures accelerates the
device aging process. The rate at which such aging occurs can be captured by means
of the Thermal Age Acceleration Factor (TAAF). If the TAAF over some time inter-
val δt is α, the effective aging of the circuit over that interval is αδt. α is a strongly
increasing, non-linear function of temperature. The reliability advantage of adaptive
fault-tolerance is that its lower computational burden reduces the average operating
temperature and hence the amount of circuit aging.

3. STRUCTURE OF THE ADAFT FRAMEWORK
The overall structure of AdaFT is shown in Figure 1. It consists of two major parts: sub-
space generation/classification and analysis. The first part focuses on the generation
of the sub-spaces and the machine learning approach for sub-spaces classification. The
second part takes the outputs from the sub-space classifier and simulates the system
with reliability analysis. AdaFT takes the physical side information of the controlled
plant as input, implements the adaptive fault tolerance approach to guarantee the
same safety level as the traditional approach would do, while keeping the computing
resource usage as efficient as possible, thereby improving the long term reliability of
the computing platform.
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3.1. Sub-Spaces Part
The sub-spaces part uses a system model of the controlled plant, which is a mathe-
matical description of its behavior, typically given as a set of differential equations.
In appropriate instances, AdaFT can use a reduced order model, which will simplify
the system model to a reasonable level while still maintaining a sufficient accuracy.
A reduced order model has the potential to significantly reduce the total computation
time. We will discuss how to obtain such a model in later sections.

Control tasks are the real-time control tasks that control one or more of the physi-
cal state components. We focus here on periodic tasks; sporadic tasks with the period
replaced by a minimum invocation between successive tasks can be incorporated eas-
ily. Typically, each task will have a period, deadline, worst case execution time (WCET),
and power consumption. These parameters are usually determined during design time
and hence are known in advance.

Constraints are the safety space constraints SSC, such as the minimum inter-vehicle
spacing for adaptive cruise control (ACC) system, or the allowed angle range for the
various joints of a robot.

Sub-space generation is one of the core parts of AdaFT dividing the operating space of
the CPS into the S1, S2, and S3 sub-spaces. These sub-spaces will in turn determine the
level of run-time deployment of the fault tolerance (FT) needed to ensure the system
safety.

Sub-Spaces classification takes as inputs points from the sub-spaces, and then uses
machine learning techniques for their classification. The purpose of this part is to
efficiently compute the FT level online, as the number of samples representing the
sub-spaces is typically very large. Common machine learning algorithms only need
limited memory space to store the fitted model to check, in real-time, which subspace
a given point is in. The running time for these predictions is typically of the order of
milliseconds, or even less [Murphy 2013].

3.2. Analysis Part
The analysis part of AdaFT uses a real-time computer model, with the support of a
real-time scheduling policy along with adaptive fault tolerance to estimate the compu-
tational sub-system reliability.

4. IMPLEMENTATION
We have implemented AdaFT in both Python and Matlab. We chose Matlab due to its
popularity in many engineering domains. Python is gaining popularity due to its pow-
erful numerical and machine learning libraries such as numpy, scipy and sklearn. In
this section we sketch several of the technically interesting aspects of the implemen-
tation.

4.1. Sub-Space Generation
The sub-space generator is the core component of AdaFT. It takes as inputs the control
tasks, the system dynamics model, and the SSC safety constraints. These constraints
are provided by the user and reflect application requirements. Then, for each given
state in the state space, AdaFT determines whether it is in S3 by simulating the system
to a certain time horizon or final condition. The three sub-spaces, S1, S2 and S3 are then
generated from S3.

Algorithm 1 shows how to generate S3 through simulation based on the system dy-
namics. Each intermediate state before the time horizon (or final condition) is checked
against SSC. If all are within SSC, then this specific initial state is within S3.
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ALGORITHM 1: S3 Generation
Input: The operational state space
Output: S3;
for All x that satisfy the SSC do

run simulation with x as initial condition, with control period (step length) δt and correct
control, until the time horizon is reached or the final condition is satisfied;
if all intermediate states satisfy the SSC then

S3.add(x);
end

end

ALGORITHM 2: Sub-spaces Generation
Input: S3;
Output: S1, S2, S3;
for All x in S3 do

run simulation with x as initial state with control period δt with the worst case wrong
control;
if after one period the state is within S3 then

S1.add(x);
else

run the same simulation with zero control;
if after one period the state is within S3 then

S2.add(x);
else

S3.add(x);
end

end
end

Algorithm 2 shows how to generate S1, S2 and S3. It takes S3 as input and for each
state x in S3, it simulates the controlled plant for one task period. For S1, the worst
case wrong control is applied, whereas to get S2 a zero control representing a fail-
stop controller is applied. If after one task period, the physical state of the plant is
still within S3 even with the worst case wrong control input, this state x is within S1;
otherwise if the plant is in S3 with zero control, x belongs to S2. Finally, x is in S3 if it
is in neither S1 nor S2.

Remark 1: It should be noted that both hardware and software fault tolerance can
be applied using AdaFT. We have already discussed hardware fault tolerance using
duplex or triplex. Software fault tolerance techniques are similar as they also rely
on the use of redundancy. For example, N-version programming is a forward error
masking technique. Another example of an error detection and recovery technique is
the recovery block approach [Koren and Krishna 2007]. All AdaFT needs to know is
what sub-space the physical plant is currently in. If the plant is in S1, no FT is needed
(neither hardware or software); for S2, duplex for hardware FT and/or error detection,
e.g., a 2-version software, is sufficient, followed by a default control input for a fail
stop model; finally, for S3, a triplex for hardware FT and/or a 3-version programming
for software FT may be used. The user can decide whether to use hardware only, or
hardware and software fault tolerance together.

Remark 2: The complexity of this approach is proportional to the number of voxels of
the state space that are evaluated. This number is obviously exponential in the number

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



AdaFT: A Framework for Adaptive Fault Tolerance for Cyber-Physical Systems A:7

of state space dimensions. However, we do not require that the entire safe state space
be evaluated. Each voxel in S3 starts, by default, in S3; it may be reclassified as in S1 or
S2 following an evaluation. For this approach to be useful, it is sufficient to evaluate the
more frequently visited parts of the state space, which can be obtained by gathering
traces of the state space trajectory and evaluating the state space neighborhoods of
these points.

Remark 3: Note that we do not explicitly model communication faults. Highly effec-
tive coding and other redundancy mechanisms exist to reduce communication errors
to desired levels. If necessary, the event of an undetected/uncorrected error in commu-
nication can be included in the failure probability of the relevant task.

4.2. Worst Case Controller/Actuator Action
The user has to specify a cost function indicating divergence from the desired state
trajectory or value. Control is usually applied to ensure minimization of such a func-
tion. However, one can instead try to maximize such a function given the control input
constraints. If such a maximum divergence still keeps the controlled plant within S3,
that point will be declared to be within S1. A good rule of thumb for this type of cost
function is to use cost = 1

n ×
∑
i

(xi − xid)2, where xi is the actual value for the ith state

which we care about its safety, and xid is the corresponding desired value. Note that
scaling of the state variables is important, since the total cost will otherwise mainly
consist of the states with large absolute values.

This approach to compute the worst case control is essentially a simplified optimiza-
tion problem. The only constraints for this problem are the control input bounds, nor-
mally provided by the specifications of the actuators. Algorithms to solve optimization
problems with potentially complicated state dynamics might become computationally
expensive, however, since this step is executed offline using simulation software, exe-
cution time will not be an issue.

It should be noted that for many applications it is sufficient to use some heuristics
to determine the worst case control/actuator outputs. For example, in the ABS braking
system, the controller or actuator will control the slip ratio towards its optimal point
(a typical value is 0.2). If the current slip ratio is greater than this point, the worst
case actuator command can be set to the upper bound of the actuator value with the
opposite control direction.

4.3. Reduced Order System Model
For simpler controlled plants it is feasible to use a full order system model to generate
the sub-spaces. For more complex plants, we use machine learning techniques, for ex-
ample, feature selection, and precision-recall trade-off [Murphy 2013]. We first sample
certain amount of data with a coarse granularity, run simulations, and classify these
samples as to whether or not they violate the SSC. We split the resulting data set into
training and testing sets. The training set is for fitting a particular machine learning
model, while the testing set is for testing the prediction performance of unseen data
using the fitted model [Murphy 2013]. The next step is to use a machine learning al-
gorithm that can calculate he importance of each feature, e.g. random forest, to fit the
data. At this point, if the testing accuracy is higher than a threshold, (e.g., higher than
98%), and the precision, i.e., the percentage of the correct prediction of the class be-
longing to S3, is also high enough, (e.g., higher than 99%), we can assume the fitted
machine learning model can not only fit the training data very well, but can also be
well generalized. We can then use this simplified fitted model, rather than the real
simulations which are more time consuming and complex, to generate more data for
S3.
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On the other hand, if we observe a high training accuracy with a lower testing accu-
racy, this typically means an overfitting of the model, or high variance. We must either
reduce the model complexity or get more data. For the first approach, we can remove
the features with relatively low importance from the model. For the latter, we can
sample more data with respect to the more important features, again according to the
feature importance. If there is a low training accuracy, which means an underfitting
or high bias, we must first fit the training set using more advanced techniques such
as the ensemble model that combines several weaker models to achieve a better one.
Our results show that most CPSs have a high training accuracy due to the clear rela-
tionship between the inputs (the previous state values and the control inputs) and the
outputs (the new state values), determined by differential equations. In all of our case
studies, we achieved very high training and testing performance. If, for any case, it is
impossible to achieve high accuracy, we need to sacrifice in terms of recall which is the
proportion of true positives (data points belonging to S3) that are correctly predicted
as such, for high precision. With a slightly lower recall, the system might waste some
computing resources for providing unnecessary redundancy; but with a low precision,
a hazardous behavior may occur.

It should be noted that other approaches can be used along with the machine learn-
ing. For example, since each simulation is independent of others, parallel computing
can be employed to accelerate the data collecting process using multiple computers.
Further, pruning techniques like Branch-and-Bound can be used [Clausen 1999].

We now consider the inverted pendulum [Wittenmark 2011] as an example to
demonstrate the machine learning approach. The system consists of an inverted pen-
dulum mounted on a motorized cart and the pendulum is kept close to vertical by
controlling the cart speed. The system has four states: (cart position, cart velocity, pen-
dulum angle, and pendulum angular rate). We first generate data with the following
granularity: the step size of the cart position, cart velocity, and pendulum angular rate
are all set to 2 while the step size of the pendulum angle is 0.1. We define a reasonable
operating range for each state component, e.g., (-10, 10), (-10, 10), (-0.5, 0.5), (-10, 10),
respectively. For example, we generate data points for pendulum angles from -0.5 to
0.5 radians, with a step size of 0.1 radians. There would be around 10000 data points,
which are then simulated, and labeled as 1 if a particular data point never violates the
safety constraint (the angle stays in the range of -0.5 to 0.5 radians), and 0 otherwise.

We use 20% of the data as the testing set, and use the random forest technique with
k-fold cross validation to fit the remaining 80% of the data. During the process, we use
a grid search to tune the hyper-parameters of the random forest, i.e., the number of
trees/estimators.

For the initial data set we have achieved a 99% accuracy for the training set and
a 95% for the testing set. The training accuracy is higher than the testing accuracy
indicating overfitting. We need to either reduce the complexity or get more data. The
feature importance for the four state variables was: 0.285, 0.301, 0.155, and 0.258,
from which we can conclude that all of the four variables are significant for the classi-
fication. Therefore, we followed the second approach and get more data. We decreased
the granularity of the cart velocity from 2 to 1, since it is the most important feature
for this particular problem. With the new 20000 data points, we obtained a training
accuracy of 100%, a testing accuracy of 99.7% and a testing precision of 99.5%. The
random forest technique achieved a good training and testing accuracy, as well as a
high precision so we then used it to generate data for S3.

4.4. Actuator Noise, Sensor Noise and Failures
Controlled plants are subject to noise or uncertainties from the operating environment.
For actuator noise, AdaFT considers the worst case scenario when generating the sub-
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spaces. In AdaFT, the motion model of the controlled plant includes a state transition
probability p(xt|ut, xt−1), where xt, xt−1 are the state values at time t and t− 1, respec-
tively, and ut is the control input at time t. These probability distributions are derived
using the input models of the noise. For a particular final condition provided by the
simulation, AdaFT checks, up to a specified confidence interval, whether all states are
safe, and if so, the initial state is declared to belong to the corresponding sub-space.

As for the sensor noise, there are many well studied techniques for noise filtering,
among which the Kalman filter and the Particle filter are commonly used in control ap-
plications, such as self-driving cars and UAVs [Thrun et al. 2005]. Both techniques are
dynamic Bayesian networks (DBN). The Kalman filter is an exact tracking algorithm,
while the Particle filter is an approximate one. Both first use the system dynamics and
the control inputs to generate a prior belief about the physical states. This is called the
prediction step. Then, they calculate the likelihood of the sensor measurements given
the initial prior belief. Finally, a posterior belief distribution is obtained for the up-
dated estimation. This is called the update step. The Kalman filter produces optimal
estimates for unimodal linear systems with Gaussian noise. It calculates a Kalman
gain which will be used during the update step.

In contrast, the Particle filter uses Monte Carlo sampling to randomly generate par-
ticles, each corresponding to an initial guess. Then, during the prediction step, it moves
the particles based on the dynamics model to obtain the next state of each particle. At
the update step, the Particle filter updates the weight of each particle based on the sen-
sor readings, which is essentially the likelihood of the sensor reading for each particle.
Particles that closely match the readings are weighted higher than those which do not
match well. Finally, the Particle filter uses a resampling technique to discard highly
improbable particles and replaces them with copies of the more probable ones, in or-
der to get the posterior belief distributions. The Particle filter works well for nonlinear
systems, whereas the Kalman filter must first perform linearization which might be
difficult for some systems. The detailed mathematical derivations of these algorithms
can be found in [Thrun et al. 2005].

AdaFT uses the Kalman filter to track linear systems, and the Particle filter for
non-linear systems. We used the Kalman filter for the inverted pendulum mentioned
earlier. The initial state conditions are set to (0, 0, 0.4, 0.5) and the actuator noise stan-
dard deviation to 0.06 N. We used two sensors with different profiles for the tracking
and assume that both sensors have the ability to measure angle and angular rate. The
two sensors have an angle noise standard deviation of 0.01 rad and 0.002 rad, respec-
tively, and have an angular rate noise standard deviation of 0.005 rad/s and 0.1 rad/s,
respectively. We assume that sensor 1 is better at sensing angular rate, while sensor
2 is better at sensing angles. Figures (2 - 4) show how filtering algorithms can reduce
the sensor noise, and improve the tracking accuracy and confidence.

In order to handle transient and persistent sensor failures, AdaFT extends the stan-
dard Kalman and Particle filter algorithms. As discussed before, during the update
step, these filtering algorithms calculate the likelihood of the sensor measurements
given the prior beliefs. For Particle filters, the calculation of weight for each particle
is the likelihood calculation. It is easy to calculate the likelihood of the sensor mea-
surements given the output of its prediction step as the prior belief. If the calculated
likelihood is less than a reasonable threshold (e.g., less than 1%), it is highly likely that
the sensor has given a wrong value. In such a case, the system will skip the update
step and take the value from the prediction step for this particular sensor. Intuitively,
this approach assumes that the belief of the system has a certain amount of inertia
that would overcome the temporary sensor failure. With regard to a persistent sensor
failure, this approach would consistently use the prior belief or the remaining working
sensor(s) for the tracking. Figure 5 shows how the filtering algorithms would handle
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(a) Angle Tracking (b) Angular Rate Tracking

Fig. 2. Kalman Filter for Sensor 1 ((a)-(b))

(a) Angle Tracking (b) Angular Rate Tracking

Fig. 3. Kalman Filter for Sensor 2 ((a)-(b))

(a) Angle Tracking (b) Angular Rate Tracking

Fig. 4. Kalman Filter for the two sensors combined ((a)-(b))

sensor failures. We deliberately assigned some arbitrary wrong value (100) to sensor 2
for 1 second for the transient failure case, and for the remaining of the simulation for
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(a) Transient Failure (b) Persistent Failure

Fig. 5. Kalman Filter with a Sensor 2 Failure ((a)-(b))

the persistent failure case. We see from the figures that the recovery from transient
failures can be very fast, and the performance degradation is not very severe.

4.5. Real-Time Computing Model
AdaFT has a built-in real-time task model with the following attributes: name, period,
deadline, worst case execution time (WCET), actual execution time, power, and status.
It also has a probability density function of the execution time, in order to randomly
generate the actual execution time for simulation purposes. The period and deadline
of the task is for real-time scheduling, and the power is for thermal aging (TAAF)
analysis.

Real-time scheduling is an essential part of managing a real-time system. There are
two widely used scheduling algorithms, i.e. Rate Monotonic (RM) and Earliest Deadline
First (EDF). RM assigns periodic task priorities as inversely proportional to the task
periods [Lehoczky et al. 1989][Cooling 2013]. By contrast, EDF determines the task
priorities according to their absolute deadlines.

AdaFT has scheduling modules to support both RM and EDF. When users develop
their CPS using AdaFT, they must guarantee the system schedulability, i.e., meet all
task deadlines. RM and EDF have have been studied for schedulability and interested
readers can refer to [Cooling 2013] for the details, as well as a comprehensive survey
of other real-time scheduling algorithms.

With a given real-time scheduling algorithm the user can easily experiment with
different periods and possibly different execution times of each control task, and see
the impact of these parameters on the size of each sub-space.

4.6. Estimating Thermally-Induced Aging
TAAF expresses by how much the natural circuit aging process is accelerated by oper-
ating at a high temperature [Krishna 2015]. AdaFT uses a first-order thermal model
to estimate temperatures; if desired, this model can be replaced by the user with one
that more precisely captures the thermal characteristics and the failure dependencies
of the particular hardware.

Each processor in AdaFT is treated as a single node, dissipating p(t) Watts at time
t. A standard equivalent electrical circuit model is used to model heat flow, where re-
sistances and capacitances have thermal counterparts [Skadron et al. 2004]. Thermal
capacitance is the amount of heat required to raise the temperature of a node by one
degree; thermal resistance determines the heat flow across a given temperature gradi-
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ent (temperature is treated as an analogue of voltage). Denote by R and C the thermal
resistance (associated with heat flow from the node to the ambient) and capacitance
(of the node), respectively. Let Tproc(t) and Tamb denote the absolute temperature of the
processor and the ambient temperature, respectively. Then, the following differential
equation emerges from the equivalent circuit model: C dTproc(t)

dt = p(t) − Tproc(t)−Tamb

R .
Solving this yields the temperature at any given time as a function of the power con-
sumption.

The aging acceleration model for the hardware depends on the actual technology
used. AdaFT provides the option to define a software module which expresses this
function; however, a default aging module is provided based on the widely used Ar-
rhenius acceleration model, in which the aging factor at time t, λ(t), is proportional
to exp(−Ea/(kTproc(t))) [Escobar and Meeker 2006]. Here, Ea is the activation energy
[Vigrass 2004], whose value is a user-provided input. The accumulated aging over a
given interval [a, b] is then calculated as

∫ b

a
λ(t)dt.

AdaFT computes TAAF based on the power consumed as a function of the load.
The hardware configuration consists of three or more cores/processors on which tasks
can be scheduled. The default scheduling policy is to pick the coolest processor to run
at each time step; but the user can replace this scheduling algorithm by any other.
AdaFT then computes the average TAAF as well as the instantaneous TAAF for each
core. Recall that when the controlled plant is in sub-space Si, it schedules i copies or
versions of the control task.

It should be noted that TAAF is closely related to a more common term in the fault
tolerance and reliability literature, i.e., the mean time to failure (MTTF), which is cal-
culated as:

∫∞
0
tf(t)dt, where the f(t) is the probability distribution density of the life-

time under unstressed conditions. Therefore, if the effective age of the device at chrono-
logical time t is given by x(t) =

∫ t

0
λ(τ)dτ , the updated MTTF is given by:

∫∞
0
tf(x(t))dt.

Once TAAF is calculated, AdaFT uses these equations to compute the MTTF.
Remark 4: Heating is by no means the only accelerator of failure. Other stressors

include humidity, mechanical vibration and static discharge. Our focus in AdaFT is
on allocating and scheduling computational workload which primarily affects device
temperature. Other stressors have to be dealt with by other, orthogonal, means, such
as improved packaging, mechanical damping and changes in circuitry; their impact on
reliability can be modeled separately.

4.7. Sub-space Classification
During operation, the application must rapidly determine which sub-spaces it is in.
Since such a real-time classification can never guarantee a 100% accuracy, a conserva-
tive approach should be developed for system safety. The system might be allowed to
make a few wrong decisions from S1 to S2 or even to S3, but not the other way around.
Mis-classification from S1 to a higher level of fault tolerance will do no harm to the
system safety, only waste some resources.

Since the plant state-space is well defined, we can treat this as a supervised clas-
sification problem [Murphy 2013]. We first perform some pre-processing such as fea-
ture scaling, feature selection or extraction using principal component analysis (PCA)
[Murphy 2013]. We then employ a machine learning classification scheme, for exam-
ple, random forest (RF), logistic regression (LR), neural network (NN) or support vector
machine (SVM) with various kernel functions, including linear, polynomial and Gaus-
sian kernels [Murphy 2013]. Each of these algorithms has several hyper-parameters
to tune, such as the number of trees for random forest or the regularization strength
for LR, NN and SVM. We use the technique of grid search to find the most appropriate
algorithm with the best combination of hyper-parameters. Sometimes it is necessary
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to use an ensemble approach to find the best machine learning scheme, i.e., use sev-
eral individual schemes combined with a majority voting. It should be noted that the
most suitable machine learning algorithm is application specific. The purpose of the
AdaFT interface is to select the best machine learning scheme for the the particular
application, to be used in the analysis part of AdaFT. We refer the reader to [Murphy
2013] for a detailed explanation on how these algorithms work.
Dealing with safety critical issues: As discussed before, we must guarantee high
precision but may sacrifice some of the recall. One approach is to adjust the thresh-
old value used to make decisions. Normally, the learning algorithm will produce a 1,
for a two-class classification problem, if the output of the hypothesis function is larger
than a threshold of 0.5, and a 0 otherwise. In multi-class classification problems, the
algorithm will pick the class with the largest output of the hypothesis function. These
probabilistic values show how confidently the algorithm makes certain decisions. If the
confidence level of the algorithm needs to be increased, this threshold can be adjusted
from 0.5 to a higher value. If there is any wrong classification from a more dangerous
sub-space (e.g., S3) to a safer sub-space (e.g., S2 or S1), the threshold value should be
adjusted. If the largest value among all classes from the hypothesis function is higher
than the threshold value, the algorithm will take that value and make the correspond-
ing decisions; otherwise, it will determine the current system state to belong to S3.
Some machine learning libraries such as scikit learn provide automatic methods that
can be used to find the best threshold value, such as the precision-recall curve [Buit-
inck et al. 2013].

5. ADAFT PROGRAMMING INTERFACE
Figure 6 shows the major parts of AdaFT, in a UML class diagram. AdaFT provides
abstractions such as the sub-generator, processed through a language-integrated API
in both Python and Matlab. For example, the CPS class wraps all major components of
a CPS, including the Physical System, Sensor, Cyber System, and Actuator. The Sub-
Space Generator class uses the CPS to generate all of the sub-spaces that are then
used by the Classifier to fit a classification model, which is later used by the CPS class
for execution. Before the sub-spaces and the fitted model are generated, CPS runs
to generate the sub-spaces; once the fitted model as a classifier is present in CPS, it
runs with the classifier for reliability analysis. The Cyber System includes one or more
Processor objects, with support from the Real-Time Operating System RTOS, which in
turn consists of several Task Model objects as real-time tasks. The Worst Control is a
child-class of the Task Model. The Reliability Model and its child-class TAAF are also
part of the Processor class.

To use AdaFT, the user should write a physical system implementation, possibly
inherited from the PhysicalSystem class. In particular, the update() and issafe() meth-
ods need to be implemented. update() evolves the physical state vector, according to
control inputs and the corresponding actuator signals. issafe() checks if the SSC is
satisfied during simulation.

The next step is to implement the control tasks, for both correct and worst case con-
trols, through the API from the TaskModel class. Essential attributes of a task need
to be specified, including: name, power, WCET, deadline, and period. In addition, the
run() abstract method must be implemented, which is the actual algorithm of the task.
Note that the filtering algorithms discussed before are also real-time tasks and should
be run with the highest available redundancy, since the physical side information will
be estimated through them. The inputs of the custom control tasks should be the out-
puts of these filtering tasks, whose inputs are the raw sensor readings.

There are additional methods that users can implement or override, such as the
heuristics to sort the data points for the sub-space generation, according to some safety
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Fig. 6. Class Diagram of AdaFT

rules, but they are not required, either because they are not the core parts of AdaFT,
or AdaFT already has default implementations.

If the system dimension is small, AdaFT will start the whole process to generate
the sub-space through getSSS() and getSubspaces() methods. Otherwise, the user can
provide a fitted machine learning model, discussed in Section 4.3, as the input to the
getSSS() method to generate S3.

After the sub-spaces S1, S2 and S3 are generated, the user must fit a machine learn-
ing model for the classification through the API from the Classifier class. This fitted
model will then be used by the analysis part of AdaFT for reliability analysis. Other
additional custom parameters that the user can specify include, for example, sensor
and actuator noise, processor voltage and frequency, and a real-time scheduling policy
for RTOS.

5.1. Example Program
The inverted pendulum example is a linear system with a Kalman filter, and A, B, C,
D matrices to define and track the trajectory of the physical states. Detailed equations
can be found in the case study section. Here we demonstrate how to program such an
adaptive fault tolerant system using AdaFT.
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To provide the system dynamics and the control task (LQR), we use two child classes
inherited from their corresponding parent classes. Note that for the worst case con-
trol, if the worst case output can be determined without solving an optimization prob-
lem, the user can override the run() method to directly provide this output, since the
WorstControl class itself is a child class of TaskModel.
class Pendulum(adaft.PhysicalSystem ):

def update(self , h, clock , u):
self.x = # update the state vector according to actuator input u.

def is_safe(self):
return -0.5 <= self.x[2] <= 0.5

# outside this range is unsafe

class LQRInvPen(adaft.TaskModel ):
def run(self , inputs ):

# inputs are the outputs from the Kalman filter
# this is the control input from LQR algorithm
self.output = -np.dot(self.K, inputs)

class WorstLQRInvPen(adaft.WorstControl ):
def cost(self , x, u):

new_x = # get new state value given control u and current state x
return 1/2 * ((new_x [2] - desired_x) ** 2)

def constraints(self):
self.constraints = {# define constraints here}

Users can specify sensor and actuator noise and put these objects into the CPS driver
class, to start generating sub-spaces.
sensor_noise = # specify sensor noise
actuator_noise = # actuator noise

sensor = adaft.Sensor(sensor_noise)
actuator = adaft.Actuator(actuator_noise)

lqr = LQRInvPen ()
worst_lqr = WorstLQRInvPen ()
task_list = {lqr.name:lqr}
rtos = adaft.RTOS(task_list)
# We assume 3 processors for redundancy
processors = [adaft.Processor(rtos) for i in range (3)]
cyber = adaft.CyberSystem(processors)

cps = adaft.CPS(sensor , actuator , pendulum , cyber)
subspace = adaft.SubSpaceGenerator(cps , {lqr.name:worst_lqr })
subspace.get_SSS ()
subspace.get_subspaces ()

clf = adaft.Classifier ()
# use machine learning techniques here
clf.fit(subspace.subspaces)
cps.classifer = clf

cps.stop_condition = # determine when the simulation should stop
cps.pendulum.x = # define initial state conditions here
cps.run()
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# now we can calculate the TAAF and/or MTTF of each processor
plot(cps.cyber.processors [0]. taaf)
print(cps.cyber.processors [0]. mttf)

6. CASE STUDIES
In this section we present three case studies using AdaFT. The first one is a linear
system, the second and third are non-linear with the third being a multi-agent system.
We will use a data analytic approach to analyze Case Study 1. We will show the impact
of different environmental conditions on sub-spaces, for Case Study 2. Finally, we will
show how interactions between multiple agents can be studied with AdaFT.

6.1. Case Study 1: Computer Controlled Inverted Pendulum
The system in this example consists of an inverted pendulum mounted on a motorized
cart. The inverted pendulum is a commonly used example in the control and CPS
literature [Wittenmark 2011] since it is well understood and can be modeled into either
a linear time invariant (LTI) or a nonlinear form. The LTI system can be represented
using the following set of linear equations:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

where x(t), y(t) and u(t) are the plant state, output vector, and input vector, respec-
tively, and A, B, C, and D are the matrices defining the controlled plant.

The objective of the control system is to balance the inverted pendulum by applying
a force to the cart that the pendulum is attached to. This case study uses an optimal
control algorithm linear quadratic regulator (LQR) [Wittenmark 2011] to additionally
control the cart’s position to 0. In this case study, we make the following assumptions:

(1) The standard deviation of the actuator noise for both cart position and pendulum
angle is 3 N.

(2) Sensor 1’s noise standard deviation for the states of (pendulum angle, angular rate)
is: (0.01 rad, 0.005 rad/s)

(3) Sensor 2’s noise standard deviation for the states is: (0.002 rad, 0.1 rad/s)
(4) Initial condition for TAAF analysis is: (0 m, 0 m/s, 0.4 rad, 0.5 rad/s)
(5) Kalman filter is used for filtering out sensor noises.
(6) LQR control task period: 20 ms; deadline 20 ms; WCET: 1 ms
(7) Kalman filter task period: 2 ms; deadline 2 ms; WCET: 1 ms

State Equations: We refer the reader to [Michigan 2012] for the detailed mathemati-
cal state space equations for the system. Below is the summary of the linear equations:

ẋ
ẍ

φ̇

φ̈

 =

0 1 0 0
0 −0.1818 2.6727 0
0 0 0 1
0 −0.4545 31.1818 0


xẋφ
φ̇

+

 0
1.8182

0
4.5455

 ~u (1)

y =

[
1 0 0 0
0 0 1 0

]xẋφ
φ̇

+

[
0
0

]
~u (2)
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where x is the position of the cart and φ is the angle of the pendulum. Below is the K
matrix that is used to compute the control input ~u = −K~x, where ~x is the state vector:

K = [−61.993 −33.504 95.06 18.83] (3)

Control Algorithm: We use the lqr function from Matlab to obtain the K matrix,
which implements the LQR optimal control [Wittenmark 2011]. This function com-
putes the control gain matrix K based on the system dynamics matrices, Q and R. The
Q matrix defines the cost experienced when the states deviate from the desired ones,
whereas the R matrix defines the cost when the control inputs are large [Wittenmark
2011].
Safety Space Constraints: We define the SSC to be: −0.5 < φ < 0.5, where φ is
the angle of the pendulum, as we do not want the pendulum’s angle to be too large,
otherwise it is unsafe. Although the system is also controlling the cart position, we
do not consider this state as a safety critical state variable, but rather an additional
factor affecting the quality of control.

To determine the cost function for the wrong controller or actuator output, we must
first identify the desired states for the system. The objective of the inverted pendulum
system is to keep the pendulum as close to vertical as possible. Therefore, the desired
state of the pendulum angle is 0. Thus, we select the following cost function: cost =
(x3−x3d)2. This system has 4 state variables, but we only care about the third variable
which is the pendulum angle.
Sub-Spaces and Classification Results: We followed the approach presented in Sec-
tion 4.3 to generate S3, which was then used to generate all three sub-spaces. Since the
system has four dimensions, typical data analysis will include a scatter plot matrix to
plot the pairwise relationship between each two variables. Due to space considerations
we do not include these plots in the paper.

We have collected data from the following operating space of the system:

(1) Cart position: from -6 to 6 meters
(2) Cart velocity: from -6 to 6 m/s
(3) Pendulum angle: from -0.5 to 0.5 radians, outside which we considered as unsafe.
(4) Pendulum angular rate: from -6 to 6 rad/s

After obtaining the sub-spaces, we experimented with two cases regarding S3. The
first one is to only consider S3 inside S3, while the second one is to allow S3 to include
data points inside S3 that do not belong to either S1 or S2, as well as all data points
outside of S3. If, for any reason, the state falls out of S3, full level of fault tolerance
will be required, which would rarely exist in practice as long as the control system is
properly designed.

The results show that S3 includes cart positions with the range from −1 to 1 meter,
cart velocities from −4 to 4 m/s, pendulum angle −0.5 to 0.5 radians, and angular rate
from −5 to 5 rad/s. Inside S3, S1 has pendulum angles from −0.2 to 0.2 radians, with
which different combinations of the other three state vaiables exist from the same
range of S3. In other words, as long as the pendulum angle falls into the [−0.2, 0.2]
range, all points in S3 for the other three state variables belong to S1 with appropriate
combinations. For example, if the pendulum angle is −0.2 radians, then a combination
of cart position of 0, cart velocity of 0, and any point from −1 to 2 rad/s for the angular
rate belong to S1. Similarly, S2 corresponds to a pendulum angle range from −0.35 to
−0.2, as well as from 0.2 to 0.35.

For the sub-space classification, we use some common machine learning techniques
to find the fitted model with the best performance. We focus on the accuracy here as
the storage and prediction time do not vary much between different machine learning
schemes. From our results, except simple logistic regression that has only 85% testing
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Feature Importance Accuracy
Cart Position Cart Velocity Angle Rate Training Testing

Entire Space 0.24 0.3 0.21 0.25 100% 99.7%
Within S3 0.0038 0.01 0.97 0.012 100% 100%

Table I. Random Forest Performance for Inverted Pendulum

Fig. 7. Precision-Recall Curve for S3

accuracy, most of other schemes have a score close to 100%. We only show here the per-
formance of random forest, since it also allows us to calculate the feature importance.
Table I shows that the fitted model using random forest has high testing accuracy for
both cases, one with S3 only inside S3, and the other with S3 in the entire space. For
the latter, all four state variables play important roles, while for the S3 only, the angle
has the most significant impact on the sub-spaces.

Figure 7 shows the precision-recall curve for S3. As expected, the precision is very
high except when the recall for S2 is higher than 80%, reducing it to 95%. AdaFT
can adjust the prediction threshold to improve the precision. If we set the precision
threshold to 99.5% for S2, we have a total testing accuracy of 98.61%. These are the
mis-classification from S2 to S3. The precision-recall curve for the entire space is simi-
lar and is omitted.
Reliability Results: We experimented with two different power consumptions for the
control task: 25 and 50 watts. Figure 8(b) clearly shows that using AdaFT, there is a
significant improvement in TAAF compared to traditional (non-adaptive) FT. Under
our scheduling algorithm (picking the coolest processor to run the task), all three pro-
cessors have similar values of TAAFs. Generally, the greater the power consumption,
the more the beneficial impact of our adaptive approach.

6.2. Case Study 2: Anti-lock Braking System (ABS) in a Straight Trajectory
For the case-study of an ABS in a straight line the canonical seven degrees-of-freedom
car model was used [Rajamani 2011][Currier 2011], along with the Dugoff tire model
[Dugoff et al. 1969]. The user inputs to AdaFT are the physical plant dynamics and the
SSC. The car dynamics are nonlinear; the reader should see [Rajamani 2011][Currier
2011][Dugoff et al. 1969] for the detailed explanations of the car state equations and
control algorithms. These equations allow us to implement the system using AdaFT
API, similar to the template shown in Section 5.1. Below is the summary of our as-
sumptions.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



AdaFT: A Framework for Adaptive Fault Tolerance for Cyber-Physical Systems A:19

(a) Pendulum Angle (rad) (b) TAAF

Fig. 8. Inverted Pendulum’s (a) angle and (b) TAAF

(a) Road Friction Coefficient of 1.0 (b) Road Friction Coefficient of 0.8
Fig. 9. ABS in a Straight Line for two road conditions

(a) SSC (b) FT Sub-Spaces (c) TAAF

Fig. 10. Sub-Spaces and TAAF of ABS in a Straight Line with a Road Friction Coefficient of 1.0

(1) Standard deviation of the actuator noise 5 N.
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(a) SSC (b) FT Sub-Spaces (c) TAAF

Fig. 11. Sub Spaces and TAAF of ABS in a Straight Line with a Road Friction Coefficient of 0.8

(2) Sensor noise levels (standard deviation) for the two state variables (vehicle speed,
wheel speed) are: (0.5m/s, 0.5m/s). Note that we use an equivalent wheel speed in
terms of m/s here.

(3) Initial condition is: (30m/s, 30m/s).
(4) Particle filter is used for sensor noise filtering.
(5) ABS control task period: 20 ms; deadline 20 ms; WCET: 1 ms
(6) Particle filter task period: 2 ms; deadline 2 ms; WCET: 1 ms

Control Algorithm: Based on the Dugoff tire model, an optimal value of the slip
ratio, determined by the vehicle speed vv and wheel speed vw using the equation slip =
1 − vw

vv
, would give the maximum possible friction force during braking. This optimal

point depends on the tires used and is typically within the range of 0.1 to 0.25; this
information is available offline. Many algorithms exist to control the brake pressure
to remain within this optimal region. We experimented with the canonical PID control
algorithm [Wittenmark 2011] for the simulation. We used the difference between the
optimal point 0.2 and the actual slip ratio as the cost function to estimate the worst
case wrong control input.
Safety Space Constraints: The vehicle’s SSC was generated by modeling the vehicle
as a point mass and using the standard Dugoff tire model [Dugoff et al. 1969]. Under
the assumption that the vehicle mass is 1,500 kg, the initial velocity is 30 m/s and
the safe stop distance is 55 meters, the generated SSC is shown in Figures 10a and
11a for two road conditions: dry and wet, respectively. These two figures show that as
long as the slip ratio is within the preferred region, it is safe and we can guarantee
a safe stop distance. Note that with different initial conditions and safe stop distance
requirements, the SSC region will be different. How to accurately determine the SSC
is beyond the scope of this paper, and is the responsibility of the particular domain
specialist.
Simulation Results: Figure 9 shows the simulation results for two different road
friction conditions. Note how well the Particle filter tracks the system states, and also
note the increase in the total time for a complete stop for a worse road condition.

Since this is a 2-dimensional system, a scatter plot with the corresponding decision
boundary determined from the machine learning classification step can be easily plot-
ted. AdaFT generates the sub-spaces shown in Figures 10b and 11b. Note the gains
from using adaptive fault-tolerance: almost 50% of the time, the vehicle is in the S1

sub-space, meaning that the computational workload is significantly reduced.
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LR NN SVM
Number of Trained Parameters 15 93 138
Testing Accuracy 100% 100% 100%

Table II. Comparison of Learning Algorithms for ABS

Using machine learning the sub-spaces were expressed in a lookup table. Since
this system only has two dimensions, and from Figure 10(b) and Figure 11(b) there
are clear linear boundaries between the sub-spaces, even a linear machine learning
model such as logistic regression can perform very well. We include results from three
schemes: support vector machine with a Gaussian (rbf) kernel, logistic regression and
neural network. The corresponding lookup tables had 138, 15, and 93 trained param-
eters, respectively. All three algorithms achieved 100% testing accuracy. The precision
and recall can both be 100% when using the same probability threshold that tests the
testing accuracy. A comparison is shown in Table II and again the number of trained
parameters are similar in terms of memory space; and the testing accuracy is 100% for
each algorithm.

To calculate the TAAF, we experimented with similar power consumptions as in
the first case study: 25 and 50 Watts. Figures 10c and 11c show the improvement in
TAAF. Note the considerable improvement from using adaptive fault-tolerance over
the standard redundancy-every-time approach.

6.3. Case Study 3: Automated Highway System (AHS) Platoon
Grouping vehicles into platoons is an approach to increase the throughput of road
networks [Bergenheim et al. 2012]. Platoons decrease the distances between cars
using coupled control approaches, which coordinate acceleration and braking among
cars. Such synchronization allows for a considerable increase in traffic throughput. An
overview can be found in [Bergenheim et al. 2012]. Cars in a platoon are an example
of a distributed CPS, with multiple, cooperating, participants.
State Equations: As seen before, AdaFT requires the user to provide functions to up-
date the controlled plant state and to generate the control signal. The physical model
here is much more complex than for the straight line ABS system. Therefore, Carsim
[Simulation 2015] integrated with Matlab/Simulink were used for this purpose. Car-
sim, a commercial automotive simulation tool, provides realistic modeling of vehicles
in a variety of road conditions. Matlab/Simulink is used to generate the control signals
and update the vehicle state appropriately. Carsim allows the user to configure multi-
ple cars interacting with each other. The user can also specify the physical parameters
of the vehicle body, and Carsim would generate the differential equations based on
these parameters.
Control Algorithms: The platoon consists of a leader car and one or more followers.
The state space vector of the platoon is (v`,vf , sf ) where v` is the velocity of the platoon
leader, vf is the vector of velocities of the follower cars, and sf is the vector of spacings
between each follower and the car in front of it.

The control task is the adaptive cruise control with the constant time-gap policy
[Rajamani 2011]. The basic idea is to set a desired inter-vehicle spacing based on this
constant time gap, e.g., 2 seconds. This desired distance then varies linearly with the
relative velocity. The desired acceleration is computed by the formula: ẍdesired(t) =
− 1

h (ε̇(t) + β(ε(t) + hẋ(t))), where h is a design parameter, β is the desired time gap,
and ε is the inter-car distance. Details about this algorithm can be found in [Rajamani
2011]. Obviously, a negative acceleration means braking.
Safety Space Constraints: The minimum inter-car distance is set to 5 meters; any-
thing less is defined as control failure and unsafe condition.
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LR NN SVM
Trained Parameters Size 15 153 788
Training Accuracy 78.56% 99.58% 99.62%

Table III. Comparison of Learning Algorithms for Platoon

(a) Sub-Spaces (b) Distance 40 Meters (c) Same Speed

Fig. 12. Platoon Follower Car Sub-Spaces

Simulation Results: Our results have shown that the logistic regression classifi-
cation scheme performed poorly, while more complex algorithms did much better, as
shown in Table III. After adjusting the prediction thresholds, the achieved precision is
close to 100%. The plots of thermal damage to the processors are similar to those in
Case 2 and are, therefore, omitted.

We use a different perspective to analyze the results here. Figure 12a shows the
sub-spaces for the first follower car. Figure 12b shows how to deal with the follower car
joining the platoon and synchronizing its speed appropriately. Sub-Spaces are shown
for various speeds of the joining car for an inter-car distance of 40 meters. If its speed
is low and it needs to accelerate to join the platoon, then little, if any, fault-tolerance is
needed. If its speed is higher, the amount of fault-tolerance required increases. In Fig-
ure 12c, we show the impact of inter-car distance and platoon speed on the sub-spaces
after speed synchronization has been established between the leader and the follower
vehicles. As the inter-car distance decreases and/or the platoon speed increases, the
highway throughput increases (in terms of cars per time unit crossing a given point)
but the computational burden also increases in each car, since a higher level of fault-
tolerance is needed. For example, at a speed of 25 meters/sec, an inter-car distance
of less than 21 meters will require fault-correction; between 22 and 34 meters, fault-
detection is sufficient, and above 34 meters, no fault-tolerance is needed.

7. RELATED WORK
The idea of adaptive fault tolerance is not new; it goes back more than two decades.
In [Goldberg et al. 1993], the authors pointed out that the fault tolerance needs of an
application, and the fault tolerance capabilities of the micro-controller could change as
time goes by, therefore an adaptive technique was presented. In [Fraga et al. 2003],
the authors proposed an object oriented way to manage adaptive fault tolerance. The
fault tolerance management unit is informed about the reliability requirements of the
application; it then adjusts the level of fault tolerance to suit the reliability require-
ments.
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Considerable recent work also contributed to the area of adaptive fault tolerance,
due to the fact that increasingly more safety critical systems are nowadays controlled
by embedded controllers. In [Liu et al. 2008], an On-demand Real-TimEGuArd (OR-
TEGA) was proposed to allow for efficient resource utilization based on the runtime
state space. The idea is to divide the state space of the controlled plant into two sub-
systems: a high-assurance-control (HAC) and a high-performance-control (HPC) sub-
system. They introduced a two-level FT option to be adjusted in real-time.

Most real-time fault-tolerance research assumes that faults cause failures at the ap-
plication level. In [Song et al. 2013], Song, et al. explained why system-level software
(e.g., RTOS scheduling, memory management and I/O processing) is closely tied to
failures; indeed, 65% of hardware errors would corrupt OS state [Li et al. 2008]. They
claimed that such a situation has received little attention, and they proposed Compu-
tational Crash Cart (C3), with the main idea of dividing the system components based
on their functionality (i.e., scheduler, I/O). After a fault is detected, the faulty com-
ponent can perform a focused micro-reboot, rather than having to restart the whole
system. Later they extended this work in [Song and Parmer 2015], to allow the system
to have a run-time monitoring as well as validation capability.

Swetha, et al introduced the Enhanced Resource Management Scheme (ERMS) and
compared it with the traditional redundancy approach [Swetha et al. 2014]. A new
scheduling method, a combination of dynamic planning and dynamic best effort ap-
proach, allowed for joint scheduling of periodic and aperiodic tasks which also include
online reconfiguration for error management. This fault recovery technique allows all
critical tasks to meet their deadlines and the system continues functioning at a min-
imal safe functionality upon errors. This scheme has been analyzed and evaluated,
using simulation, on an automotive cruise control system.

Bak, et al. developed a combined online/offline approach [Bak et al. 2014] for the well
known Simplex architecture. Their approach uses aspects of a real-time reachability
computation, which also maintains safety, but is less conservative. The switch logic for
their Simplex architecture will, like the traditional Simplex architecture, guarantee
that the system never enters an unsafe state (safety), but uses the complex controller
as much as possible (minimize conservatism). Simplex mainly deals with software
fault tolerance, with the assumption that the simple controller is formally verified
without any software bugs, and that the complex controller gives potentially better
quality of control but without a formal verification. Since only one copy of each con-
troller version is deployed during run time, no hardware fault tolerance is supported.
One possible combination of our work and the Simplex architecture is to introduce a
more flexible and more powerful fault tolerance hierarchy (both software and hard-
ware): with the knowledge of the physical side state information, the system might be
able to determine which version of the control task and how many copies of the control
tasks to run at a specific time.

The paper by Bogdan and Marculescu [Bogdan and Marculescu 2011] argues that
one can expect many cyber-physical computational workloads to show fractal behavior.
They point out that if this is the case, it will affect computational resource allocation.
As far as AdaFT is concerned, what is of relevance is the computational burden as a
function of the application (controlled plant) physical states. In its current form, the
framework accepts traditional digital control workloads. As new workload formula-
tions emerge from the CPS community, they can be included in the AdaFT framework.

Note that most prior work on adaptive fault tolerance focused on the cyber side of
CPS. The cyber system was either informed about the current state by the physical
plant and the required fault tolerance level, or these conditions were assumed to be
given. By contrast, our work uses a cyber and plant side co-design approach to provide
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in real-time the physical side state information to the cyber side, based on which the
cyber fault-tolerance level can be determined.

8. CONCLUSION
As cyber-physical systems become ever more complicated, a trend has emerged to-
wards running the control tasks on an integrated computation platform rather than
on isolated controllers. Traditionally, massive always-on redundancy has been used to
ensure reliable controller performance. However, in many, if not most, instances, the
controlled plant is so deep within its allowed state space that occasional controller
errors do not cause controller plant failure. This motivates an adaptive approach to
fault-tolerance. Such an approach significantly reduces the computational burden of
the controller. This reduced burden, in turn, leads to lower controller operating tem-
peratures which enhances processor lifetime.

This paper describes an generalized software simulation framework, AdaFT, for an
adaptive fault tolerance in CPS. AdaFT first partitions the state space of the con-
trolled plant based on how much fault-tolerance is required. Then a machine-learning
based approach is used to generate a compact memory look-up table indicating the
required level of fault tolerance. When provided with power consumption information,
the framework carries out a thermal analysis of the cyber elements and uses that in-
formation to estimate reliability. Our current work with respect to possible extensions
to AdaFT include: range of control systems being evaluated, i.e., effective handling
of nonlinear and large systems; hierarchical management of distributed applications
with multiple, interacting, centers of control, automatic load tuning/balancing, and
hardware provisioning according to a user-defined expected system reliability or life-
time.

The AdaFT framework can be used in every stage of the design process. It can be
used to determine the impact of control task dispatch frequencies on system perfor-
mance and reliability. Given processor failure rates, its calculation of thermally accel-
erated aging can determine hardware provisioning for specified operational lifetimes.
Its analysis of controlled plant dynamics can be used to set the appropriate level of
fault-tolerance required for safe plant functioning. At a time when CPS complexity
is increasing and demands on reliability are increasing, AdaFT facilitates the use of
adaptive fault tolerance that allows for an economical and safe management of re-
sources in cyber-physical systems.
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