
IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 8, AUGUST 1994 880

Hybrid Signed-Digit Number Systems: A Unified
Framework for Redundant Number Representations

With Bounded Carry Propagation Chains
Dhananjay S . Phatak and Israel Koren, Fellow, ZEEE

Abstract- A novel hybrid number representation is proposed
in this paper. It includes the two's complement representation
and the signed-digit mpresentation as special cases. The hybrid
number representations proposed are capable of bounding the
maximum length of carry propagation chains during addition
to any desired value between 1 and the entire word length.
The framework reveals a continuum of number representations
between the two extremes of two's complement and signed-digit
number systems and allows a unified performance analysis of the
entire spectrum of implementations of adders, multipliers and
alike.

We present several static CMOS implementations of a two-
operand adder which employ the proposed representations. We
then derive quantitative estimates of area (in terms of the re-
quired number of transistors) and the maximum carry propaga-
tion delay for such an adder. The analysis clearly itlustrates the
trade-offs between area and execution time assodated with each
of the possible representathns. We also discuss adder trees for
parallel multipliers and show that the proposed representations
lead to compact adder trees with fast execution times.

In practice, the area available to a designer is often Umited. In
such cases, the designer can select the particular hybrid fepresen-
tation that yields the most suitable implementation (fastest, lowest
power consumption, etc.) while satisfying the area constraint.
Similarly, if the worst case delay is predetermined, the designer
can select a hybrid representation that minimizes area or power
under the delay constraint.

Index Terms-Bounded carry propagation, carry-free addition,
hybrid signed-digit number system, redundant number represen-
tation, signed-digit numbers, static CMOS implementation.

I. INTRODUCTION

HE well-known signed-digit (SD) number representa- T tion makes it possible to perform addition with carry
propagation chains that are limited to a single digit position,
and has been used to speed up arithmetic operations [1]-[7].
The SD representation also renders most-significant-digit-first
schemes feasible and has been used in on-line arithmetic [3]
and digit-pipelined schemes [4]. In the binary signed-digit
number system, each digit can assume any one of the three
values { -1,O, 1). As a result, redundancy is introduced in
the number system, i.e., a number can be represented in more
than one way. For example, 1 can be represented by 01 or IT,
where = -1. This redundancy can be exploited to limit the

Manuscript received October 13, 1993; revised March 8, 1994.
The authors are with the Department of Electrical and Computer Engi-

neering, University of Massachusetts, Amherst, MA 01003 USA; e-mail:
koren@euler.ecs.umass.edu.
IEEE Log Number 9403095.

length of carry propagation chains to only one digit position
[8], making it possible to add two numbers in fixed time,
irrespective of the word length.

In the addition of two numbers represented in the conven-
tional binary number system, on the other hand, the carry may
propagate all the way from the least significant digit to the
most significant. The addition time is thus dependent on the
word length (linear in ripple-carry adders, logarithmic in carry-
look-ahead adders). The speedup in addition time in the SD
number system does not come without cost, however, since
two bits are needed to represent a binary signed digit. Also, the
basic adder cell that adds two signed digits and an input carry
to produce a signed digit and a carry is more complex than a
full adder for unsigned digits. Thus, more area is traded off for
the constant addition time. The SD representation is especially
useful for multi-operand addition. Signed-digit adder trees are
easier to lay out and route than Wallace trees. In [5] a 64 x 64
bit multiplier based on a redundant signed-digit binary adder
tree was shown to yield a smaller critical path delay than the
corresponding Wallace tree multiplier. A similar design for a
fast 54 x 54 bit multiplier was recently presented in [6]. Note
that a full adder achieves a reduction from 3 to 2 operands.
Hence, in a multi-operand adder tree composed of full adders,
the reduction ratio achieved at each level is 3 to 2. In the
addition of SD operands, on the other hand, the reduction
ratio is 2 to 1 and this is one of the main advantages of using
signed digits.

The SD and the two's complement number representations
are at two extremes. In the SD number system more bits,
switching devices and routing are required per digit. In return,
the carry propagation is limited to a single digit position. In
the conventional number systems on the other hand, fewer bits,
switches and routing are needed per digit, but the carry prop-
agates across the entire word length. We introduce a hybrid
number representation where the maximum carry propagation
length can be set to any desired value between one and the
full word length. The area required decreases as the length of
the carry propagation chain increases. Such a representation
reveals a continuum of possible realizations that trade off area
for speed. This framework also permits a unified analysis of the
performance (in terms of area (A), execution time (T), power
consumption, etc.) of the whole spectrum of implementations
of adders, multipliers and the like.

The proposed number representation can be useful in prac-
tice when the area available to a designer is limited or the worst

0018-9340/94$04.00 0 1994 IEEE

mailto:koren@euler.ecs.umass.edu

PHATAK AND KOREN: FYBRID SIGNED-DIGIT NUMBER SYSTEMS 881

0; 0i = -2a -2a < 0; <-a fli = -a -a <O; < a 0; = a
Oi-1 x X 0;-1 <-a Bi-l>-a x < a Oi-l 2 a

ci -1 -1 -1 0 0 0 1

si 0 0, + r a -U 8i U -a

a < & < 2 a 6i = 2a

x X

1 1

0 f ? - r

case delay is predetermined. If the area available is limited,
the designer can select the particular hybrid representation that
yields the most suitable implementation, Le., the one with the
least delay or power consumption, under the area constraint.
Conversely, given a worst case delay, the designer can select a
hybrid representation that minimizes the area (or power) while
satisfying the delay constraint.

The paper is organized as follows. The next section presents
a brief overview of the SD number representation and the
rules and conditions necessary to bound the length of carry
propagation chains. Section 111 introduces the hybrid number
representation and the operations performed in this number
system. Section N illustrates static CMOS implementations of
various cells for the proposed representation. Section V analy-
ses the area vs. delay and other tradeoffs associated with the
choice of each of the possible representations. The framework
permits a unified evaluation of the whole spectrum of two
operand adders from full signed-digit adder to the ripple-carry
adder. We then illustrate various possible implementations of
adder trees for partial product accumulation in multiplication.
Section VI presents conclusions and indicates possible future
work. The Appendix discusses the relationship between the
GSD representation considered in [lo], and the HSD number
system proposed here.

II. SIGNED-DIGIT NUMBER REPRESENTATION

For a given radix T , each digit zi in an SD number system
is typically in the range

-a 5 zi 5 +a, where [T i l l - 5 U S . T - 1 . (1)

In such a system, a “carry-free” addition can be performed,
where the term “carry-free” in this context means that the
carry propagation is limited to a single digit position. In other
words, the carry propagation length is fixed irrespective of the
wordlength. The addition consists of two steps 1113. In the first
step, an intermediate sum s; and a carry c; are generated, based
on the operand digits xi and y; at each digit position i. This is
done in parallel for all digit positions. In the second step, the
summation zi = s; + ci-1 is carried out to produce the final
sum digit z;. The important point is that it is always possible
to select the intermediate sum si and carry q-l such that
the summation in the second step does not generate a carry.
Hence, the second step can also be executed in parallel for all
the digit positions, yielding a fixed addition time, independent
of the word length.

If the selected value of a in (1) satisfies the condition

then the intermediate sum si and carry c; depend only on the
input operands in digit position i, Le., on xi and yi. The rules
for selecting the intermediate sum and carry are well known
in this case [11 1. The interim sum is s; = z; + y; - T C ~ where

1 if (z; + y;) 2 a

0 if 15; +y;I < a
-1 if (z; +y;) < - a . (3)

Note that for the most commonly used binary number
system (radix T = 2), condition (2) cannot be satisfied. Carry-
free addition according to the rules in (3) therefore cannot be
performed with binary operands. However, by examining the
input operands in position i - 1 together with the operands in
digit position i, it is possible to select a carry c; and an interim
sum si such that the final summation z; = s; + e;-1 never
generates a carry. In other words, if one allows the carry c;
and interim sum si to depend on two digit positions, viz., i and
i- 1, then condition (2) can be relaxed and a = [9 1 can also
be used to accomplish carry-free addition as explained next.

Let xi, y;, zi-l and yi-l be the input digits at the ith and
(i - 1)th positions, respectively, and assume that the radix
under consideration is T = 2n. This includes the case where
T = 2 and a = 1. Let Bi = xi + yi and Oi-1 = zi-1 + y;-1
denote the sums of the input digits at the two positions,
respectively. Then, the rules for generating the intermediate
sum s; and carry c; are summarized in Table I. In the table,
the symbol “ x ” indicates a “don’t care,” i.e., the value of Oi-1

does not matter. An equivalent form of this table for the special
case when the radix T is equal to 2 was presented in [SI.

111. HYBRID NUMBER REPRESENTATION
Here, instead of insisting that every digit be a signed

digit, we let some of the digits to be signed and leave
the others unsigned. For example, every alternate or every
third or fourth digit can be signed; all the remaining ones
are unsigned. We refer to this representation as a Hybrid
Signed-Digit (HSD) representation. In the following, we show
that such a representation can limit the maximum length of
carry propagation chains to any desired value. In particular,
we prove that the maximum length of a carry propagation
chain equals (d + l) , where d is the longest distance between
neighboring signed digits.

It can be verified that addition in such a representation
requires the carry in between all digit positions (signed or

882

-1
-1
o

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 8, AUGUST 1994

i o a,-l = b,-l = 0 {-l,O} +1 -1
0 T at least one of ai-1, b,-l is 1 {+1,0} -1 0
ii X x 0 0

TABLE II
RULES FOR SELEXX-ING THE CARRY cE AND INTERMEDIATE S m s,

BASED ON z t ,y , , a , -1 AND b,-1, WHERE 2, AND yz ARE
SIGNED DIGITS, AND %-I, b,-l ARE UNSIGNED D I G ~ S

X

X

II t2 I 1 1 I X I x II 0 I +1 II U I I I ,I I ”

unsigned) to assume any value in the set { - l , O , 1) as in the
SD system. Without loss of generality, assume that the radix
is T = 2 and that every alternate digit is a signed digit, for the
purpose of illustration. Then, the operations in a signed-digit
position are exactly the same as those in the SD case. For
instance, let xe and yi be radix-2 signed digits to be added at
the ith digit position, and ci-1 be the carry into the ith digit
position. Each of these variables can assume any of the three
values { - l , O , 1). Hence ,-3 I x, + y; + ~ - 1 5 +3. This
sum can be represented in terms of a signed output z; and a
signed carry c; as follows:

2% + ’Y, + Ca-1 = 2ci + Z, (4)

where ci, z, E { -1,O, 1). In practice, the signed-digit output
zi is not produced directly. Instead, the carry ci and an
intermediate sum si are produced in the first step, and the
summation z; = si + ci-1 is carried out in the second.

The operations in an unsigned digit position are as follows.
Let ai-1 and bi-1 be the bits to be added at the (i - 1)th
digit position; ui-1, bi-1 E {0,1). The carry into the (i - 1)th
position is signed and can be -1,0 or 1. The output digit e,-l

is restricted to be unsigned, i.e., e;-1 E {0,1). Hence the carry
out of the (i - 1)th position must be allowed to assume the
value -1 as well. In particular

We next demonstrate that the carry propagates only between
the signed digits. The addition consists of two steps:

Step 1: The signed-digit positions generate a carry-out and
an intermediate sum based only on the two input signed digits
and the two bits at the neighboring lower order unsigned digit
position. Let 2; and yi be the signed digits to be added in the
ith position and ai-1 and bi-1 be the unsigned digits (bits)
in the (i - 1)th position. The carry ci and intermediate sum
s; at the ith (signed) digit position are selected based only on
xi, yi, ai-1 and bi-1 according to Table 11.

In this table, denotes -1 and x denotes a “don’t care”
as before. The first column of Table I1 indicates all possible
values of the sum (x, + y,). The second column indicates
the individual digit values that lead to the sum in column 1.
The third column indicates the possible values of a,-l and
b,-1. Together, these columns cover all possible inputs. The
fourth column indicates the possible values of c,-1 which is
the carry into the ith (signed) digit position. This carry into the
signed digit position affects the cany out of the signed digit
position (viz., c,). Note that if a,-l = b,-l = 0 then c,-1

is nonpositive, i.e., c,-1 E (0, -1). If at least one of a,-l

and b,-l is 1, then c,-1 is nonnegative, i.e., c,-1 E (0, +l}.
The polarity of c,-1 as defined by these mutually exclusive
conditions (both a,-1, b,-l are zero and at least one of them is
nonzero) is valid irrespective of what values x, and y, assume.
The last two columns in Table I1 indicate the values of s, and
c,, respectively, for each possible combination of x,, y,, a,-l

From the table, it is clear that the carry c, out of the signed
digit is independent of the carry into the previous unsigned
(i - 1)th digit position, viz., c , - ~ . Hence, the carries out of,
and the intermediate sums at all the signed digits positions
can be calculated in parallel in the first step. Furthermore,
from the table it is seen that whenever the carry c,-1 to
be generated at the (i - 1)th position is expected to be
nonnegative, s, is selected to be nonpositive and vice versa.
In other words, s, and c,-1 are guaranteed to have opposite
polarity. Consequently, the addition z, = sa + c,-1 can never
generate a new carry. Thus, the carry propagation stops at the
signed digit(s). The most important point is that it is possible
to predict when ~ - 1 will be nonpositive and when it will be
nonnegative, just by looking at the operand digits ai-1 and
bz-l . It is not necessary to wait until the actual value of c,-1
becomes available; which makes it possible to break the carry
propagation chain.

Step 2: In the second step, the carries generated out of the
signed digit positions ripple through the unsigned digits all
the way up to the next higher order signed digit position,
where the propagation stops as described above. The second
step can also be carried out in parallel, i.e., all the (limited)
carry propagation chains between the signed digit positions
are executed simultaneously.

The most significant digit in any HSD representation must
be a signed digit in order to incorporate enough negative
numbers. All the other digits can be unsigned. For example,
if the word length is 32 digits, then, the 32nd (Le., the most
significant) digit is a signed digit. The remaining digits are at
the designer’s disposal. If regularity is not necessary, one can
make the lst, 2nd, 4th, 8th and 16th (and 32nd) digits signed
and let all the remaining digits be unsigned digits (bits). The
addition time for such a representation is determined by the
longest possible carry-propagation chain between consecutive
signed digit positions (16 digit positions; from the 16th to the
32nd digit in this example).

The range of numbers covered by an n digit HSD repre-
sentation depends on the number of signed digits and their
positions. The SD representation (i.e., HSD with d = 0) has
the highest range of [-*, +w] for the digit set

and b,-i.

PHATAK AND KOREN: FYBRID SIGNED-DIGIT NUMBER SYSTEMS 883

[-a, +a]. The largest positive number has the same value as
above for other HSD representations. The smallest negative
number, however, depends on d and the exact positions
of the signed digits. Its value is obtained by setting all
unsigned digits to 0 and all signed digits to -a. The smallest
range corresponds to the HSD representation with d = n -
1 (i.e., only the most significant digit is signed) and is
equal to [-arn-l,+-]. n u s , the range of an HSD
representation with d > 0 includes fewer negative numbers
than positive ones. The range of an n digit HSD representation
is in general larger than that of a conventional n digit radix
complement representation. Therefore the conversion of an n
digit HSD number to a conventional radix complement number
requires n+ 1 digit positions. For the conversion, the algorithm
presented in [12] can be used.

One extra signed digit position to the left of the most
significant digit is sufficient to accommodate the result of the
addition of two HSD format numbers. This, however, may lead
to nonuniform distance between signed digits. For example,
when adding two binary HSD numbers with a uniform distance
of 1 (alternate digits signed), one extra signed digit position is
required to hold the result. This introduces nonuniformity since
the two adjacent most significant digits of the output are both
signed. If the original format (d = 1) is to be preserved, then
one must add two extra digits: one unsigned and one signed to
accommodate the result of the addition. This is important in
multi-operand addition (such as partial product accumulation
in a multiply operation).

The HSD representation has another interesting property:
there is no need to be restricted to a particular HSD format
(with a certain value of d). The representation can be modified
(i.e., the value of d can be changed) while performing addition
(and consequently, other arithmetic operations) and this can be
done in certain cases without any additional time delay. For
instance, let II: and y be two HSD operands, with uniform
distances d, and d,, respectively, between their signed digits.
Also assume that (d, + 1) is an integral multiple of (d, + 1)
so that the signed digit positions of y are aligned with the
signed digit positions of II: (note that x has more signed
digits than y under the stated assumption). Let z = 2 + y
be their sum, having a uniform distance d, between its signed
digits. The possible values of d, which are interesting from a
practical point of view are O,d, and d,. If we set d, = d,
then the above addition will take exactly the same time as
an addition of two HSD operands with uniform distance d,
producing an HSD result with distance d,. Setting d, = d,
(and clearly, d, = 0) will reduce the addition time even
further, since the introduction of extra signed digits results
in shorter carry propagation chains. For example, suppose that
d, = 0 (all digits are signed) and d, = 1 (alternate digits
are signed). If d, equals 1, then the delay required to perform
the addition is the same as that required to add two HSD
numbers with the same distance d = 1 to generate an output
with d, = 1. This format conversion flexibility (without any
additional time delay penalty) can be useful, as illustrated later
in the discussion of partial product accumulation.

The HSD representation is related to the GSD (Generalized
Signed Digit) representation considered in [101. In the special

case when the distance between adjacent signed digits is
uniform, our HSD representation becomes identical to the
GSD representation [13]. Adopting the algorithm summarized
in Table I1 can be considered as an efficient implementation of
GSD addition in this special case. When the distance between
signed digits is nonuniform, however, HSD representation is
no longer equivalent to the GSD scheme. Such a nonuniform
distance between signed digits, corresponds (in some sense)
to using differknt radii for different digit positions; a concept
that is clearly beyond the scope of the GSD framework. It
should be noted that the proposed HSD representation and the
algorithm in Table I1 is also valid and yields equally efficient
implementation even when the distance d between signed
digits is nonuniform. The appendix discusses the relationship
between the HSD and GSD schemes in further detail.

IV. STATIC CMOS IMPLEMENTATION
We now present an implementation of the signed and

unsigned digit adder cells. Kuninobu et al. [5] have proposed
some of the most efficient designs for a cell that adds radix-
2 signed-digit operands. We have therefore adopted the same
design methodology.

A. Addition of Bits at the Unsigned Digit Position

Inputs to the cell are the bits ui-1,bi-l and the incoming
carry c ; - ~ . The outputs are the carry out ci-land the final
sum ei-1. The output digit e;-1 is unsigned and can take one
of the two values 0 or 1. The carries ci-2 and ci-1 can take
values in { - 1, 0 , l) and need two bits for encoding. Following
[5] we encode each of these carries using two unipolar binary
variables, each requiring a single bit.

From Table 11, note that
a) When both ai-1 and bi-1 are 0, the carry ci-1 is

nonpositive (i.e., ci-l E {-1,O)) and the intermediate
sum si is nonnegative (i.e., si E {0,1}).

b) When at least one of ai-1 and bi-1 is nonzero, the
carry ci-1 is nonnegative (i.e., ci-1 E {0,1)) and the
intermediate sum si is nonpositive (i.e., si E {-l,O}).

Let wi-1 = 1 if condition a) is satisfied (Le., ai-1 = bi-1 =
0) and wi-1 = 0 if condition b) is satisfied (i.e., at least one
of ui-l,b;-1 is 1). Then, the variable vi-1 defined by

vi-1 = wi-1+ q - 1 (6)

is always nonnegative. In effect, the carry c;-l is expressed as
the difference of two bits vi-1 and wi-1, i.e., ci-1 = vi-1 -
wi-1. Similarly, the incoming carry ci-2 is also expressed as
a difference of two bits

ci-2 = vi-2 - wi-2 (7)

where vi-2, w;-2 E (0,l). Thus, the cell in the (i - 1)th
(unsigned digit) position should generate wi-1, vi-1 and ei-1

from aipl, bi-1, vi-2 and w;-~. Note that all of these variables
are binary and can be encoded by a single bit. The above
equations are algebraic, but the symbols used in these equa-
tions (i.e., w i - ~ , v i - ~ , etc.) can also be used to indicate the
corresponding logical variables. The distinction follows from
the context.

884 43, NO. 8, AUGUST 1994

I
I
I
I
1

- 1
I

' i -1 I
I
I
I
I
I
I
I
I
I
I
I

I
1
I
I
I

wi-1

(b)

-
" i-1

From the above, the following logical equations are obtained
1141

Fig. 1. Redundant binary adder cells at (a) unsigned digit position, (b) signed digit position.

The logic diagram of the cell consisting of 32 transistors
is shown in Fig. l(a). Here, it is assumed that the XOR
(or XNOR) can be implemented with pass gates with 6
transistors when both the inputs are available only in true
(uncomplemented) form, and with 4 transistors if one of the
inputs is available in true as well as complemented form [15].
Note that the cell actually generates E. This is done to
reduce the number of transistors and the delay associated with
the critical path.

B. The Addition of Signed Digits
The inputs to this cell are the signed digits zi, yi and the

carry signals wi-l and vi-l. A signed digit z is encoded in
two bits xsxa , with, -1, 0 and 1 encoded by 11, 00, and 01,
respectively. The outputs of the cell are the carry signals vi
, w; and the bits that represent the output signed digit (zf ,
2:). In order to reduce the critical path delay and the transistor
count, the cell accepts and produces sign bits of signed digits
in complemented form @e., zq, y;S and z). --

Once again, from Table 11, note that
c) When at least one of zi and yi is negative, ci is

d) When both xi and yi are nonnegative, ci is nonnegative.
Let w; = 1 when condition c) is satisfied and wi = 0 when

(11)

nonpositive.

condition d) is satisfied. Then, the variable vi defined by

vi = w; + c;

I

I
I
I
I

I
I
I
I
I

, I
I
I
I
I
I
I
I

I
I
I
I

v i -2 I

w i - 2 I

is always nonnegative. Thus, the carry c; is represented by the
difference of two bits vi and w;.

From Table I1 and conditions a) and b), it can be seen that
the variable qi defined by

qg = wz-1 - si (12)

is always nonnegative as well. The output signed digit zi
satisfies

where the substitutions are from (6) and (12). The signed
digit cell therefore generates the output bits wi,vi and the
intermediate bit qi from xi, y; and wi-1. It then generates the
final sum z; from q; and vi-1 according to equation (14). From
the above, one obtains the following logical equations:

w , 2 - - x? a + ys a = 2. a

s; = zf @ y;,
qi = s; @ Wi-1,

zf = qi . -,

vi = sf . w. z - l + z f . l / ; + q . % .

z 7 (15)
(16)
(17)
(18)
(19)
(20)

- -

a _ - zi - Qi € B V i - l ,
-

Details of the derivation can be found in [14]. The logic
diagram of the cell, shown in Fig. l(b), is very similar to
that of the cell presented in [5]. The only difference is the
polarity of the input and output variables. The design in [5]
accepts and produces all variables in true (uncomplemented)
form. The cell shown in Fig. l(b) and the SD adder cell

PHATAK AND KOREN: FYBRlD SIGNED-DIGIT NUMBER SYSTEMS 885

presented in [5] both require 42 transistors. However, in the
HSD representation, where alternate digits are unsigned, the
cell in every alternate digit position is that of Fig. l(a), which
requires only 32 transistors. Thus, a group of two adjacent
digit positions requires 74 transistors in our design, instead of
84 transistors that are needed for two of the cells in [5] . The
savings in the number of transistors is even higher if an HSD
representation with d 2 2 is employed.

Following [5] , for the sake of consistent comparisons with
the designs presented therein, we also make the (somewhat
crude) assumption that the delay associated with XOR, XNOR,

gates is 1.5 units, while all other delays are 1 unit. Similar
assumptions were used in [16] to estimate the total delays in
the units of an inverter or basic two input NANDmOR gate
delay. Then, the critical path delay of our design is 6 units
while that of the SD-based design in [5] is 5 units. We would
like to point out that the cells shown in Fig. 1 were designed
to minimize critical path delay and transistors for the case
where alternate digits are signed. In this implementation, the
longest path begins at the inputs of the (lower order) unsigned
digit (such as the (i - 1)th digit). It traverses digit positions
i (signed) and i + 1 (unsigned) via signals wi-1, w; and w;+l
and terminates at the signed digit position i + 2. The delay
associated with this path is only 5.5 units. Note that the signed
digit input signals x4 and yYf at the ith digit position also
propagate up to the (2+2)th digit output through four complex
gates (via signals st, w; and v;+l). The delay associated with
this path is 6 units and it is the critical path. It is interesting to
note that the path which spans the maximum number of digit
positions is not critical. Another path between consecutive
signed digits has maximum delay and hence is the critical
path, even though its span is smaller by one digit position.

Note that the cell in Fig. l(a) generates 5 (where k =
i - 1). If there are more than one unsigned digits between
two signed digits (say, for instance, that there are two bits
between two signed digits), the next cell will take as input
the complemented form of V k , i.e., uk = 5. In terms of uk
and Wkr the carry into the (k + 1)th position is expressed as
ck = 'ulc - W k = 1 - u k - 'wk. The logic diagram of a cell that
accepts this input is shown in Fig. 2. At its output, this cell
again inverts the wk+l signal (with respect to the polarity of
wk), Le., it generates v k + l in true form. It is possible to add
an inverter to the cell in Fig. l(a) and make Vk available in
true form. This would obviate the need to have a different type
of cell (viz., the cell in Fig. 2) and only the cell in Fig. l(a)
with an additional inverter would be sufficient. This inverter,
however, falls on the critical path and this way, the number of
(extra) inverters equals the number of unsigned digits traversed
minus L. With the introduction of the third cell, there is at most
one extra inverter when the number of unsigned digits between
two signed digits is even. If d is the number of unsigned digits
between two neighboring signed digits, then the critical path
delay is

(1.5 + 1.5) + 1.5d + [1.5]

(1.5 + 1.5) + 1.5d + 1 + [1.5]

A-O-I (AND-OR-INVERT), 0-A-I (OR-AND-INVERT)

(21)
= 4.5 + 1.5d

= 5.5 + 1.5d

if d is odd,

if d is even.

Tcritical =

i?"
-
" k

w k

a k b k

Fig. 2. Alternate cell for the unsigned digit position.

Here, the two delays of 1.5 units in parenthesis are due to
the two complex gates in the lower order signed digit cell. The
last 1.5 units of delay (shown within the square brackets) is
associated with the XNOR gate at the higher order signed digit
where the carry propagation terminates. The terms in between
are proportional to d since the carry ripples through all the
unsigned digit positions. The transistor count can be similarly
calculated. Assume that there are exactly g groups of d + 1
digits each, where the most significant digit in each group is
signed and all other digits are unsigned. In other words, the
word length n satisfies n = g x (d + 1). The transistor count
for a group and a complete adder of this type are denoted by
Ngroup and Ntotal, respectively, and are given by

if d is odd,
if d is even,

32d + 42
32d + 2 + 42 Ngroup =

Next, we analyze the cost and performance of some basic
arithmetic operations when implemented in the HSD number
system.

V. COST AND PERFORMANCE TRADE-OFFS
FOR HSD IMPLEMENTATIONS

Based on the above discussion, it is seen that the HSD
representation is very flexible and offers a wide variety of
choices to the designer. Increasing d trades off higher delay
for lesser area. In this section we first evaluate the whole
spectrum of adders: from ripple-carry to full signed-digit
adders under the unifying HSD framework. Next, we illustrate
different implementations of adder trees for partial product
accumulation in a multiply operation.

886 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 8, AUGUST 1994

count 750 1 \-I
700

550

“I”

0 4 8 12 16 20 23
Distance between signed digits (d)

35 5

Transistor count
X

delay
(X 10s)

Fig. 3. (a) Area (transistor count) vs. the distance d between two consecutive signed digits. d = 0 corresponds to the SD adder and d = 23 corresponds
to an ordinary ripplecarry adder. The point denoted by the symbol “Q’ at d = 23 corresponds to the carry-look-ahead adder with a blocking factor (i.e.,
look-ahead tree fan-in) of 4. (b) Critical path delay vs. the distance d between two consecutive signed digits. (c)Area x Time vs. the distance d between
consecutive signed digits. (d) Area’x Time) vs. the distance d between consecutive signed digits.

Two Operand Addition: The first operation we consider is
the addition of two operands. Equations (21) and (22) in the
previous section evaluate the critical path delay and transistor
count as functions of the distance d between signed digits.
This allows us to evaluate the whole spectrum of adders from
ordinary ripple-carry adders at one end to the (fully) SD adders
on the other extreme. The plots for word length n = 24 are
shown in Fig. 3(a)-(d). The word length was chosen to be 24
since this is the number of significand bits in the IEEE standard
for single precision floating-point numbers. In these figures,
the measures of interest (area, delay, area x delay etc.) are
plotted as a function of d, the distance between adjacent signed
digits. The point d = 0 corresponds to the SD representation,
where every digit is signed. The transistor count and delay for
this case are based on the design presented in [5] . The point
d = 23 at the other extreme corresponds to the ripple-carry
adder with all digits unsigned. Here, the cells are 1 bit full
adders with a transistor count of 22 and critical path delay of
1.5 per cell. The corresponding values for a carry-look-ahead
adder are also shown in each of these figures as a separate
point (denoted by the symbol ‘‘0’) with abscissa d = 23. Here
the blocking factor (or the fan-in) of the carry-look-ahead tree
was assumed to be 4.

Figure 3(a) shows transistor count vs. the distance between
signed digits (d); Fig. 3(b) shows critical path delay vs. d;
Fig. 3(c) shows (area x time delay) vs. d; and Fig. 3(d) shows
(area’x delay) vs. d. Note that (area2x time delay) can be
considered to be a rough estimate of (area x power x time

delay) because the power consumed is proportional to CV2 f ,
where C is the overall capacitance, V is the supply voltage
and f is the effective frequency (i.e., f includes the effect
of both the clock rate and the actual transition or switching
rate). V and the clock rate are fixed parameters. Assuming
that f depends only on the clock rate, it too is a constant.
The power consumed is therefore approximately proportional
to the overall capacitance C , which is in tum proportional to
the transistor count or area.

These plots do not take into account the overhead of
converting the SD (or HSD) sum to two’s complement. For
a two-operand addition, the cost of converting the redundant
output back to two’s complement could make the redundant
adders slower and/or bigger than the conventional carry-look-
ahead or carry-skip adders. In more complex applications
involving multi-operand addition, however, the conversion to
two’s complement is needed only once at the end. If the
number of operands to be added is large, the time per addition
is an important factor. The performance numbers depicted in
the figures are more meaningful in this context rather than
a simple two operand addition. Also, the transistor count
alone is not a sufficiently accurate estimate of the area, since
multi-operand addition usually involves trees which need a
significant amount of routing area. It is a fairly good estimate
of the complexity nonetheless.

From Fig. 3(c), it is seen that the (fully) signed-digit imple-
mentation [5] is A T optimal. It requires maximum area but
takes minimum time. A ripple-carry adder, on the other hand

Critical
path
delay

35

30 -
25

20

-

-

-

0 4 8 12 16 20 23
Distance between signed digits (d)

35

30 -
25

20

-

-

-

0 4 8 12 16 20 23
Distance between signed digits (d)

(Transistor count)’
X

del.y
(X 106)

(b)

22 -
20

18 -
16 -

14 -

-

0 4 8 12 16 20 23
Distance between signed digits (d)

(4

PHATAK AND KOREN: FYBRID SIGNED-DIGIT NUMBER SYSTEMS 887

takes maximum time and minimum area. The altemate-signed-
digit (d 1) adder illustrated above reduces the transistor
count from 84 to 74 (for two digit positions), but increases
the critical path delay from 5 to 6 units. It closely matches
the AT performance of the SD adder. Other bounded-carry-
propagation adders take less area and more time, but the AT
product keeps on increasing with d. The carry-look-ahead
adder also has a very good AT product, which is fairly close
to the optimal value. The last two points (d = 22 and 23) on
the A vs. d curve in Fig. 3(a) illustrate that there is a sizable
increase in the area when one introduces even a single signed
digit. This is due to the fact that the unsigned digit cell must
now handle a carry in the set { -1,O, 1) which makes it more
complex than the full adder cells of a ripple-carry adder. In
Fig. 3(a), note that at every point between d = 12 and d = 23,
the number of signed digits is 2, since the most significant or
24th digit is signed and there is one additional signed digit
in the word. As d is increased from 12 to 22, the position
of the signed digit shifts from the 13th to the 23rd place.
Thus the distance between signed digits is nonuniform when
12 < d 5 22. However, the total number of signed digits and
hence the total number of unsigned digits, remain 2 and 22,
respectively, for d in this range. Hence, the area is constant
for all d values in the range from 13 to 22. The critical path,
on the other hand, increases linearly with the longest distance
between signed digits as illustrated in Fig. 3(b). Also, beyond
d > 20, the carry chain between signed digits is long enough
to render the total delay (i.e., the propagation delay through
the chain plus the complex gates at the ends) of the HSD adder
higher than that of the ordinary ripple-carry adder. Figure 3(c)
and (d) show that increasing d beyond a certain point makes
AT and A2T for HSD adders worse than that for ordinary
ripple-carry adders. Finally from Fig. 3(d), note that the HSD
adder with d = 1 is A2T optimal.

The continuum of choices available can be exploited to
obtain the most suitable implementation under area or delay
constraints. For instance, if the clock period is estimated to be
about 10 gate delays, then from Fig. 3(b), it is seen that all
implementations with d 5 3 satisfy the delay constraint. If the
area is to be minimized, then d = 3 is the appropriate choice,
Le., every 4th digit should be signed. Thus, one can select the
minimum area solution that meets the given delay constraint.
If minimization of area is less critical, then one can select
the full SD representation that yields the fastest execution
time. Similarly, given a constraint on area, from Fig. 3(a),
one can obtain d values that satisfy the area constraint.
Then, from Fig. 3(b), the designer can select that value of
d which minimizes the execution delay, while satisfying the
area constraint.

Multi-Operand Addition (Partial Product Accumulation): A
64 x 64 multiplier with radix-4 modified Booth recoding [111
generates 32 partial products, that can be accumulated with
a redundant adder tree having 5 levels. The final conversion
from a redundant to two’s complement format is carried out
by a carry-look-ahead scheme. Redundant binary adder trees
have proved to be highly efficient in accumulating partial
products in fast, parallel, tree-based multiplication schemes.
For instance, the 64 x 64 multiplier reported in [5] is faster,

s a
z i z i

ri -
a b

Fig. 4.
complement format and produce signed digit output [5] .

Cell used at the top level of an SD tree to add operands in two’s

smaller (transistor count) and easier to lay out than a Wallace-
tree-based multiplier. In the redundant adder tree, the reduction
in the number of operands is from 2 to 1, while in a tree of full
adders (or (3, 2) counters), the reduction ratio is 3 to 2. Also,
the trees based on full adders have diagonal connections for
carries, which makes their layout considerably more difficult.
Here, we illustrate a few HSD based implementations of
redundant adder trees and the tradeoffs associated with each
implementation.

We begin with the fully signed-digit format. An efficient
design of an SD adder tree was presented in [5] . At the top
level of the tree, the partial products generated are in two’s
complement format. Hence, one need not use the complex cells
that add two SD numbers. In fact the cell at the top level can
be considerably simplified as was shown in [5] . Let A and
B be two operands (partial products) in two’s complement
format. Then the addition operation A + B can be rewritten
as A - (-B). The generation of -B involves complementing
every bit of B and adding a “1” in the least significant digit
position. Complementing all the bits of B is easy and can
be done in parallel. The addition of 1 in the least significant
digit position is postponed to the next level of the adder tree.
One is then left with the subtract operation A - B at the
top level of the tree, where B + 1 = -B. Generation of a
signed digit output by subtraction of two operands in two’s
complement format is very easy. Note that the only possible
outputs of the bit-wise subtraction can be { -1 ,O , l}, each of
which is a valid signed digit output. Thus, there is no carry
propagation whatsoever between any digit positions. Such a
digit wise subtraction can be implemented very economically
by employing the cell shown in Fig. 4 [5] . The cell accepts two
bits a and b, each in (0, l}, and generates a signed digit output
resulting from the operation a - b. As seen in the figure, there
is no carry propagation and the digit positions are independent
of each other. The critical path delay is 1.5 units and two digit
positions need 20 transistors (10 per digit position).

All the cells at the remaining four levels are identical to
the full SD adder cell presented in [5] , requiring 42 transistors
and having a critical path delay of 5 units. The transistor count
of the SD adder tree is estimated to be 67 K, including the
final conversion stage. If the final carry-look-ahead conversion
from redundant to two’s complement format handles groups of
4 digits in parallel, there is a [log ,1281 = 4-level look-ahead
tree. Then, the delay for the final conversion is approximately
20 units. Assuming that the delay required for the generation of

i
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I

1 ;

!

I
I
I
I
I
I
I

- 1

I
I
I
I
I
I
I
I
I

=i-1 I

(a) (b)
Fig. 5. Cells used (at the top level of an HSD tree) to add operands in two's
complement format and produce HSD format output. (a) cell in a signed digit
position (b) Cell in an unsigned digit position.

partial products is 5 units, the total delay for the SD tree-based
multiplier is 46.5 units (5 + 1.5 + 4 x 5 + 20).

Next, we consider an adder tree based on the HSD repre-
sentation with d = 1, @e., every alternate digit is signed).
This representation can be expected to make the redundant
binary adder tree even smaller and easier to lay out for two
reasons. First, the number of wires to be routed is only a of
that in the SD scheme, since every alternate digit is unsigned
and needs only 1 bit for encoding. Second, the cells in the
alternate digit position of an HSD adder handle unsigned bits
and have a smaller transistor count. Once again, the cells at the
top level of the tree can be considerably simplified since all
the operands are in two's complement fonnat. The simplified
cells are shown in Fig. 5(a) and (b). In Fig. 5, the cell in the
signed digit position has 20 transistors, while the one in the
unsigned digit position has 24. The carries at all digit positions
can always be selected to be nonnegative and hence need only
one bit to encode. The operation of the cells is as follows. Let
A and B be the two operands in two's complement format.
The cells accept bit-wise complemented inputs and & and
generate the sum (A+ B) in HSD format where every altemate
digit is signed. The inputs are complemented in order to reduce
the critical path delay without increasing the transistor count.
Moreover, the cells generate the sign bit of the signed digit
output in the complemented form, as required by the next
level. The transistor count for two digit positions (signed and
unsigned) is 20 + 24 = 44. The length of the cany propagation
chain is smaller than the case when both operands are signed
digits and the critical path delay is 4 units.

The overall transistor count estimate for this tree (including
the final conversion stage) is 72 K. The total delay for this
HSD tree-based multiplier is (5 + 4 + 4 x 6 + 20 =) 53 units.
Note that the SD tree has a smaller overall transistor count.
The reason for this is as follows. In a tree, the number of leaf
nodes = (1 + number of internal nodes). Hence, the number
of adders at the top level equals (1 + number of adders at
all other levels of the tree). At the top level, the SD-based

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 8, AUGUST 1994

scheme is more economical as demonstrated by the cells in
Figs. 4 and 5. Hence, the overall transistor count for the SD
tree is smaller then that for an HSD tree with d = 1. While
these estimates make it appear that the HSD-based tree has no
advantage, we next show that the format conversion flexibility
of the HSD system can be utilized to significantly reduce the
transistor count (to below that required by the SD tree) without
increasing the critical path delay.

As mentioned earlier, the HSD representation allows format
conversion during the addition of two operands without any
extra delay penalty. This suggests that one can use a combi-
nation of HSD variants to obtain implementations that would
require fewer transistors and lesser routing. We illustrate this
with.a tree that utilizes both SD (Le., HSD with d = 0) and
HSD with d = 1 number representations. At the top level
of the tree where the inputs (partial products) are in two's
complement format, it is more economical (in terms of the
number of transistors used) to use the cell shown in Fig. 4, that
produces an output in the full SD format. At the subsequent
levels, the HSD (with d = 1) cells are more economical. To
exploit the advantages of both, it would be best to generate
full SD representation at the top level and then switch to the
HSD representation at the next level, Unfortunately, if both
operands in the addition have the full SD format then the only
output format possible is full SD.

If however, one of the operands is in SD format and the
other is in HSD format with d = 1, then it is possible to
produce an HSD format output (with d = 1) in the same time
delay that is required to add two HSD format operands with
d = 1 as explained next. Let the unsigned digit position under
consideration be the (i - l)th, and the signed and unsigned
digits and the carry to be summed be denoted by z,-1, d,-l and
ci-2, respectively. Then -2 5 &-1 = z , - ~ + d,-l + c,-2 I
+3. Let the output bit (unsigned digit) be e,-l, and the carry
generated at the (i - 1)th position be c,-1. Then, for each
possible value of the (unique) values of c,-1 and e,-1
are determined from the relation

L1 = 2c,-1 + et-l, (23)

where e,-l E (0 , l}, cz-l E { - l , O , 1). The ith output digit
is signed and can therefore stop the carry propagation chain.
In order to do so, all it needs is the information about the
polarity (nonpositive or nonnegative) of the carry in, viz. c,-1.

The polarity of c,-1 can be determined just by looking at the
operands z,-1 and dz-l, without knowing the actual value
of c , - ~ . It is easy to verify that c,-1 is nonnegative when
[(z,-1 = +1) or (zt-l = 0 and = l)] and nonpositive
in all other cases.

Thus, in a design that exploits both SD and HSD (with
d = 1) formats, half the cells at the top level are of the type
shown in Fig. 4 and generate partial sums in full SD format.
The remaining partial products are summed using the cells
shown in Fig. 5 to generate partial sums in the HSD format.
At the next level of the tree, the corresponding pairs of partial
sums (one in SD format and one in HSD format) are then
added together as explained above, to generate the output in
the HSD format. From this point on, all the operands are in
the HSD format throughout all the remaining levels of the

PHATAK AND KOREN: FYBRID SIGNED-DIGIT NUMBER SYSTEMS 889

tree. The HSD format final sum is then converted back to
two’s complement format as explained above. Henceforth, this
scheme is referred to by the acronym MHSSD (Mixed Hybrid
Signed and Signed Digit) implementation. Note that alternate
digit positions in MHSSD have both digits signed. Hence the
cell shown in Fig. l e) is sufficient. In order to generate ci-1

and ei-1 according to equation (23), only one other cell that
accepts a signed digit, an unsigned digit (bit) and a signed
carry, and generates an unsigned output bit and a signed carry
needs to be designed. The design methodology is identical to
that used for the cells shown in Fig. 1 and is omitted for the
sake of brevity (the details can be found in [141). The resulting
cell (that occupies alternate digit positions) has 34 transistors
instead of 32 that a cell in Fig. l(a) needs. This is a very small
increase which is far more than offset by the savings at the top
level. The net result is a considerable reduction in the overall
transistor count: with this scheme, the overall transistor count
is approximately 66 K, which is smaller than the transistor
count of both SD or HSD trees. The critical path delay for
level 2 (the one that adds one SD and one HSD operand to
produce one HSD operand) is still 6 units. Consequently, the
overall delay of this scheme is the same as that of the HSD
scheme with d = 1, i.e., 53 units.

It should be emphasized that transistor count alone is by
no means an accurate measure of the area. It is well known
that transistors are cheap to implement but communication,
especially nonlocal interconnections are expensive in VLSI.
Hence, there is a great deal of emphasis on minimizing the
interconnections and trying to keep them local. 1nr.a tree
architecture, the interconnections are inherently nonlocal. The
MHSSD tree proposed here has only i t h the number of wires
to be routed at each level (except the top level) as compared
to an SD tree. Hence the routing area for the MHSSD tree is
expected to be significantly smaller than that of the SD tree.
The transistor count of the MHSSD tree is smaller than that of
the SD tree as mentioned above. Hence, the total area required
by the MHSSD tree can be expected to be smaller than that
of SD tree.

From the delays above, we have %== 1.1398 and

therefore, an overall area ratio of (*:EL= 5 0.8774 will
make MHSSD tree AT-optimal (among all the schemes that
utilize signed digits). Similarly an area ratio of 0.937 or less
will make the MHSSD scheme A2T-optimal. As mentioned
above, A2T can be thought to be a crude approximation of
the power consumed. Thus the MHSSD scheme is expected
to result in an implementation that consumes less power. This
can be a significant advantage if power minimization is an
objective.

Other combinations of two or more HSD variants are
possible and may lead to further reduction in area. Depending
on the objective function or the constraints at hand, the
designer can select the particular scheme that yields the most
suitable implementation.

VI. CONCLUSION
A novel, hybrid number representation has been proposed

and was shown to lead to a bounded carry propagation

during addition. The system uses a mixture of unsigned and
signed digits to represent a number. It was demonstrated
that the maximum length of a carry propagation chain in
such a system is limited to the (longest) distance between
adjacent signed digits and can therefore be set to any desired
value from 1 to the entire word length by selecting the
position(s) of the signed digits. This reveals a continuum
of number representations from two’s complement on one
hand to the completely signed-digit system on the other.
This framework was used to analyze the area and time delay
tradeoffs associated with each representation. It also permits a
unified performance analysis of the whole spectrum of adders
based on these number systems.

Implementations based on the HSD representations were
shown to yield fast and compact adder and multiplier realiza-
tions. The format conversion flexibility of HSD representation
opens up new possibilities of combining two or more HSD
variants in order to obtain more suitable implementations.
This was illustrated with a multiplier design that exploits
the advantages of both the HSD with d = 1 and d = 0
representations. Besides demonstrating the flexibility offered
by the above theoretical framework, the design has several
attractive performance attributes: it requires a small area
(smaller than multipliers that use only a single representation
in the redundant adder tree), and is likely to consume low
power.

Other arithmetic operations such as division, square root
extraction and elementary function evaluation have been ac-
celerated by using SD representation. For these operations,
the HSD framework would provide a continuum of choices
between ordinary and full signed digit implementations that
trade off area for speed.

APPENDIX

[lo],
Parhami presented a unified treatment of several signed-
digit schemes under a general framework called the GSD
(Generalized Signed Digit) number representation. In the
GSD formulation, each digit in a radix r positional number
system can take any value in the interval [-a, +PI. Conditions
on r ,a and P that are necessary in order to perform carry-
free addition were presented, and equations to perform the
carry-free addition were derived in [lo]. Besides the radix-r
SD representation, this formulation also includes stored-
borrow/stored-carry type representations as special cases.
However, all the digit positions in GSD are uniform, i.e.,
the range of values a digit can assume and the way the
digit-wise operations are carried out is the same for all digit
positions. Our representation, on the other hand, deliberately
introduces nonuniformity in the digit positions in order to
reduce the transistor count (and area). Thus, some digits are
allowed to be signed and others are left unsigned which makes
the range of values a digit can assume, nonuniform. Also, the
operations performed at signed and unsigned digit positions
are quite different as illustrated above.

In the special case when the number of unsigned digits
between any two adjacent signed digits is the same, say d,

Relation between HSD and GSD Representations In

890 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 8. AUGUST 1994

our HSD representation can be considered to be a special case
of the GSD representation with radix rd+’ [13]. In a group
of d + 1 digits (d unsigned and 1 signed), if the signed digit
assumes the least significant position then the limits of the
interval of allowed digit values are given by -a = -(r - 1)
and ,f3 = rd+’ - 1, respectively. If the signed digit assumes
the most significant position, the corresponding limits are
-a = -(r - 1). rd and p = rd+l - 1. Obviously, the second
choice is better, since it allows more values to be represented
with the same number of bits. For example, consider the HSD
representation with r = 2 and d = 1 (i.e., every altemate digit
is signed). Here, a group of two digits, viz, a signed digit and
the lower order adjacent unsigned bit can be interpreted as a
radix-4 hybrid signed digit which can take any value in the
range [-a, +PI. where Q = 2 and , f3= 3. Note that this range
is asymmetric and different from the range [-3,+3) that a
conventional radix4 signed-digit system uses (see equation
(I)). In particular, the number of values a digit can assume is
smaller, even though the same number of bits (3 bits) is used
to represent each digit.

When the distance between the signed digits is nonuniform,
however, the HSD representation is no longer a special case of
the GSD representation. Such a nonuniform distance between
signed digits, corresponds (in some sense) to using different
radii for different digit positions; a concept that is clearly
beyond the scope of the GSD framework. A nonuniform
distance between signed digits along with the format conver-
sion property of the HSD representation could be useful in
multioperand addition. For instance, consider r = 2 and d = 1.
In order to prevent overflow (in a two operand addition), one
can add an extra signed digit to the most significant position,
leading to a nonuniform d. If the result is then added to another
HSD number with d = 1, the sum output can be rendered in the
uniform d = 1 format. Another possible use of nonuniform d
is in case when the word length is a prime number such as 53,
which is the total number of significant bits (a 52 bit mantissa
+ 1 hidden bit) in the double precision floating-point format
prescribed in the IEEE standard 754.

Moreover, even in the case when the distance between the
signed digits is uniform, a brute force implementation of the
carry-free addition according to equation (3) in Section I1
will lead to far more complex logic, larger area and longer
critical path delay. For instance, consider the case when the
signed digit occupies the most significant position in a group
of d f 1 adjacent digits i , i - 1; .. a , (i - d + 1). If this
group is interpreted as a signed digit with radix 2d+1, then
the carry out of the signed digit position ci depends on the
values of this and the previous (radix 2d+1) digits. Note that
in order to restrict the carry propagation to a single digit
position, equation (2) must be satisfied. This equation implies
that the digits must be allowed to take any value in the
interval [-(2d+1 + l), +(2d+1 + l)]. The smallest value the
rad i~-2~+’ digit can take is -a = -2d+1, which does not
meet this condition. Hence, only the scheme where the carry
depends on two digit positions is feasible. In other words, the
carry out c, depends on all of the radix-2 operand digits in
positions i - 1, - . . , i - d + 1 as well as those in digit positions
i -d , . .. ,i-2d-t1 or a total of 4(d + 1) binary digits (or 4d+6

bits, since there are exactly two signed digits, each requiring
one extra bit). The carry generation logic in such a case would
be prohibitive. In contrast, adopting our representation and the
use of Table I1 shows that the carry out ci depends only on four
binary operand digits, viz., those in digit positions i and i - 1
or equivalently, only on six bits. Thus, using the proposed
HSD representation is more efficient (in terms of transistor
count, as well as delay) than using the conventional higher
radix signed-digit representation.

The GSD summation algorithm in [lo] requires a compar-
ison of the sum 1c; + y; with certain constants to determine
the carry. A brute force implementation might need the actual
value of the sum zi + yi, However, with proper selection of
constants and digit encodings as described in [lo], only a few
bits of each operand may be actually needed to determine
the outcome of the comparison, thereby obviating the need
to actually evaluate the sum. Our HSD representation utilizes
only a few bits (3 bits) of each operand as illustrated above
and can be considered to be an efficient implementation of
GSD addition in the special case when the distance between
adjacent signed digits is uniform.

REFERENCES

[l] A. Avizienis, “Signed-digit number representations for fast parallel
arithmetic,” IRE Trans. Electron. Comput., vol. EC-10, pp. 389-400,
Sept. 1961.

[2] M. D. Ercegovac and T. Lang, “Fast multiplication without carry-
propagate addition,” IEEE Trans. Comput., vol. 39, pp. 1385-1390,
Nov. 1990.

[3] M. D. Ercegovac and T. Lang, “Redundant and on-line CORDIC:
Application to matrix triangularization and SVD,” IEEE Trans. Comput.,
vol. 39, pp. 725-740, June 1990.

[4] M. J. Irwin and R. M. Owens, “Digit-pipelined arithmetic as illustrated
by the paste-up system: A tutorial,” IEEE Comput., pp. 61-73, Apr.
1987.

[5] S. Kuninobu, T. Nishiyama, H. Edamatsu, T. Taniguchi, and N. Takagi,
“Design of high speed MOS multiplier and divider using redundant
binary representation,” in Proc. 8rh Symp. Comput. Arithmetic, pp.
80-86, 1987.

[6] H. Makino, Y. Nakase, and H. Shinohara, “A 8.8-11s 54 x 54-
bit multiplier using new redundant binary architecture,” in Proc.
In?. ConJ Compur. Design (ICCD), Cambridge, MA, Oct. 1993, pp.

[7] H. R. Srinivas and K. K. Parhi, “A fast VLSI adder architecture,” IEEE
J. Solid-Stare Circuits, vol. SC-27, pp. 761-767, May 1992.

[8] N. Takagi, H. Yasuura, and S. Yajima, “High-speed VLSI multiplication
algorithm with a redundant binary addition tree,” IEEE Trans. Compur.,
vol. C-34, pp. 789-796, Sept. 1985.

[9] D. S. Phatak, 1. Koren and H. Choi, “Hybrid number representations
with bounded carry propagation chains,” in Proc. ICCD, Cambridge,
Massachusetts, Oct. 1993, pp. 272-275.

[IO] B. Parhami, “Generalized signed-digit number systems: a unifying
framework for redundant number representations,” IEEE Trans. Com-
put., vol. 39, pp. 89-98, Jan. 1990.

[1 I] I. Koren, Computer Arithmetic Algorithms. Englewood Cliffs, NJ:
Prentice-Hall, 1993.

[12] S. M. Yen, C. S. Laih, C. H. Chen, and J. Y. Lee, “An efficient
redundant-binary number to binary number converter,” IEEE J. Solid
State Circuits, vol. SC-27, pp. 109-112, Jan. 1992.

[13] B. Parhami, Personal Communication.
[14] D. S. Phatak and I. Koren., “Hybrid Signed-Digit number systems: A

unified framework for redundant number representations with bounded
carry propagation chains,” Tech. Rep. TR-93-CSE-2, Elec. and Comput.
Eng. Dep., Univ. of Massachusetts, Amherst, Jan. 1993.

[15] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design, A
Systems Perspective.

[I61 M. Mehta, V. Parmar, and E. Swartzlander, “High-speed multiplier
design using multi-input counter and compressor circuits,” in Proc. 10th
Symp. Comput. Arithmetic, 1991, pp. 43-50.

202-205.

Reading, MA: Addison Wesley, 1988.

PHATAK AND KOREN: FYBRID SIGNED-DIGIT NUMBER SYSTEMS 891

Dhanaqjay Phatak received the B. Tech. degree
in electrical engineering from the Indian Institute
of Technology, Bombay, in 1985; the M.S. degree
in microwave engineering in 1990 and the Ph.D.
degree in computer systems engineering in 1993,
both from the Electrical and Computer Engineering
Department, University of Massachusetts, Amherst.

His current research interests are in computer
arithmetic algorithms and their VLSI implementa-
tions, fault tolerant computing, digital and analog
VLSI design and CAD, signal processing, parallel

Israel Koren (S’72-M’76-SM’87-F791) received
the B.Sc., M.Sc., and D.Sc. degrees from the
Technion-Israel Institute of Technology, Haifa, in
1967, 1970, and 1975, respectively, all in electrical
engineering.

He is currently a Professor of Electrical
and Computer Engineering at the University of
Massachusetts, Amherst. Previously, he was with
the Departments of Electrical Engineering and
Computer Science at the Technion-Israel Institute
of Technology. He also held visiting positions with

computing, and neural networks. His &search interests also-include &owave
and optical integrated circuits. He has published in the IEEE TRANSACTIONS
ON MICROWAVE THEORY A M) TECHNIQUES, E E E TRANSACTIONS ON NEURAL
NETWORKS, Neural Computation and in conferences related to signal process-
ing algorithms and their implementations.

the University of Califomia at Berkeiey, University of Southern Califomia,
Los Angeles, and University of California, Santa Barbara. He has been a
consultant to several companies including Intel, Digital Equipment Corp.,
National Semiconductor and Tolerant Systems. His current research interests
are Fault-tolerant VLSI architectures, models for yield and performance,
floor-planning of VLSI chips and computer arithmetic.

Dr. Koren has published extensively in the IEEE TRANSACTIONS ON
COMPUTERS, the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF
INTEORATED CIRCUITS AND SYSTEMS, and others. He was a Co-Guest Editor for
the IEEE TRANSACTIONS ON COMPUTERS, special issue on High Yield VLSI
Systems, April 1989. Since January 1992, he serves on the Editorial Board
of this TRANSACTIONS. He also served as Program Committee member for
numerous conferences. He has edited and co-authored the book, Defect and
Fault-Tolerance in VLSI Systems (Vol. 1, Plenum, 1989). He is the author of
the textbook Computer Arithmetic Algorithms Prentice-Hall, 1993.

