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Hybrid Signed-Digit Number Systems: A Unified 
Framework for Redundant Number Representations 

With Bounded Carry Propagation Chains 
Dhananjay S .  Phatak and Israel Koren, Fellow, ZEEE 

Abstract- A novel hybrid number representation is proposed 
in this paper. It includes the two's complement representation 
and the signed-digit mpresentation as special cases. The hybrid 
number representations proposed are capable of bounding the 
maximum length of carry propagation chains during addition 
to any desired value between 1 and the entire word length. 
The framework reveals a continuum of number representations 
between the two extremes of two's complement and signed-digit 
number systems and allows a unified performance analysis of the 
entire spectrum of implementations of adders, multipliers and 
alike. 

We present several static CMOS implementations of a two- 
operand adder which employ the proposed representations. We 
then derive quantitative estimates of area (in terms of the re- 
quired number of transistors) and the maximum carry propaga- 
tion delay for such an adder. The analysis clearly itlustrates the 
trade-offs between area and execution time assodated with each 
of the possible representathns. We also discuss adder trees for 
parallel multipliers and show that the proposed representations 
lead to compact adder trees with fast execution times. 

In practice, the area available to a designer is often Umited. In 
such cases, the designer can select the particular hybrid fepresen- 
tation that yields the most suitable implementation (fastest, lowest 
power consumption, etc.) while satisfying the area constraint. 
Similarly, if the worst case delay is predetermined, the designer 
can select a hybrid representation that minimizes area or power 
under the delay constraint. 

Index Terms-Bounded carry propagation, carry-free addition, 
hybrid signed-digit number system, redundant number represen- 
tation, signed-digit numbers, static CMOS implementation. 

I. INTRODUCTION 

HE well-known signed-digit (SD) number representa- T tion makes it possible to perform addition with carry 
propagation chains that are limited to a single digit position, 
and has been used to speed up arithmetic operations [1]-[7]. 
The SD representation also renders most-significant-digit-first 
schemes feasible and has been used in on-line arithmetic [3] 
and digit-pipelined schemes [4]. In the binary signed-digit 
number system, each digit can assume any one of the three 
values { -1,O, 1). As a result, redundancy is introduced in 
the number system, i.e., a number can be represented in more 
than one way. For example, 1 can be represented by 01 or IT, 
where = -1. This redundancy can be exploited to limit the 
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length of carry propagation chains to only one digit position 
[8], making it possible to add two numbers in fixed time, 
irrespective of the word length. 

In the addition of two numbers represented in the conven- 
tional binary number system, on the other hand, the carry may 
propagate all the way from the least significant digit to the 
most significant. The addition time is thus dependent on the 
word length (linear in ripple-carry adders, logarithmic in carry- 
look-ahead adders). The speedup in addition time in the SD 
number system does not come without cost, however, since 
two bits are needed to represent a binary signed digit. Also, the 
basic adder cell that adds two signed digits and an input carry 
to produce a signed digit and a carry is more complex than a 
full adder for unsigned digits. Thus, more area is traded off for 
the constant addition time. The SD representation is especially 
useful for multi-operand addition. Signed-digit adder trees are 
easier to lay out and route than Wallace trees. In [5] a 64 x 64 
bit multiplier based on a redundant signed-digit binary adder 
tree was shown to yield a smaller critical path delay than the 
corresponding Wallace tree multiplier. A similar design for a 
fast 54 x 54 bit multiplier was recently presented in [6]. Note 
that a full adder achieves a reduction from 3 to 2 operands. 
Hence, in a multi-operand adder tree composed of full adders, 
the reduction ratio achieved at each level is 3 to 2. In the 
addition of SD operands, on the other hand, the reduction 
ratio is 2 to 1 and this is one of the main advantages of using 
signed digits. 

The SD and the two's complement number representations 
are at two extremes. In the SD number system more bits, 
switching devices and routing are required per digit. In return, 
the carry propagation is limited to a single digit position. In 
the conventional number systems on the other hand, fewer bits, 
switches and routing are needed per digit, but the carry prop- 
agates across the entire word length. We introduce a hybrid 
number representation where the maximum carry propagation 
length can be set to any desired value between one and the 
full word length. The area required decreases as the length of 
the carry propagation chain increases. Such a representation 
reveals a continuum of possible realizations that trade off area 
for speed. This framework also permits a unified analysis of the 
performance (in terms of area (A), execution time (T), power 
consumption, etc.) of the whole spectrum of implementations 
of adders, multipliers and the like. 

The proposed number representation can be useful in prac- 
tice when the area available to a designer is limited or the worst 
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case delay is predetermined. If the area available is limited, 
the designer can select the particular hybrid representation that 
yields the most suitable implementation, Le., the one with the 
least delay or power consumption, under the area constraint. 
Conversely, given a worst case delay, the designer can select a 
hybrid representation that minimizes the area (or power) while 
satisfying the delay constraint. 

The paper is organized as follows. The next section presents 
a brief overview of the SD number representation and the 
rules and conditions necessary to bound the length of carry 
propagation chains. Section 111 introduces the hybrid number 
representation and the operations performed in this number 
system. Section N illustrates static CMOS implementations of 
various cells for the proposed representation. Section V analy- 
ses the area vs. delay and other tradeoffs associated with the 
choice of each of the possible representations. The framework 
permits a unified evaluation of the whole spectrum of two 
operand adders from full signed-digit adder to the ripple-carry 
adder. We then illustrate various possible implementations of 
adder trees for partial product accumulation in multiplication. 
Section VI presents conclusions and indicates possible future 
work. The Appendix discusses the relationship between the 
GSD representation considered in [lo], and the HSD number 
system proposed here. 

II. SIGNED-DIGIT NUMBER REPRESENTATION 

For a given radix T ,  each digit zi in an SD number system 
is typically in the range 

-a 5 zi 5 +a, where [ T i l l  - 5 U S . T - 1 .  (1) 

In such a system, a “carry-free” addition can be performed, 
where the term “carry-free” in this context means that the 
carry propagation is limited to a single digit position. In other 
words, the carry propagation length is fixed irrespective of the 
wordlength. The addition consists of two steps 1113. In the first 
step, an intermediate sum s; and a carry c; are generated, based 
on the operand digits xi and y; at each digit position i. This is 
done in parallel for all digit positions. In the second step, the 
summation zi = s; + ci-1 is carried out to produce the final 
sum digit z;. The important point is that it is always possible 
to select the intermediate sum si and carry q-l such that 
the summation in the second step does not generate a carry. 
Hence, the second step can also be executed in parallel for all 
the digit positions, yielding a fixed addition time, independent 
of the word length. 

If the selected value of a in (1)  satisfies the condition 

then the intermediate sum si and carry c; depend only on the 
input operands in digit position i, Le., on xi and yi. The rules 
for selecting the intermediate sum and carry are well known 
in this case [ 11 1. The interim sum is s; = z; + y; - T C ~  where 

1 if (z; + y;) 2 a 

0 if 15; +y;I < a 
-1 if (z; +y;) < - a .  (3) 

Note that for the most commonly used binary number 
system (radix T = 2), condition (2) cannot be satisfied. Carry- 
free addition according to the rules in (3) therefore cannot be 
performed with binary operands. However, by examining the 
input operands in position i - 1 together with the operands in 
digit position i, it is possible to select a carry c; and an interim 
sum si such that the final summation z; = s; + e;-1 never 
generates a carry. In other words, if one allows the carry c; 
and interim sum si to depend on two digit positions, viz., i and 
i- 1, then condition (2) can be relaxed and a = [ 9 1  can also 
be used to accomplish carry-free addition as explained next. 

Let xi, y;, zi-l and yi-l be the input digits at the ith and 
(i - 1)th positions, respectively, and assume that the radix 
under consideration is T = 2n. This includes the case where 
T = 2 and a = 1. Let Bi  = xi + yi and Oi-1 = zi-1 + y;-1 
denote the sums of the input digits at the two positions, 
respectively. Then, the rules for generating the intermediate 
sum s; and carry c; are summarized in Table I. In the table, 
the symbol “ x ”  indicates a “don’t care,” i.e., the value of Oi-1 

does not matter. An equivalent form of this table for the special 
case when the radix T is equal to 2 was presented in [SI. 

111. HYBRID NUMBER REPRESENTATION 
Here, instead of insisting that every digit be a signed 

digit, we let some of the digits to be signed and leave 
the others unsigned. For example, every alternate or every 
third or fourth digit can be signed; all the remaining ones 
are unsigned. We refer to this representation as a Hybrid 
Signed-Digit (HSD) representation. In the following, we show 
that such a representation can limit the maximum length of 
carry propagation chains to any desired value. In particular, 
we prove that the maximum length of a carry propagation 
chain equals (d  + l ) ,  where d is the longest distance between 
neighboring signed digits. 

It can be verified that addition in such a representation 
requires the carry in between all digit positions (signed or 
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unsigned) to assume any value in the set { - l , O ,  1) as in the 
SD system. Without loss of generality, assume that the radix 
is T = 2 and that every alternate digit is a signed digit, for the 
purpose of illustration. Then, the operations in a signed-digit 
position are exactly the same as those in the SD case. For 
instance, let xe and yi be radix-2 signed digits to be added at 
the ith digit position, and ci-1 be the carry into the ith digit 
position. Each of these variables can assume any of the three 
values { - l , O ,  1). Hence ,-3 I x, + y; + ~ - 1  5 +3. This 
sum can be represented in terms of a signed output z; and a 
signed carry c; as follows: 

2% + ’Y, + Ca-1  = 2ci + Z, (4) 

where ci,  z, E { -1,O, 1). In practice, the signed-digit output 
zi is not produced directly. Instead, the carry ci and an 
intermediate sum si are produced in the first step, and the 
summation z; = si + ci-1 is carried out in the second. 

The operations in an unsigned digit position are as follows. 
Let ai-1 and bi-1 be the bits to be added at the (i - 1)th 
digit position; ui-1, bi-1 E {0,1). The carry into the (i - 1)th 
position is signed and can be -1,0 or 1. The output digit e,-l 

is restricted to be unsigned, i.e., e;-1 E {0,1). Hence the carry 
out of the (i - 1)th position must be allowed to assume the 
value -1 as well. In particular 

We next demonstrate that the carry propagates only between 
the signed digits. The addition consists of two steps: 

Step 1: The signed-digit positions generate a carry-out and 
an intermediate sum based only on the two input signed digits 
and the two bits at the neighboring lower order unsigned digit 
position. Let 2; and yi be the signed digits to be added in the 
ith position and ai-1 and bi-1 be the unsigned digits (bits) 
in the (i - 1)th position. The carry ci and intermediate sum 
s; at the ith (signed) digit position are selected based only on 
xi, yi, ai-1 and bi-1 according to Table 11. 

In this table, denotes -1 and x denotes a “don’t care” 
as before. The first column of Table I1 indicates all possible 
values of the sum (x, + y,). The second column indicates 
the individual digit values that lead to the sum in column 1. 
The third column indicates the possible values of a,-l and 
b,-1.  Together, these columns cover all possible inputs. The 
fourth column indicates the possible values of c,-1 which is 
the carry into the ith (signed) digit position. This carry into the 
signed digit position affects the cany out of the signed digit 
position (viz., c,). Note that if a,-l = b,-l = 0 then c,-1 

is nonpositive, i.e., c,-1 E (0, -1). If at least one of a,-l 

and b,-l is 1, then c,-1 is nonnegative, i.e., c,-1 E (0, +l}. 
The polarity of c,-1 as defined by these mutually exclusive 
conditions (both a,-1, b,-l are zero and at least one of them is 
nonzero) is valid irrespective of what values x, and y, assume. 
The last two columns in Table I1 indicate the values of s, and 
c,, respectively, for each possible combination of x,, y,, a,-l 

From the table, it is clear that the carry c, out of the signed 
digit is independent of the carry into the previous unsigned 
(i - 1)th digit position, viz., c , - ~ .  Hence, the carries out of, 
and the intermediate sums at all the signed digits positions 
can be calculated in parallel in the first step. Furthermore, 
from the table it is seen that whenever the carry c,-1 to 
be generated at the (i - 1)th position is expected to be 
nonnegative, s, is selected to be nonpositive and vice versa. 
In other words, s, and c,-1 are guaranteed to have opposite 
polarity. Consequently, the addition z, = sa  + c,-1 can never 
generate a new carry. Thus, the carry propagation stops at the 
signed digit(s). The most important point is that it is possible 
to predict when ~ - 1  will be nonpositive and when it will be 
nonnegative, just by looking at the operand digits ai-1 and 
bz-l .  It is not necessary to wait until the actual value of c,-1 
becomes available; which makes it possible to break the carry 
propagation chain. 

Step 2: In the second step, the carries generated out of the 
signed digit positions ripple through the unsigned digits all 
the way up to the next higher order signed digit position, 
where the propagation stops as described above. The second 
step can also be carried out in parallel, i.e., all the (limited) 
carry propagation chains between the signed digit positions 
are executed simultaneously. 

The most significant digit in any HSD representation must 
be a signed digit in order to incorporate enough negative 
numbers. All the other digits can be unsigned. For example, 
if the word length is 32 digits, then, the 32nd (Le., the most 
significant) digit is a signed digit. The remaining digits are at 
the designer’s disposal. If regularity is not necessary, one can 
make the lst, 2nd, 4th, 8th and 16th (and 32nd) digits signed 
and let all the remaining digits be unsigned digits (bits). The 
addition time for such a representation is determined by the 
longest possible carry-propagation chain between consecutive 
signed digit positions (16 digit positions; from the 16th to the 
32nd digit in this example). 

The range of numbers covered by an n digit HSD repre- 
sentation depends on the number of signed digits and their 
positions. The SD representation (i.e., HSD with d = 0) has 
the highest range of [-*, +w] for the digit set 

and b,-i. 



PHATAK AND KOREN: FYBRID SIGNED-DIGIT NUMBER SYSTEMS 883 

[-a, +a]. The largest positive number has the same value as 
above for other HSD representations. The smallest negative 
number, however, depends on d and the exact positions 
of the signed digits. Its value is obtained by setting all 
unsigned digits to 0 and all signed digits to -a. The smallest 
range corresponds to the HSD representation with d = n - 
1 (i.e., only the most significant digit is signed) and is 
equal to [-arn-l,+-]. n u s ,  the range of an HSD 
representation with d > 0 includes fewer negative numbers 
than positive ones. The range of an n digit HSD representation 
is in general larger than that of a conventional n digit radix 
complement representation. Therefore the conversion of an n 
digit HSD number to a conventional radix complement number 
requires n+ 1 digit positions. For the conversion, the algorithm 
presented in [12] can be used. 

One extra signed digit position to the left of the most 
significant digit is sufficient to accommodate the result of the 
addition of two HSD format numbers. This, however, may lead 
to nonuniform distance between signed digits. For example, 
when adding two binary HSD numbers with a uniform distance 
of 1 (alternate digits signed), one extra signed digit position is 
required to hold the result. This introduces nonuniformity since 
the two adjacent most significant digits of the output are both 
signed. If the original format (d = 1) is to be preserved, then 
one must add two extra digits: one unsigned and one signed to 
accommodate the result of the addition. This is important in 
multi-operand addition (such as partial product accumulation 
in a multiply operation). 

The HSD representation has another interesting property: 
there is no need to be restricted to a particular HSD format 
(with a certain value of d). The representation can be modified 
(i.e., the value of d can be changed) while performing addition 
(and consequently, other arithmetic operations) and this can be 
done in certain cases without any additional time delay. For 
instance, let II: and y be two HSD operands, with uniform 
distances d, and d,, respectively, between their signed digits. 
Also assume that (d, + 1) is an integral multiple of (d, + 1) 
so that the signed digit positions of y are aligned with the 
signed digit positions of II: (note that x has more signed 
digits than y under the stated assumption). Let z = 2 + y 
be their sum, having a uniform distance d, between its signed 
digits. The possible values of d, which are interesting from a 
practical point of view are O,d, and d,. If we set d, = d, 
then the above addition will take exactly the same time as 
an addition of two HSD operands with uniform distance d, 
producing an HSD result with distance d,. Setting d, = d, 
(and clearly, d, = 0)  will reduce the addition time even 
further, since the introduction of extra signed digits results 
in shorter carry propagation chains. For example, suppose that 
d, = 0 (all digits are signed) and d, = 1 (alternate digits 
are signed). If d, equals 1, then the delay required to perform 
the addition is the same as that required to add two HSD 
numbers with the same distance d = 1 to generate an output 
with d, = 1. This format conversion flexibility (without any 
additional time delay penalty) can be useful, as illustrated later 
in the discussion of partial product accumulation. 

The HSD representation is related to the GSD (Generalized 
Signed Digit) representation considered in [ 101. In the special 

case when the distance between adjacent signed digits is 
uniform, our HSD representation becomes identical to the 
GSD representation [13]. Adopting the algorithm summarized 
in Table I1 can be considered as an efficient implementation of 
GSD addition in this special case. When the distance between 
signed digits is nonuniform, however, HSD representation is 
no longer equivalent to the GSD scheme. Such a nonuniform 
distance between signed digits, corresponds (in some sense) 
to using differknt radii for different digit positions; a concept 
that is clearly beyond the scope of the GSD framework. It 
should be noted that the proposed HSD representation and the 
algorithm in Table I1 is also valid and yields equally efficient 
implementation even when the distance d between signed 
digits is nonuniform. The appendix discusses the relationship 
between the HSD and GSD schemes in further detail. 

IV. STATIC CMOS IMPLEMENTATION 
We now present an implementation of the signed and 

unsigned digit adder cells. Kuninobu et al. [5 ]  have proposed 
some of the most efficient designs for a cell that adds radix- 
2 signed-digit operands. We have therefore adopted the same 
design methodology. 

A. Addition of Bits at the Unsigned Digit Position 

Inputs to the cell are the bits ui-1,bi-l and the incoming 
carry c ; - ~ .  The outputs are the carry out ci-land the final 
sum ei-1. The output digit e;-1 is unsigned and can take one 
of the two values 0 or 1. The carries ci-2 and ci-1 can take 
values in { - 1, 0 , l )  and need two bits for encoding. Following 
[5] we encode each of these carries using two unipolar binary 
variables, each requiring a single bit. 

From Table 11, note that 
a) When both ai-1 and bi-1 are 0, the carry ci-1 is 

nonpositive (i.e., ci-l E {-1,O)) and the intermediate 
sum si is nonnegative (i.e., si E {0,1}). 

b) When at least one of ai-1 and bi-1 is nonzero, the 
carry ci-1 is nonnegative (i.e., ci-1 E {0,1)) and the 
intermediate sum si is nonpositive (i.e., si E {-l,O}). 

Let wi-1 = 1 if condition a) is satisfied (Le., ai-1 = bi-1 = 
0) and wi-1 = 0 if condition b) is satisfied (i.e., at least one 
of ui-l,b;-1 is 1). Then, the variable vi-1 defined by 

vi-1 = wi-1+ q - 1  (6) 

is always nonnegative. In effect, the carry c;-l is expressed as 
the difference of two bits vi-1 and wi-1, i.e., ci-1 = vi-1 - 
wi-1. Similarly, the incoming carry ci-2 is also expressed as 
a difference of two bits 

ci-2 = vi-2 - wi-2 (7) 

where vi-2, w;-2 E (0,l). Thus, the cell in the (i - 1)th 
(unsigned digit) position should generate wi-1, vi-1 and ei-1 

from aipl, bi-1, vi-2 and w;-~. Note that all of these variables 
are binary and can be encoded by a single bit. The above 
equations are algebraic, but the symbols used in these equa- 
tions (i.e., w i - ~ , v i - ~ ,  etc.) can also be used to indicate the 
corresponding logical variables. The distinction follows from 
the context. 
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From the above, the following logical equations are obtained 
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Fig. 1. Redundant binary adder cells at (a) unsigned digit position, (b) signed digit position. 

The logic diagram of the cell consisting of 32 transistors 
is shown in Fig. l(a). Here, it is assumed that the XOR 
(or XNOR) can be implemented with pass gates with 6 
transistors when both the inputs are available only in true 
(uncomplemented) form, and with 4 transistors if one of the 
inputs is available in true as well as complemented form [15]. 
Note that the cell actually generates E. This is done to 
reduce the number of transistors and the delay associated with 
the critical path. 

B. The Addition of Signed Digits 
The inputs to this cell are the signed digits zi, yi and the 

carry signals wi-l and vi-l. A signed digit z is encoded in 
two bits xsxa ,  with, -1, 0 and 1 encoded by 11, 00, and 01, 
respectively. The outputs of the cell are the carry signals vi 
, w; and the bits that represent the output signed digit (zf , 
2:). In order to reduce the critical path delay and the transistor 
count, the cell accepts and produces sign bits of signed digits 
in complemented form @e., zq, y;S and z). -- 

Once again, from Table 11, note that 
c) When at least one of zi and yi is negative, ci is 

d) When both xi and yi are nonnegative, ci is nonnegative. 
Let w; = 1 when condition c) is satisfied and wi = 0 when 

(11) 

nonpositive. 

condition d) is satisfied. Then, the variable vi defined by 

vi = w; + c; 
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is always nonnegative. Thus, the carry c; is represented by the 
difference of two bits vi and w;. 

From Table I1 and conditions a) and b), it can be seen that 
the variable qi defined by 

qg = wz-1 - si (12) 

is always nonnegative as well. The output signed digit zi 
satisfies 

where the substitutions are from (6) and (12). The signed 
digit cell therefore generates the output bits wi,vi and the 
intermediate bit qi from xi, y; and wi-1. It then generates the 
final sum z; from q; and vi-1 according to equation (14). From 
the above, one obtains the following logical equations: 

w ,  2 -  - x? a + ys a = 2. a 

s; = zf @ y;, 
qi = s; @ Wi-1, 

zf = qi . -, 

vi = sf . w. z - l + z f . l / ; + q . % .  

z 7  (15) 
(16) 
(17) 
(18) 
(19) 
(20) 

- -  

a _ -  zi - Qi € B V i - l ,  
- 

Details of the derivation can be found in [14]. The logic 
diagram of the cell, shown in Fig. l(b), is very similar to 
that of the cell presented in [5]. The only difference is the 
polarity of the input and output variables. The design in [5] 
accepts and produces all variables in true (uncomplemented) 
form. The cell shown in Fig. l(b) and the SD adder cell 



PHATAK AND KOREN: FYBRlD SIGNED-DIGIT NUMBER SYSTEMS 885 

presented in [5] both require 42 transistors. However, in the 
HSD representation, where alternate digits are unsigned, the 
cell in every alternate digit position is that of Fig. l(a), which 
requires only 32 transistors. Thus, a group of two adjacent 
digit positions requires 74 transistors in our design, instead of 
84 transistors that are needed for two of the cells in [5 ] .  The 
savings in the number of transistors is even higher if an HSD 
representation with d 2 2 is employed. 

Following [ 5 ] ,  for the sake of consistent comparisons with 
the designs presented therein, we also make the (somewhat 
crude) assumption that the delay associated with XOR, XNOR, 

gates is 1.5 units, while all other delays are 1 unit. Similar 
assumptions were used in [16] to estimate the total delays in 
the units of an inverter or basic two input NANDmOR gate 
delay. Then, the critical path delay of our design is 6 units 
while that of the SD-based design in [5] is 5 units. We would 
like to point out that the cells shown in Fig. 1 were designed 
to minimize critical path delay and transistors for the case 
where alternate digits are signed. In this implementation, the 
longest path begins at the inputs of the (lower order) unsigned 
digit (such as the (i - 1)th digit). It traverses digit positions 
i (signed) and i + 1 (unsigned) via signals wi-1, w; and w;+l 
and terminates at the signed digit position i + 2. The delay 
associated with this path is only 5.5 units. Note that the signed 
digit input signals x4 and yYf at the ith digit position also 
propagate up to the (2+2)th digit output through four complex 
gates (via signals st, w; and v;+l). The delay associated with 
this path is 6 units and it is the critical path. It is interesting to 
note that the path which spans the maximum number of digit 
positions is not critical. Another path between consecutive 
signed digits has maximum delay and hence is the critical 
path, even though its span is smaller by one digit position. 

Note that the cell in Fig. l(a) generates 5 (where k = 
i - 1). If there are more than one unsigned digits between 
two signed digits (say, for instance, that there are two bits 
between two signed digits), the next cell will take as input 
the complemented form of V k ,  i.e., uk = 5. In terms of uk 
and Wkr the carry into the (k + 1)th position is expressed as 
ck = 'ulc - W k  = 1 - u k  - 'wk. The logic diagram of a cell that 
accepts this input is shown in Fig. 2. At its output, this cell 
again inverts the wk+l signal (with respect to the polarity of 
wk), Le., it generates v k + l  in true form. It is possible to add 
an inverter to the cell in Fig. l(a) and make Vk available in 
true form. This would obviate the need to have a different type 
of cell (viz., the cell in Fig. 2) and only the cell in Fig. l(a) 
with an additional inverter would be sufficient. This inverter, 
however, falls on the critical path and this way, the number of 
(extra) inverters equals the number of unsigned digits traversed 
minus L. With the introduction of the third cell, there is at most 
one extra inverter when the number of unsigned digits between 
two signed digits is even. If d is the number of unsigned digits 
between two neighboring signed digits, then the critical path 
delay is 

(1.5 + 1.5) + 1.5d + [1.5] 

(1.5 + 1.5) + 1.5d + 1 + [1.5] 

A-O-I (AND-OR-INVERT), 0-A-I (OR-AND-INVERT) 

(21) 
= 4.5 + 1.5d 

= 5.5 + 1.5d 

if d is odd, 

if d is even. 

Tcritical = 

i?" 
- 
" k  

w k  

a k  b k  

Fig. 2. Alternate cell for the unsigned digit position. 

Here, the two delays of 1.5 units in parenthesis are due to 
the two complex gates in the lower order signed digit cell. The 
last 1.5 units of delay (shown within the square brackets) is 
associated with the XNOR gate at the higher order signed digit 
where the carry propagation terminates. The terms in between 
are proportional to d since the carry ripples through all the 
unsigned digit positions. The transistor count can be similarly 
calculated. Assume that there are exactly g groups of d + 1 
digits each, where the most significant digit in each group is 
signed and all other digits are unsigned. In other words, the 
word length n satisfies n = g x (d + 1). The transistor count 
for a group and a complete adder of this type are denoted by 
Ngroup and Ntotal, respectively, and are given by 

if d is odd, 
if d is even, 

32d + 42 
32d + 2 + 42 Ngroup = 

Next, we analyze the cost and performance of some basic 
arithmetic operations when implemented in the HSD number 
system. 

V. COST AND PERFORMANCE TRADE-OFFS 
FOR HSD IMPLEMENTATIONS 

Based on the above discussion, it is seen that the HSD 
representation is very flexible and offers a wide variety of 
choices to the designer. Increasing d trades off higher delay 
for lesser area. In this section we first evaluate the whole 
spectrum of adders: from ripple-carry to full signed-digit 
adders under the unifying HSD framework. Next, we illustrate 
different implementations of adder trees for partial product 
accumulation in a multiply operation. 
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Fig. 3. (a) Area (transistor count) vs. the distance d between two consecutive signed digits. d = 0 corresponds to the SD adder and d = 23 corresponds 
to an ordinary ripplecarry adder. The point denoted by the symbol “Q’ at d = 23 corresponds to the carry-look-ahead adder with a blocking factor (i.e., 
look-ahead tree fan-in) of 4. (b) Critical path delay vs. the distance d between two consecutive signed digits. (c)Area x Time vs. the distance d between 
consecutive signed digits. (d) Area’x Time) vs. the distance d between consecutive signed digits. 

Two Operand Addition: The first operation we consider is 
the addition of two operands. Equations (21) and (22) in the 
previous section evaluate the critical path delay and transistor 
count as functions of the distance d between signed digits. 
This allows us to evaluate the whole spectrum of adders from 
ordinary ripple-carry adders at one end to the (fully) SD adders 
on the other extreme. The plots for word length n = 24 are 
shown in Fig. 3(a)-(d). The word length was chosen to be 24 
since this is the number of significand bits in the IEEE standard 
for single precision floating-point numbers. In these figures, 
the measures of interest (area, delay, area x delay etc.) are 
plotted as a function of d, the distance between adjacent signed 
digits. The point d = 0 corresponds to the SD representation, 
where every digit is signed. The transistor count and delay for 
this case are based on the design presented in [5 ] .  The point 
d = 23 at the other extreme corresponds to the ripple-carry 
adder with all digits unsigned. Here, the cells are 1 bit full 
adders with a transistor count of 22 and critical path delay of 
1.5 per cell. The corresponding values for a carry-look-ahead 
adder are also shown in each of these figures as a separate 
point (denoted by the symbol ‘‘0’) with abscissa d = 23. Here 
the blocking factor (or the fan-in) of the carry-look-ahead tree 
was assumed to be 4. 

Figure 3(a) shows transistor count vs. the distance between 
signed digits (d); Fig. 3(b) shows critical path delay vs. d; 
Fig. 3(c) shows (area x time delay) vs. d; and Fig. 3(d) shows 
(area’x delay) vs. d. Note that (area2x time delay) can be 
considered to be a rough estimate of (area x power x time 

delay) because the power consumed is proportional to CV2 f ,  
where C is the overall capacitance, V is the supply voltage 
and f is the effective frequency (i.e., f includes the effect 
of both the clock rate and the actual transition or switching 
rate). V and the clock rate are fixed parameters. Assuming 
that f depends only on the clock rate, it too is a constant. 
The power consumed is therefore approximately proportional 
to the overall capacitance C ,  which is in tum proportional to 
the transistor count or area. 

These plots do not take into account the overhead of 
converting the SD (or HSD) sum to two’s complement. For 
a two-operand addition, the cost of converting the redundant 
output back to two’s complement could make the redundant 
adders slower and/or bigger than the conventional carry-look- 
ahead or carry-skip adders. In more complex applications 
involving multi-operand addition, however, the conversion to 
two’s complement is needed only once at the end. If the 
number of operands to be added is large, the time per addition 
is an important factor. The performance numbers depicted in 
the figures are more meaningful in this context rather than 
a simple two operand addition. Also, the transistor count 
alone is not a sufficiently accurate estimate of the area, since 
multi-operand addition usually involves trees which need a 
significant amount of routing area. It is a fairly good estimate 
of the complexity nonetheless. 

From Fig. 3(c), it is seen that the (fully) signed-digit imple- 
mentation [5] is A T  optimal. It requires maximum area but 
takes minimum time. A ripple-carry adder, on the other hand 
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takes maximum time and minimum area. The altemate-signed- 
digit (d 1) adder illustrated above reduces the transistor 
count from 84 to 74 (for two digit positions), but increases 
the critical path delay from 5 to 6 units. It closely matches 
the AT performance of the SD adder. Other bounded-carry- 
propagation adders take less area and more time, but the AT 
product keeps on increasing with d. The carry-look-ahead 
adder also has a very good AT product, which is fairly close 
to the optimal value. The last two points (d = 22 and 23) on 
the A vs. d curve in Fig. 3(a) illustrate that there is a sizable 
increase in the area when one introduces even a single signed 
digit. This is due to the fact that the unsigned digit cell must 
now handle a carry in the set { -1,O, 1) which makes it more 
complex than the full adder cells of a ripple-carry adder. In 
Fig. 3(a), note that at every point between d = 12 and d = 23, 
the number of signed digits is 2, since the most significant or 
24th digit is signed and there is one additional signed digit 
in the word. As d is increased from 12 to 22, the position 
of the signed digit shifts from the 13th to the 23rd place. 
Thus the distance between signed digits is nonuniform when 
12 < d 5 22. However, the total number of signed digits and 
hence the total number of unsigned digits, remain 2 and 22, 
respectively, for d in this range. Hence, the area is constant 
for all d values in the range from 13 to 22. The critical path, 
on the other hand, increases linearly with the longest distance 
between signed digits as illustrated in Fig. 3(b). Also, beyond 
d > 20, the carry chain between signed digits is long enough 
to render the total delay (i.e., the propagation delay through 
the chain plus the complex gates at the ends) of the HSD adder 
higher than that of the ordinary ripple-carry adder. Figure 3(c) 
and (d) show that increasing d beyond a certain point makes 
AT and A2T for HSD adders worse than that for ordinary 
ripple-carry adders. Finally from Fig. 3(d), note that the HSD 
adder with d = 1 is A2T optimal. 

The continuum of choices available can be exploited to 
obtain the most suitable implementation under area or delay 
constraints. For instance, if the clock period is estimated to be 
about 10 gate delays, then from Fig. 3(b), it is seen that all 
implementations with d 5 3 satisfy the delay constraint. If the 
area is to be minimized, then d = 3 is the appropriate choice, 
Le., every 4th digit should be signed. Thus, one can select the 
minimum area solution that meets the given delay constraint. 
If minimization of area is less critical, then one can select 
the full SD representation that yields the fastest execution 
time. Similarly, given a constraint on area, from Fig. 3(a), 
one can obtain d values that satisfy the area constraint. 
Then, from Fig. 3(b), the designer can select that value of 
d which minimizes the execution delay, while satisfying the 
area constraint. 

Multi-Operand Addition (Partial Product Accumulation): A 
64 x 64 multiplier with radix-4 modified Booth recoding [ 111 
generates 32 partial products, that can be accumulated with 
a redundant adder tree having 5 levels. The final conversion 
from a redundant to two’s complement format is carried out 
by a carry-look-ahead scheme. Redundant binary adder trees 
have proved to be highly efficient in accumulating partial 
products in fast, parallel, tree-based multiplication schemes. 
For instance, the 64 x 64 multiplier reported in [5] is faster, 

s a  
z i  z i  

ri - 
a b 

Fig. 4. 
complement format and produce signed digit output [5 ] .  

Cell used at the top level of an SD tree to add operands in two’s 

smaller (transistor count) and easier to lay out than a Wallace- 
tree-based multiplier. In the redundant adder tree, the reduction 
in the number of operands is from 2 to 1, while in a tree of full 
adders (or (3, 2) counters), the reduction ratio is 3 to 2. Also, 
the trees based on full adders have diagonal connections for 
carries, which makes their layout considerably more difficult. 
Here, we illustrate a few HSD based implementations of 
redundant adder trees and the tradeoffs associated with each 
implementation. 

We begin with the fully signed-digit format. An efficient 
design of an SD adder tree was presented in [5 ] .  At the top 
level of the tree, the partial products generated are in two’s 
complement format. Hence, one need not use the complex cells 
that add two SD numbers. In fact the cell at the top level can 
be considerably simplified as was shown in [ 5 ] .  Let A and 
B be two operands (partial products) in two’s complement 
format. Then the addition operation A + B can be rewritten 
as A - (-B). The generation of -B involves complementing 
every bit of B and adding a “1” in the least significant digit 
position. Complementing all the bits of B is easy and can 
be done in parallel. The addition of 1 in the least significant 
digit position is postponed to the next level of the adder tree. 
One is then left with the subtract operation A - B at the 
top level of the tree, where B + 1 = -B. Generation of a 
signed digit output by subtraction of two operands in two’s 
complement format is very easy. Note that the only possible 
outputs of the bit-wise subtraction can be { -1 ,O ,  l}, each of 
which is a valid signed digit output. Thus, there is no carry 
propagation whatsoever between any digit positions. Such a 
digit wise subtraction can be implemented very economically 
by employing the cell shown in Fig. 4 [ 5 ] .  The cell accepts two 
bits a and b, each in (0,  l}, and generates a signed digit output 
resulting from the operation a - b. As seen in the figure, there 
is no carry propagation and the digit positions are independent 
of each other. The critical path delay is 1.5 units and two digit 
positions need 20 transistors (10 per digit position). 

All the cells at the remaining four levels are identical to 
the full SD adder cell presented in [5 ] ,  requiring 42 transistors 
and having a critical path delay of 5 units. The transistor count 
of the SD adder tree is estimated to be 67 K, including the 
final conversion stage. If the final carry-look-ahead conversion 
from redundant to two’s complement format handles groups of 
4 digits in parallel, there is a [log ,1281 = 4-level look-ahead 
tree. Then, the delay for the final conversion is approximately 
20 units. Assuming that the delay required for the generation of 
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Fig. 5. Cells used (at the top level of an HSD tree) to add operands in two's 
complement format and produce HSD format output. (a) cell in a signed digit 
position (b) Cell in an unsigned digit position. 

partial products is 5 units, the total delay for the SD tree-based 
multiplier is 46.5 units (5 + 1.5 + 4 x 5 + 20). 

Next, we consider an adder tree based on the HSD repre- 
sentation with d = 1, @e., every alternate digit is signed). 
This representation can be expected to make the redundant 
binary adder tree even smaller and easier to lay out for two 
reasons. First, the number of wires to be routed is only a of 
that in the SD scheme, since every alternate digit is unsigned 
and needs only 1 bit for encoding. Second, the cells in the 
alternate digit position of an HSD adder handle unsigned bits 
and have a smaller transistor count. Once again, the cells at the 
top level of the tree can be considerably simplified since all 
the operands are in two's complement fonnat. The simplified 
cells are shown in Fig. 5(a) and (b). In Fig. 5, the cell in the 
signed digit position has 20 transistors, while the one in the 
unsigned digit position has 24. The carries at all digit positions 
can always be selected to be nonnegative and hence need only 
one bit to encode. The operation of the cells is as follows. Let 
A and B be the two operands in two's complement format. 
The cells accept bit-wise complemented inputs and & and 
generate the sum (A+ B) in HSD format where every altemate 
digit is signed. The inputs are complemented in order to reduce 
the critical path delay without increasing the transistor count. 
Moreover, the cells generate the sign bit of the signed digit 
output in the complemented form, as required by the next 
level. The transistor count for two digit positions (signed and 
unsigned) is 20 + 24 = 44. The length of the cany propagation 
chain is smaller than the case when both operands are signed 
digits and the critical path delay is 4 units. 

The overall transistor count estimate for this tree (including 
the final conversion stage) is 72 K. The total delay for this 
HSD tree-based multiplier is (5 + 4 + 4 x 6 + 20 =) 53 units. 
Note that the SD tree has a smaller overall transistor count. 
The reason for this is as follows. In a tree, the number of leaf 
nodes = ( 1 + number of internal nodes). Hence, the number 
of adders at the top level equals (1 + number of adders at 
all other levels of the tree). At the top level, the SD-based 
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scheme is more economical as demonstrated by the cells in 
Figs. 4 and 5. Hence, the overall transistor count for the SD 
tree is smaller then that for an HSD tree with d = 1. While 
these estimates make it appear that the HSD-based tree has no 
advantage, we next show that the format conversion flexibility 
of the HSD system can be utilized to significantly reduce the 
transistor count (to below that required by the SD tree) without 
increasing the critical path delay. 

As mentioned earlier, the HSD representation allows format 
conversion during the addition of two operands without any 
extra delay penalty. This suggests that one can use a combi- 
nation of HSD variants to obtain implementations that would 
require fewer transistors and lesser routing. We illustrate this 
with.a tree that utilizes both SD (Le., HSD with d = 0) and 
HSD with d = 1 number representations. At the top level 
of the tree where the inputs (partial products) are in two's 
complement format, it is more economical (in terms of the 
number of transistors used) to use the cell shown in Fig. 4, that 
produces an output in the full SD format. At the subsequent 
levels, the HSD (with d = 1) cells are more economical. To 
exploit the advantages of both, it would be best to generate 
full SD representation at the top level and then switch to the 
HSD representation at the next level, Unfortunately, if both 
operands in the addition have the full SD format then the only 
output format possible is full SD. 

If however, one of the operands is in SD format and the 
other is in HSD format with d = 1, then it is possible to 
produce an HSD format output (with d = 1) in the same time 
delay that is required to add two HSD format operands with 
d = 1 as explained next. Let the unsigned digit position under 
consideration be the (i - l)th, and the signed and unsigned 
digits and the carry to be summed be denoted by z,-1, d,-l and 
ci-2, respectively. Then -2 5 &-1 = z , - ~  + d,-l + c,-2 I 
+3. Let the output bit (unsigned digit) be e,-l, and the carry 
generated at the (i - 1)th position be c,-1. Then, for each 
possible value of the (unique) values of c,-1 and e,-1 
are determined from the relation 

L1 = 2c,-1 + et-l, (23) 

where e,-l E (0 ,  l}, cz-l E { - l , O ,  1). The ith output digit 
is signed and can therefore stop the carry propagation chain. 
In order to do so, all it needs is the information about the 
polarity (nonpositive or nonnegative) of the carry in, viz. c,-1. 

The polarity of c,-1 can be determined just by looking at the 
operands z,-1 and dz-l, without knowing the actual value 
of c , - ~ .  It is easy to verify that c,-1 is nonnegative when 
[(z,-1 = +1) or (zt-l  = 0 and = l)] and nonpositive 
in all other cases. 

Thus, in a design that exploits both SD and HSD (with 
d = 1) formats, half the cells at the top level are of the type 
shown in Fig. 4 and generate partial sums in full SD format. 
The remaining partial products are summed using the cells 
shown in Fig. 5 to generate partial sums in the HSD format. 
At the next level of the tree, the corresponding pairs of partial 
sums (one in SD format and one in HSD format) are then 
added together as explained above, to generate the output in 
the HSD format. From this point on, all the operands are in 
the HSD format throughout all the remaining levels of the 
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tree. The HSD format final sum is then converted back to 
two’s complement format as explained above. Henceforth, this 
scheme is referred to by the acronym MHSSD (Mixed Hybrid 
Signed and Signed Digit) implementation. Note that alternate 
digit positions in MHSSD have both digits signed. Hence the 
cell shown in Fig. l e )  is sufficient. In order to generate ci-1 

and ei-1 according to equation (23), only one other cell that 
accepts a signed digit, an unsigned digit (bit) and a signed 
carry, and generates an unsigned output bit and a signed carry 
needs to be designed. The design methodology is identical to 
that used for the cells shown in Fig. 1 and is omitted for the 
sake of brevity (the details can be found in [ 141). The resulting 
cell (that occupies alternate digit positions) has 34 transistors 
instead of 32 that a cell in Fig. l(a) needs. This is a very small 
increase which is far more than offset by the savings at the top 
level. The net result is a considerable reduction in the overall 
transistor count: with this scheme, the overall transistor count 
is approximately 66 K, which is smaller than the transistor 
count of both SD or HSD trees. The critical path delay for 
level 2 (the one that adds one SD and one HSD operand to 
produce one HSD operand) is still 6 units. Consequently, the 
overall delay of this scheme is the same as that of the HSD 
scheme with d = 1, i.e., 53 units. 

It should be emphasized that transistor count alone is by 
no means an accurate measure of the area. It is well known 
that transistors are cheap to implement but communication, 
especially nonlocal interconnections are expensive in VLSI. 
Hence, there is a great deal of emphasis on minimizing the 
interconnections and trying to keep them local. 1nr.a tree 
architecture, the interconnections are inherently nonlocal. The 
MHSSD tree proposed here has only i t h  the number of wires 
to be routed at each level (except the top level) as compared 
to an SD tree. Hence the routing area for the MHSSD tree is 
expected to be significantly smaller than that of the SD tree. 
The transistor count of the MHSSD tree is smaller than that of 
the SD tree as mentioned above. Hence, the total area required 
by the MHSSD tree can be expected to be smaller than that 
of SD tree. 

From the delays above, we have %== 1.1398 and 

therefore, an overall area ratio of (*:EL= 5 0.8774 will 
make MHSSD tree AT-optimal (among all the schemes that 
utilize signed digits). Similarly an area ratio of 0.937 or less 
will make the MHSSD scheme A2T-optimal. As mentioned 
above, A2T can be thought to be a crude approximation of 
the power consumed. Thus the MHSSD scheme is expected 
to result in an implementation that consumes less power. This 
can be a significant advantage if power minimization is an 
objective. 

Other combinations of two or more HSD variants are 
possible and may lead to further reduction in area. Depending 
on the objective function or the constraints at hand, the 
designer can select the particular scheme that yields the most 
suitable implementation. 

VI. CONCLUSION 
A novel, hybrid number representation has been proposed 

and was shown to lead to a bounded carry propagation 

during addition. The system uses a mixture of unsigned and 
signed digits to represent a number. It was demonstrated 
that the maximum length of a carry propagation chain in 
such a system is limited to the (longest) distance between 
adjacent signed digits and can therefore be set to any desired 
value from 1 to the entire word length by selecting the 
position(s) of the signed digits. This reveals a continuum 
of number representations from two’s complement on one 
hand to the completely signed-digit system on the other. 
This framework was used to analyze the area and time delay 
tradeoffs associated with each representation. It also permits a 
unified performance analysis of the whole spectrum of adders 
based on these number systems. 

Implementations based on the HSD representations were 
shown to yield fast and compact adder and multiplier realiza- 
tions. The format conversion flexibility of HSD representation 
opens up new possibilities of combining two or more HSD 
variants in order to obtain more suitable implementations. 
This was illustrated with a multiplier design that exploits 
the advantages of both the HSD with d = 1 and d = 0 
representations. Besides demonstrating the flexibility offered 
by the above theoretical framework, the design has several 
attractive performance attributes: it requires a small area 
(smaller than multipliers that use only a single representation 
in the redundant adder tree), and is likely to consume low 
power. 

Other arithmetic operations such as division, square root 
extraction and elementary function evaluation have been ac- 
celerated by using SD representation. For these operations, 
the HSD framework would provide a continuum of choices 
between ordinary and full signed digit implementations that 
trade off area for speed. 

APPENDIX 

[lo], 
Parhami presented a unified treatment of several signed- 
digit schemes under a general framework called the GSD 
(Generalized Signed Digit) number representation. In the 
GSD formulation, each digit in a radix r positional number 
system can take any value in the interval [-a, +PI. Conditions 
on r ,a  and P that are necessary in order to perform carry- 
free addition were presented, and equations to perform the 
carry-free addition were derived in [lo]. Besides the radix-r 
SD representation, this formulation also includes stored- 
borrow/stored-carry type representations as special cases. 
However, all the digit positions in GSD are uniform, i.e., 
the range of values a digit can assume and the way the 
digit-wise operations are carried out is the same for all digit 
positions. Our representation, on the other hand, deliberately 
introduces nonuniformity in the digit positions in order to 
reduce the transistor count (and area). Thus, some digits are 
allowed to be signed and others are left unsigned which makes 
the range of values a digit can assume, nonuniform. Also, the 
operations performed at signed and unsigned digit positions 
are quite different as illustrated above. 

In the special case when the number of unsigned digits 
between any two adjacent signed digits is the same, say d, 

Relation between HSD and GSD Representations In 
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our HSD representation can be considered to be a special case 
of the GSD representation with radix rd+’ [13]. In a group 
of d + 1 digits (d  unsigned and 1 signed), if the signed digit 
assumes the least significant position then the limits of the 
interval of allowed digit values are given by -a = -(r - 1) 
and ,f3 = rd+’ - 1, respectively. If the signed digit assumes 
the most significant position, the corresponding limits are 
-a = -(r - 1). rd and p = rd+l - 1. Obviously, the second 
choice is better, since it allows more values to be represented 
with the same number of bits. For example, consider the HSD 
representation with r = 2 and d = 1 (i.e., every altemate digit 
is signed). Here, a group of two digits, viz, a signed digit and 
the lower order adjacent unsigned bit can be interpreted as a 
radix-4 hybrid signed digit which can take any value in the 
range [-a, +PI. where Q = 2 and , f3= 3. Note that this range 
is asymmetric and different from the range [-3,+3) that a 
conventional radix4 signed-digit system uses (see equation 
(I)). In particular, the number of values a digit can assume is 
smaller, even though the same number of bits (3 bits) is used 
to represent each digit. 

When the distance between the signed digits is nonuniform, 
however, the HSD representation is no longer a special case of 
the GSD representation. Such a nonuniform distance between 
signed digits, corresponds (in some sense) to using different 
radii for different digit positions; a concept that is clearly 
beyond the scope of the GSD framework. A nonuniform 
distance between signed digits along with the format conver- 
sion property of the HSD representation could be useful in 
multioperand addition. For instance, consider r = 2 and d = 1. 
In order to prevent overflow (in a two operand addition), one 
can add an extra signed digit to the most significant position, 
leading to a nonuniform d. If the result is then added to another 
HSD number with d = 1, the sum output can be rendered in the 
uniform d = 1 format. Another possible use of nonuniform d 
is in case when the word length is a prime number such as 53, 
which is the total number of significant bits (a 52 bit mantissa 
+ 1 hidden bit) in the double precision floating-point format 
prescribed in the IEEE standard 754. 

Moreover, even in the case when the distance between the 
signed digits is uniform, a brute force implementation of the 
carry-free addition according to equation (3) in Section I1 
will lead to far more complex logic, larger area and longer 
critical path delay. For instance, consider the case when the 
signed digit occupies the most significant position in a group 
of d f 1 adjacent digits i ,  i - 1; .. a ,  (i - d + 1). If this 
group is interpreted as a signed digit with radix 2d+1, then 
the carry out of the signed digit position ci depends on the 
values of this and the previous (radix 2d+1) digits. Note that 
in order to restrict the carry propagation to a single digit 
position, equation (2) must be satisfied. This equation implies 
that the digits must be allowed to take any value in the 
interval [-(2d+1 + l), +(2d+1 + l)]. The smallest value the 
rad i~-2~+’  digit can take is -a = -2d+1, which does not 
meet this condition. Hence, only the scheme where the carry 
depends on two digit positions is feasible. In other words, the 
carry out c, depends on all of the radix-2 operand digits in 
positions i - 1, - . . , i - d + 1 as well as those in digit positions 
i -d ,  . .. ,i-2d-t1 or a total of 4(d + 1) binary digits (or 4d+6 

bits, since there are exactly two signed digits, each requiring 
one extra bit). The carry generation logic in such a case would 
be prohibitive. In contrast, adopting our representation and the 
use of Table I1 shows that the carry out ci depends only on four 
binary operand digits, viz., those in digit positions i and i - 1 
or equivalently, only on six bits. Thus, using the proposed 
HSD representation is more efficient (in terms of transistor 
count, as well as delay) than using the conventional higher 
radix signed-digit representation. 

The GSD summation algorithm in [lo] requires a compar- 
ison of the sum 1c; + y; with certain constants to determine 
the carry. A brute force implementation might need the actual 
value of the sum zi + yi, However, with proper selection of 
constants and digit encodings as described in [lo], only a few 
bits of each operand may be actually needed to determine 
the outcome of the comparison, thereby obviating the need 
to actually evaluate the sum. Our HSD representation utilizes 
only a few bits (3 bits) of each operand as illustrated above 
and can be considered to be an efficient implementation of 
GSD addition in the special case when the distance between 
adjacent signed digits is uniform. 
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