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Complete and Partial Fault Tolerance 
of Feedforward Neural Nets 

Dhananjay S. Phatak and Israel Koren, Fellnx7, IEEE 

Abstract-A method is proposed to estimate the fault tolerance 
of feedforward artificial neural nets (ANN’S) and synthesize 
robust nets. The fault model abstracts a variety of failure modes 
of hardware implementations to permanent stuck-at type faults of 
single components. A procedure is developed to build fault toler- 
ant ANN’S by replicating the hidden units. It exploits the intrinsic 
weighted summation operation performed by the processing units 
to overcome faults. It is simple, robust, and applicable to any 
feedforward net. Based on this procedure, metrics are devised to 
quantify the fault tolerance as a function of redundancy. 

Furthermore, a lower bound on the redundancy required to 
tolerate all possible single faults is analytically derived. This 
bound demonstrates that less than triple modular redundancy 
(TMR) cannot provide complete fault tolerance for all possible 
single faults. This general result establishes a necessary condition 
that holds for all feedforward nets, regardless of the network 
topology or the task it is trained on. Analytical as well as extensive 
simulation results indicate that the actual redundancy needed to 
synthesize a completely fault tolerant net is specific to the problem 
at hand and is usually much higher than that dictated by the 
general lower bound. The data implies that the conventional TMR 
scheme of triplication and majority vote is the best way to achieve 
complete fault tolerance in most ANN’S. 

Although the redundancy needed for complete fault tolerance 
is substantial, the results do show that ANN’S exhibit good partial 
fault tolerance to begin with (i.e., without any extra redundancy) 
and degrade gracefully. The first replication is seen to yield 
maximum enhancement in partial fault tolerance compared with 
later successive replications. For large nets, exhaustive testing 
of all possible single faults is prohibitive. Hence the strategy of 
randomly testing a small fraction of the total number of links is 
adopted. It yields partial fault tolerance estimates that are very 
close to those obtained by exhaustive testing. Moreover, when the 
fraction of links tested is held fixed, the accuracy of the estimate 
generated by random testing is seen to improve as the net size 
grows. 

I. lNTRODUCTION 

EURAL computing is rapidly evolving as a viable solu- N tion to several problems. For use in applications requiring 
high reliability, artificial neural nets (ANN’s) have to be fault 
tolerant. The ANN should possess a high degree of fault 
tolerance to begin with and its performance should degrade 
gracefully with increasing number of faults. Fault tolerance of 
ANN’S is often taken for granted or treated as a subsidiary 

Manuscript received August I. 1992: revised April 4 and October 1 I ,  1993. 
This work was supported in part by the National Science Foundation, Grant 
MIP 90-13013. 

D. S. Phatak was with the Department of Electrical and Computer En- 
gineering. University of Massachusetts. Amherst, MA. he is now with 
the Department of Electrical Engineering, State University of New York, 
Binghamton, NY 13902-6000 USA. 

I. Koren is with the Department of Electrical and Computer Engineering, 
University of Massachusetts, Amherst, MA 01 003 LISA. 

IEEE Log Number 9214290. 

issue [ I ] ,  [2]. Investigations by Carter et al. [ l ] ,  [ 3 ]  indicated 
that ANN’S are not always fault tolerant and demonstrated 
the need to quantitatively evaluate their robustness. Several 
expositions have addressed various aspects of fault tolerance 

Simulation results on the XOR problem are reported in 
[4], but these are quite specific to this one example and the 
underlying fault model. The emphasis of [ 5 ]  is on recovery 
through releaming. The issue of on-line or operational fault 
tolerance is not considered there. Fault tolerance of Hopfield 
type ANN’s for optimization problems was investigated in 
[6]. It does not, however, address fault tolerance in trainable 
ANN’S. Belfore et al. have developed an analytical technique 
for estimating the performance of ANN’s in presence of faults 
[7], [8]. They construct a Markov model for the ANN by 
drawing analogy with magnetic spin systems using statisti- 
cal mechanics. Emmerson et al. studied fault tolerance and 
redundancy of neural nets for the classification of acoustic 
data [9]. They found that a single layer perceptron (direct 1/0 
connections without any hidden units) was far less damage 
resistant than a multilayer version, which had a single hidden 
layer consisting of five to 25 hidden units. However, increasing 
the redundancy by increasing the number of hidden units 
did not yield significant improvement in the performance 
under faulty conditions. They then performed a singular value 
decomposition (SVD) analysis of the weight matrix and found 
that there were no linear dependencies in the hidden units, i.e., 
none of the units was redundant as per the SVD analysis. They 
concluded that back propagation training discovers intemal 
representations that appear to be distributed but may not be 
suited for fault tolerance. Sequin et al. [ I O ]  set a predetermined 
number of randomly chosen hidden units stuck at faulty output 
values during training. The set of units that are assumed to be 
faulty varies from epoch to epoch during the training. This 
type of training yields a more fault tolerant net as expected, 
but it needs longer leaming times, may not converge unless the 
number of faulty units is small, and does not necessarily lead to 
a better utilization of available resources. Neti et al. recently 
reported numerical results on the synthesis of fault tolerant 
nets [ 1 I ] .  They add constraints to ensure fault tolerance and 
look for a solution to the constrained optimization problem. 
This approach is analytically well founded, but it is also 
very computation intensive, and more experiments are needed 
to draw any general conclusions about the resulting fault 
tolerance. Training procedures that attempt to increase fault 
tolerance also appear to enhance generalization capability 
[ 1 11, [ 121. Segee and Carter 1131 have developed a measure 

of ANN’S [3]-[14]. 
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of graceful degradation for continuous valued ANN’S. They 
performed an extensive study of the fault tolerance capabilities 
of multilayer perceptrons and Gaussian radial basis function 
networks by fault injection experiments and found that setting 
a few units stuck at zero during training yielded a substantial 
enhancement in fault tolerance of radial basis nets but only 
a marginal improvement in the fault tolerance of multilayer 
perceptrons. However, they did not try to evaluate how much 
redundancy is necessary to achieve a given level of fault 
tolerance or how to make a given net fault tolerant. 

The issue of redundancy required to achieve fault tolerance 
has not yet been adequately addressed. Also, the fault models 
usually adopted are very restrictive. Most researchers consider 
only a disconnection of links or units which usually amounts 
to stuck-at zero type permanent faults. While this may be 
sufficient to model a bumt out link or open circuit type fault, 
it may not appropriately model a short to power supply, which 
can be of dual polarity in an analog implementation. We extend 
the fault model to allow permanent stuck-at h W  type faults on 
a single component (weightbias). This considerably enlarges 
the number of actual faults that can be abstracted by the stuck- 
at model. We have proposed a scheme of replication of hidden 
units to render a feedforward net fault tolerant [ 141. It exploits 
the intrinsic weighted summation operation performed by the 
units to overcome faults. Based on this scheme, metrics were 
devised to measure the fault tolerance of ANN’S as a function 
of redundancy [14]. Our results indicated that a significant 
amount of redundancy is needed to achieve complete fault 
tolerance, despite the somewhat restrictive assumption of 
single faults. Based on analytical results for a few canonical 
problems and extensive simulations on several benchmarks, 
we conjectured a lower bound on the amount of redundancy 
needed to achieve complete fault tolerance in any net [14]. 
In this paper, we analytically prove a modified form of that 
conjecture and obtain a lower bound on the redundancy that 
holds for any net. It demonstrates that less than triple modular 
redundancy (TMR) cannot provide complete tolerance for all 
possible single faults, if any of the fan-in links feeding any 
output unit is essential (a link is defined to be essential if 
the disconnection of that link, or equivalently, a stuck-at zero 
fault on the associated weight, causes the net to malfunction). 
Furthermore, analytical as well as simulation results indicate 
that the actual amount of redundancy needed to synthesize a 
completely fault tolerant net is usually much higher than that 
dictated by the general lower bound. The implication is that 
the conventional strategy of triplication and majority vote is 
a better way of achieving complete fault tolerance for most 
ANN’S. Our approach also reveals a simple way to improve 
the fault tolerance of any net to a desired level by adding 
redundancy. 

The next section describes the topology and fault model. 
Section I11 presents a general procedure to build a fault tolerant 
net by replication of hidden units and compares and contrasts 
it with the conventional TMR/n-MR schemes. Based on this 
procedure, a lower bound on the redundancy needed to achieve 
complete fault tolerance is derived in Section IV. Analytical 
and simulation results obtained by applying the replication 
scheme to several canonical and benchmark problems are then 

summarized. The results show that the redundancy required for 
complete fault tolerance is usually very high. It is extremely 
hard if not impossible to realize the above lower bound on 
redundancy in practice. If less redundancy is provided, only 
partial fault tolerance is feasible. Section V considers this issue 
of partial fault tolerance. A simple but accurate testing strategy 
is proposed for large nets, where exhaustive testing is not 
feasible. Conclusions and future extensions are presented in 
the last section. 

11. TOPOLOGY AND FAULT MODEL 

A. Topology 

We consider feedforward networks of sigmoidal units 
trained with supervised leaming algorithms. The inputs and 
weights (includes biases unless mentioned otherwise) are real 
valued and can take any value in (--00, +m). The output of 
the ith unit is given by 

o; = f(resultant-inputi) 

where 

f ( z )  = a - b 
1 + e-x 

and 
N ,  

resultant-inputi = c l u i j o j  - bias;. (1) 

Here Ni is the total number of units that feed the ith unit, wi j  

is the weight of the link from unit j to unit i, oj is the output 
of the j th  unit., and a , b  are constants. In the analysis and 
simulations, we have used ( a  = 2, b = 1) giving symmetric 
output in (-1,l); ( a  = l,b = 0.5) giving symmetric output 
in (-0.5, f0.5); and ( a  = 1, b = 0) with asymmetric output 
in (0, 1). We concentrate only on classification tasks. Here, N 
distinct output classes can be encoded into [log, N1 (or more 
if desired) bits. The output units produce the bit pattem which 
encodes the exemplar’s category. Thus the output values can 
be separated into two distinct logical classes viz. “0’ and “1.” 
This does not mean that real valued units are being (mis)used 
just to implement a switching function, because the inputs 
and weights of the ANN are real valued. Typically, training 
stops when the outputs are within 5% of the target. Besides the 
back propagation leaming algorithm and its variants [ 161-[ 191, 
we have also considered the cascade correlation learning 
algorithm [20]. These two algorithms often lead to very diverse 
architectures. 

j=1 

B .  Fault Moder‘ 
The fault tolerance properties of ANN’S can be broadly 

classified as 1) on-line or operational fault tolerance and 2) 
fault-tolerance through releaming. The first refers to the ability 
to function in the presence of faults without any releaming or 
any correcting action whatsoever. This is possible only if the 
net has built-in redundancy. The second is the ability to recover 
from faults by reallocating the tasks performed by the faulty 
elements to the good ones. On-line fault tolerance is attractive 
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because a net with this property can function correctly even in 
the presence of faults, as long as the fault tolerance capacity 
is not exceeded. No diagnostics, releaming, or reconfiguration 
is needed. Thus fault detection and location can be totally 
avoided. In this paper, we consider only the on-line fault 
tolerance and evaluate the redundancy needed to achieve it. 

Hardware can fail in a number of complex ways. This is 
especially true of ANN’S, since these can be implemented 
in many radically different ways such as analog VLSI or 
as virtual nets simulated on a multiprocessor network, etc. 
It is extremely difficult to account for all types of physical 
faults. However, permanent physical faults must manifest 
themselves via their effect on the network parameters. We 
therefore model faults at a more abstract level: as changes in 
the weight/bias values. Weights are set stuck at zero and f W ,  
where W’ =maximum of {maximum magnitude among all the 
parameter values developed during leaming; value needed to 
drive a unit into saturation}. 

These stuck-at faults on weights and biases model a wide 
range of physical faults. For instance, in a digital imple- 
mentation, a stuck-at fault affecting the sign bit of a weight 
might cause its value to change from +R’ to -111 or vice 
versa and is covered by this fault model. In an analog VLSI 
implementation, on the other hand, an open circuit leading 
to a disconnection of a link could be modeled by setting its 
weight stuck at zero. If a link got shorted to power supply 
(which could be of a dual polarity & V d d ) ,  the fault could be 
abstracted by setting the associated weight stuck at f 1 V .  If 
the weights are implemented as resistors, their values may 
degrade over time due to aging. A stuck-at f W  fault on the 
weight can appropriately model even the worst case of such 
a degradation due to aging. A change in the offset voltage of 
a transconductance amplifier will affect its output. This might 
be modeled as a change in the bias of the corresponding unit. 
Setting a bias to fW and -17’ results in a unit’s output stuck 
at “high” or “low” and models the failure of a unit. Note that 
setting the weight associated with a link to zero corresponds to 
a disconnection of that link. Setting a bias to zero, on the other 
hand, has no physical significance. Bias faults are therefore 
limited to being stuck at fW’. During testing, an output is 
classified as follows 

output 
1 = {  0 (2) 

An output is considered wrong only if it switches the logical 
level. This happens if the resulratzt-input to an output-layer 
unit switches its sign [( l ) ,  (2)]. 

We conclude this section with a few more comments about 
the fault model. First, the model essentially investigates the 
fault tolerance at the algorithm level. independent of the 
underlying implementation or peculiarities of physical faults. 
It abstracts and simplifies physical failures into stuck-at faults 
affecting single components. It is certainly true that the phys- 
ical faults are much more complex and lead to multiple 
component failures more often than not. Before modeling 
the complex physical faults in all their detail, however, it is 
more appropriate to treat them as equivalent to (arbitrarily) 

if resultant-input = net-input - bias > 0 
if resultant-input = net-input - bias < 0 ‘ 

large changes in single parameter values and test whether 
the model/algorithm can still yield correct results. Such an 
abstraction to stuck-at faults has been very widely used in 
testing of digital circuits and has proved to be sufficient to 
model majority of physical faults. We have extended it to 
cover continuous valued parameters so that it can model many 
physical faults of interest. 

Second, it tums out that even with this simplified fault 
model, ANN’S need large redundancy (TMR or higher) to 
tolerate all possible single faults (this is shown in the following 
sections). If the simplest of faults require no less than TMR 
to achieve complete tolerance, multiple and complex faults 
must require much higher redundancy. The unwieldy and 
cumbersome general analysis of multiple faults is therefore 
unnecessary. Finally, we would like to point out that this 
model is more general than the fault models usually adopted in 
the available literature. Most researchers consider only stuck- 
at zero faults which are inadequate to cover many faults of 
interest as shown above. 

111. A GENERAL PROCEDURE TO 
BUILD A FAULT TOLERANT NET 

A simple way to achieve fault tolerance is through redun- 
dancy. Triple modular redundancy (TMR) and n-MR schemes 
with majority voters have been widely used for reliability 
enhancement in digital systems. Extension of these schemes 
to ANN’S is the most obvious way to render them fault 
tolerant. In a TMR scheme for ANN’S, the whole net would 
be triplicated and a majority voter would be added for every 
triplet of output units. This way the number of majority voters 
equals the number of output units in the original net and could 
be large. Although a gate that performs majority voting on 
analog signals is not that complex, it is not as simple as a 
digital majority voter. A majority gate, in effect, evaluates the 
median of all the input values. It is well known from signal 
processing literature that the median value is far more robust 
than the mean when the inputs are noisy or faulty. Thus TMR 
is a very robust and well proven technique, applicable to any 
net. 

ANN’S, however, are quite different from digital systems. 
Typically, they are composed of a densely interconnected 
network of processing units or nodes. The units themselves 
may not be very complex, but a large number of them 
independently operate in parallel at any given time. The 
gross similarity between ANN’S and biological systems along 
with the highly parallel mode of operation suggests that 
ANN’S could be inherently fault tolerant. Any such intrinsic 
fault tolerance in ANN’S must be quantified vis-a-vis the 
redundancy required to achieve it. This is one of our main 
goals. To this end, we have developed a scheme of replicating 
the hidden units to achieve fault tolerance. It exploits the 
intrinsic weighted summation operation performed by the units 
to overcome faults. It is quite simple, is applicable to any net, 
and can be used as a yardstick to measure the redundancy 
needed to achieve fault tolerance. 

From (1 )  and (2) it  is easy to verify that the output changes 
its logical level only if the resultant-input changes its sign. 
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Thus ensuring that the resultant-input (to every output unit) 
is of the correct sign for every training sample ensures that 
the output is correct as well. The output retains its logical 
value, even if the resultant-input is multiplied by any positive 
number. Thus, if all the hidden units of a net are replicated g 
times, and the biases of the output units are scaled by g, the 
resulting net yields the same classification (logical) outputs 
as the original net. This process of replication is illustrated 
in Fig. 1. Each replication is referred to as a “group” or 
a “module.” Here, the number of input and output units is 
unchanged. Only the hidden units and links that directly feed 
the output units are replicated and the biases of the output units 
are scaled accordingly. The single fault assumption implies 
that the contribution (to resultant-input of an output unit) of 
at most one group can be incorrect. Each correctly working 
group contributes an input of the right polarity (sign). Hence, a 
sufficient number of these correcting influences can overcome 
the erroneous contribution of one faulty group by restoring the 
correct polarity of resultantinput. This can be used to build 
a net that tolerates all single failures as summarized by the 
following steps: 

Step I )  Start with a net that leams the given inpudoutput 
pattem mapping. It is preferable to have a minimal or near 
minimal net. 

Step 2) Find the number of groups needed to correct each 
fault as follows: For each component stuck-at a faulty weight 
value, calculate the resultant-input for each output unit that 
malfunctions. Call it 1,. If the desired resultant-input is I d  
and each correctly working group contributes Is, then the 
number of additional groups needed to restore the polarity of 
resultantinput and the total number of groups are, respectively 

Step 3)  The maximum among all the values found in Step 

Step 4 )  If the number of groups needed is g, scale (multiply) 
2 is the required number of replications. 

the bias of each output unit by g. 

The number of replications needed depends on the initial 
“seed” group which should be minimal or near minimal. 

Even though this method appears no different from the con- 
ventional TMR or n-MR schemes, it is distinct in many ways. 
In particular, the input and output units are not replicated as 
mentioned above. Only the hidden units and all the connections 
feeding the output units are replicated and the biases of the 
output units are scaled accordingly. Moreover, there is no 
majority voter to explicitly mask out the faults. Rather, the 
fault tolerance is achieved through the weighted summation 
process itself, which is an intrinsic characteristic of the ANN 
model. Fault tollerance achieved this way is therefore the same 
as intrinsic fault tolerance arising due to the high connectivity 
and other attributes of ANN’S. It is this feature which is the 
most important from our perspective. 

This brute force method appears to be very expensive in 
terms of the number of units and links needed. However, 
it has some distinct advantages. Izui et al. [21] have shown 
that the rate of convergence during leaming as well as the 
solution accuracy improves with the number of replications. 
Similar observations have been made in [22] where it is 
inferred that clustering of multiple nets improves not only the 
fault tolerance but also the performance. This method can be 
extended for nets with continuous valued outputs by scaling 
the resultant-input to each output unit by the factor llg. In 
fact such a scaling amounts to the evaluation of algebraic 
mean value of the contributions of each of the g groups. 
Unfortunately, the required redundancy tums out to be too 
large to be practical. This is not too surprising: it is well known 
that the mean value is far less efficient at suppressindfiltering 
out faults than other measures such as the median. A single 
bad sample can significantly corrupt the mean, but the median 
can remain unaffected. Hence, median filters are more widely 
used instead of computing the mean values in applications 
such as image processing. 

In summary, the above procedure gives a simple way of 
evaluating fault tolerance as a function of the number of 
replications, i.e., redundancy (this is further elaborated in 
the section on partial fault tolerance). It therefore serves 
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to measure the fault tolerance of ANN’S as a function of 
redundancy. This is the main motivation behind the replication 
scheme. 

IV. A LOWER BOUND ON REDUNDANCY 

This section establishes a lower bound on the redundancy 
necessary to tolerate all possible single faults. It is based on 
the replication procedure described above. It holds for all 
feedforward nets, regardless of the topology or the specific 
task at hand. 

In the following, a link is defined to be essential if the 
disconnection of that link (i.e., a stuck-at zero fault on the as- 
sociated weight) causes the net to malfunction. A malfunction 
refers to a classification error which means that the output unit 
at the receiving end of the disconnected link produces output 
of wrong logical value for at least one 1/0 pattern. 

Theorem 1:  In a feedforward net consisting of sigmoidal 
units, if any of the links feeding any output unit is essential, 
or in other words, if a stuck-at zero fault on any of the 
links feeding any output unit causes the unit to produce a 
classification error, then at least two extra replications, or 
equivalently, three or more groups of hidden units, are required 
to achieve complete fault tolerance for all single faults. 

The proof is included in the Appendix. 
This result suggests that the conventional TMR scheme is as 

good or better than the replication of hidden units. Note that a 
conventional TMR scheme would need to replicate the output 
units as well, besides adding the majority voters. Even if the 
number of output units (and hence the number of voters to be 
added) is comparable to or higher than the number of hidden 
units, the TMR scheme is not that expensive in terms of area 
overhead (as compared with the replication of hidden units) 
because the units and the voters tend to take a small area. 
In a neural net it  is the interconnections in between the units 
that take the most area, and the interconnections have to be 
replicated in both the schemes. In a majority of nets though, the 
number of outputs is much smaller than the number of hidden 
units. Furthermore, the lower bound established by the above 
theorem is not attainable in most cases. Hence, a conventional 
TMR scheme is as good or better for all feedforward ANN’S. 

Theorem 1 establishes a necessary condition on the amount 
of redundancy needed, when at least one output link is 
essential. Note that it does not include sufficiency conditions, 
i.e., this lower bound may not be attainable. In other words, 
three groups are necessary but might not be sufficient to 
tolerate all single failures. The number of groups that are 
sufficient to achieve complete fault tolerance depends on 
the specific problem at hand, the topology of the net, and 
the type of units employed. Also, Theorem 1 says nothing 
about the case when none of the links feeding the output 
units is essential. In such a case (when none of the output 
unit links is essential) fewer groups might render the net 
completely fault tolerant. If any of the output unit fan-in links 
is essential, however, the above theorem holds. It shows that 
large redundancy is needed even if only single failures are 
considered. Finally, we would like to point out that Theorem 
1 is not restricted only to sigmoidal activation functions. It can 

be extended to incorporate any activation function as long as 
the function is monotonic. 

In fact, the attainable or feasible lower bound is often higher 
than the above. This is corroborated by a substantial number of 
analytical and simulation results. We have applied the above 
process of replications to several problems. The minimum 
redundancy sufficient to synthesize completely fault tolerant 
nets has been analytically derived for some canonical problems 
[14], 1231, 1241. In 1241 it  is proved that a single hidden unit 
can solve only the 2 x 2 encoding problem, while only two 
hidden units are sufficient to solve any 71 x n size problem. 
Thus the minimum sized net or the seed-net for the replication 
procedure is known a priori. This makes it possible to derive an 
attainable lower bound on the amount of redundancy needed 
for complete fault tolerance. For the encoding and XOR 
problems, it has been proved 1141, [23] that the minimum 
number of groups of hidden units sufficient for tolerating all 
single faults is 4 if the sigmoid is asymmetric (i.e., the sigmoid 
output is in [0, 11). The corresponding minimum number of 
groups is 3 if the sigmoid is symmetric (i.e., the sigmoid 
output is in [-1, 11) 1141. 1231. These results are stronger 
(than the general lower bound proved above) because they are 
true regardless of whether any of the output links is essential. 
These results clearly indicate that the attainable lower bound 
is dependent on the specific problem, as well as the type of 
units used and the topology of the net. 

Extensive simulation data on realistic benchmark problems 
which are well suited for ANN’S also corroborates the above 
fact, i.e., the actual redundancy required for synthesizing 
completely fault tolerant nets is much higher than that dictated 
by the general lower bound. We have run a large number of 
simulations on all the benchmarks from the CMU database 
[2S] and some from other sources. For each of these problems, 
many nets were generated using the cascade correlation and/or 
back propagation algorithms. Simulations showed that the 
amount of redundancy required to achieve complete fault toler- 
ance is usually extremely high (more than 6 replications). The 
results also reveal a nonuniform distribution of computational 
load. Few dominant weights are fault tolerance bottlenecks, 
while many others can be dispensed without significantly 
degrading the performance. This happens even if the fan-in 
is very large. In the Sonar benchmark [23], [25], [26], for 
example, the fan-in of the output unit was 63 in some nets. 
In the NETtalk benchmark [23], [2S], [27], the fan-in of the 
output units was as high as 27 1. Then it  might appear that each 
individual link would not be so critical. Despite the large fan- 
in, however, the nets still need a large number of replications 
(no less than five) to achieve complete fault tolerance. It 
appears that the theoretical lower bounds derived above are 
almost impossible to realize in practice. Merely providing a 
large number of hidden units is therefore insufficient. Similar 
observations were reported in [9] and [13]. This is not too 
surprising, since the training procedure is not geared toward 
fault tolerance. It must be modified to equitably distribute the 
computation among all units. 

All this data clearly demonstrates that the conventional 
TMR scheme of triplication and majority vote is the best way 
to achieve fault tolerance for most practical problems. This is 
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consistent with the fact that a replication of modules is better 
than replicating individual elements, which is well established 
for digital systems. Neural nets are different, however, and it is 
a bit surprising that the conventional TMR strategy that works 
so well for digital systems also happens to be the best one 
for most ANN’S. The following qualitative argument might 
provide more insight into why this happens. In Section I11 
it was pointed out that the evaluation of the mean value, or 
performing a weighted algebraic sum (which is what a unit in 
the ANN does), is not an efficient way of masking faults. 
Instead, the extraction of the median value is a far more 
efficient way of masking faults. A scheme based on majority 
voting essentially performs such a median extraction and hence 
is more efficient. 

V. PARTIAL FAULT TOLERANCE 

The amount of redundancy needed for complete fault tol- 
erance is prohibitive as shown above. If less redundancy is 
provided, fewer faults are tolerated. This directly leads to the 
notion of partial fault tolerance which is particularly important 
for ANN’S. Unlike digital logic, ANN’S are expected to 
perform better on larger, random problems. The specification 
of such tasks might be incomplete or might allow a few 
erroneous outputs. In some classification tasks, for instance, a 
“closest match” with one of the output classes is an acceptable 
criteria, rather than insisting on an exact match. In such cases, 
there can be a multitude of outputs that satisfy the closest 
match criteria. Thus an ANN’S task might not be as rigidly 
defined as that of a digital system. Partial fault tolerance is 
therefore more pertinent for ANN’S. Equally desirable is the 
ability to degrade gracefully. 

A simple metric to quantify the partial fault tolerance is 
to count the number of faults tolerated as a function of the 
number of replications. We have applied this metric to all the 
canonical and benchmark problems mentioned above. For the 
sake of brevity, we illustrate the results for only two of the 
benchmarks (Sonar and NETTalk benchmarks) in Figs. 2 and 
5, respectively. 

A. Exhaustive iresting 

The correct value of the fraction of all possible single faults 
that can be tolerated must be obtained through an exhaustive 
testing of all possible single faults, one at a time. Such a 
scheme is feasible only for small or moderately large nets. 
The Sonar nets happen to be manageably large. An exhaustive 
test strategy was therefore used to generate the plots in Fig. 2. 

Details of the Sonar benchmark can be found in [25], [26]. 
The problem specification has 60 inputs and one output. For 
this problem, all the nets used to generate the plots shown 
in Fig. 2 were generated by the back propagation learning 
algorithm, had one layer of hidden units, and employed the 
asymmetric sigmoid. Nets were also generated by the cascade 
correlation, as mentioned above. This algorithm was used with 
both asymmetric and symmetric sigmoid activation functions. 
The partial fault tolerance data for these cascade correlation 
generated nets shows identical trends and is therefore excluded 
from the figure for the sake of clarity. 

To generate the fraction values, each weight was in turn set 
at +W, 0, and -W, where W is the maximum magnitude. 
This corresponds to testing every possible fault for every 
weight, one at a time. Each bias was set at f W .  Setting a bias 
to zero has no physical significance. In contrast, it is essential 
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to set a weight to zero to model the disconnection of a link. 
For each of the above settings (or faults), all the I/O pattems 
were tested. All the outputs that went wrong (switched logical 
levels from “0” to “1” or vice versa) were counted. This sum 
was then normalized by the following factor 

(number of output units x number of I/O patterns 
x total number of faults). 

Note that 

the total number of faults 
= (the number of links present in the net 

x the types of faults simulated per link 
+ the number of biases present in the net 
x the types of faults simulated per bias). 

The resultant number represents the fraction of outputs that 
went wrong. Subtracting it from 1.0 yields the fraction of 
outputs that were correct, which is the partial fault tolerance 
metric mentioned above. This fraction is the y coordinate 
in the plots shown in Fig. 2. The partial fault tolerance 
was calculated for increasing number of replications until it 
reached a satisfactory level (usually 95% or higher), or up to 
4 replications if the initial partial fault tolerance (without any 
extra replications) itself was higher than 95%. 

The plots show that the partial fault tolerance is very good 
to begin with: more than 99% of all possible single faults are 
tolerated without any additional redundancy. Moreover, the 
first replication seems to yield the maximum enhancement in 
partial fault tolerance. Later successive replications yield lesser 
enhancements. It should be noted that the plots appear to reach 
the value 1.0 or complete fault tolerance at z = 4 in this 
figure. This is only an illusion, due to the limited resolution of 
the plotter. Numerical calculations showed that complete fault 
tolerance is nor achieved even at x=6, i.e., 6 extra replications. 
It is clear that a TMR scheme with majority voter achieves 
complete fault tolerance with much less redundancy (the plot 
would reach the value y = 1 at 5 = 2 ,  i.e., total number of 
modules= 2 + 1 = 3). 

B.  Random Testing 

For large nets such as those trained on the NETTalk bench- 
mark (please refer to [25], [27] for further details about 
this benchmark), the exhaustive test strategy would take pro- 
hibitively large time. We therefore adopt a more efficient 
testing strategy described below. In our simulations [23], we 
used a net having 196 inputs, 26 outputs, and a list of 200 
words, which generated 11 14 1/0 patterns. All the units had 
a symmetric sigmoidal activation function with outputs in 
[-0.5, +0.5]. The cascade correlation learning algorithm was 
used to train the nets. It typically uses about 75 units, and 
roughly 25000 independently adjustable parameters (weights 
and biases). 

This number of weights and biases is too large to permit 
exhaustive testing. A more efficient testing strategy must 
be adopted. An analogy with testing of conventional digital 
circuits is in order here. Testing of digital logic is a full fledged 

area that has evolved over the past 25 years or so. It is well 
known that exhaustive testing of even the simplest systems, 
i.e., combinatorial logic circuits (which are, in some sense, 
equivalent to feedforward nets while sequential circuits are 
like ANN’S with feedback connections) is prohibitive although 
the number of logic gates is relatively small. All kinds of 
elaborate techniques such as partitioning, testing with random 
input vectors, modular testing, built-in self-testing, etc., have 
to be employed to avoid exhaustive testing and still achieve 
acceptable fault coverage. The same situation arises in neural 
nets as well. Exhaustive testing becomes infeasible as the net 
size grows. Efficient strategies have to be devised for testing 
the hardware in large and complex ANN’S. 

In digital systems, testing with random input vectors proved 
to be quite effective and is widely used as a first step of many 
state-of-the-art testing algorithms to rapidly cover most faults. 
We extend this idea to the testing of ANN’S. The bias faults are 
exhaustively tested. A fraction of the total number of links are 
then randomly chosen to be tested for weight faults. In large 
nets, the number of biases is usually a very small fraction of 
the total number of parameters. In the NETTalk benchmark, 
for example, out of the 25000 odd parameters, only 75 are 
biases. Moreover, a bias fault is equivalent to an output fault 
and thus models the failure of a unit. Hence it is more likely to 
cause malfunction than the disconnection of a single link. For 
these reasons, the bias faults should be tested exhaustively. 

We applied this method to the Two Spirals Classification 
[20], [25], [28] and the Sonar and Vowel [25], [29] benchmarks 
and compared the results with the exhaustive testing scheme. 
The results are shown in Figs. 3 and 4. Fig. 3 shows the 
estimates of the fraction of faults tolerated for the Two Spi- 
rals benchmark. The net had approximately 250 independent 
parameters, including 20 biases. The x coordinate represents 
the fraction of links that were actually tested for weight faults. 
For each of the z values, several trials with different random 
seeds were run. Each trial used a different set of links for fault 
testing, due to the different random seed. The total number 
of links tested, however, was held fixed, corresponding to 
the fraction denoted by the x coordinate. Averages of the 
values generated in these trials are plotted as the y coordinates 
in the graph. It was found that 5 trials (per 5 coordinate 
value) were sufficient to yield a standard deviation less than 
0.009 and a 95% confidence interval smaller than 2%. It is 
seen that the estimates are within 5% of the exhaustive-test 
generated value, even if only 1% of the links are actually 
tested for weight faults. The estimate improves slowly as 
more and more links are actually tested. Analogous results 
were obtained for the Vowel benchmark and are therefore 
omitted. 

Fig. 4 shows a similar plot for the Sonar net. Here the 
number of independent parameters is significantly higher: 
nearly 3700, including 60 biases. In this case, the estimates 
are within 0.5% of the exhaustive test generated value when 
only 1% of the links are actually tested. Testing several other 
intermediate sized nets showed that the larger the number of 
parameters, the more accurate is the estimate of outputs that 
remain correct when the fraction of links actually tested for 
faults is held fixed. Thus, for larger nets, a fairly accurate 



PHATAK AND KOREN: FAULT TOLERANCE OF FEEDFORWARD NEURAL NETS 453 

0 . 9  
c, 

a, 
$4 
0 
U 0 . 8 6  
c 
-4 
m 
E 
d 
c, 0 . 8 2  
m c 
c, 

v) 
4J 

2 0 .78  
3 
0 
w 
0 

c, 
m 
h 

0 .7  
0 1 0  20 30 40 50 60 7 0  80 90 100 

F r a c t i o n  of l i n k s  t e s t e d  (pe rcen tage )  

Fig. 3. Comparison of random link testing method with exhaustive testing for a typical net trained on the two spirals benchmark [20], [25 ] ,  [28] by the 
cascade correlation algorithm. All biases are exhaustively tested. A fraction of the total number of links are then chosen at random for weight fault testing. 
This fraction (the s coordinate) is vaned from 1% to 100% (exhaustive testing). 

c, 

a, 
U 

U 
c 
-4 

$ lx 
c, 

c 
c, 
VI 
cl 

a 
c, 

0 
w 

c 
-4 
4J 

m 
h 

1 

0 .98  

0 .96  

0 .94  

0.92 

0 . 9  
0 1 0  20 30 40  50  60 7 0  80 90 1 0 0  

F r a c t i o n  of l i n k s  t e s t e d  (pe rcen tage )  

Fig. 4. 
algorithm. The point corresponding to 100%) on the .r axis is the result generated by exhaustive testing. 

Comparison of random link testing method with exhaustive testing for a typical net trained on the sonar benchmark by the back propagation 

estimate can be obtained by testing a small fraction (1%) of 
links for weight faults. 

For the NETTalk Benchmark, we therefore tested only 1% 
of the links. The resulting plot is shown in Fig. 5. Despite the 
big difference in scale (number of parameters, fan-in, training 
patterns, etc.), this plot exhibits features similar to the other 
benchmarks: the net possesses a very good degree of partial 

fault tolerance to begin with: about 99.4% of all possible single 
faults are tolerated without any additional redundancy. Also, 
the first replication is seen to yield the most performance 
improvement. However, a large number of replications are 
needed for complete fault tolerance, despite the large fan-in. 

All the other nets trained on other benchmarks also showed 
identical trends. It is seen that the initial partial fault tolerance 
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of ANN’S is very good. Moreover, the first replication yields 
greater improvement in fault tolerance than later, successive 
replications. This is especially true of the larger complex 
benchmark nets. It suggests that one extra replication may 
be the best compromise, since the number of replications 
necessary for complete tolerance is prohibitively large. In fact, 
if more than one extra replication is to be employed, it is better 
to use a conventional TMR scheme with a majority voter to 
achieve complete fault tolerance. 

VI. CONCLUSION 

A method was proposed to estimate fault tolerance of 
feedforward ANN’S and the redundancy required to achieve it. 
Fault models appropriate for hardware implementations were 
presented. A procedure was developed to build fault tolerant 
ANN’S by replicating the hidden units. It relies on the intrinsic 
sum-of-products operation performed by the units to overcome 
faults. Based on this procedure, metrics were devised to 
measure fault tolerance as a function of redundancy. A lower 
bound on the redundancy required to achieve complete fault 
tolerance was analytically derived. This general result holds 
regardless of the topology or the specifics of the underlying 
problem. It shows that if any of the links feeding the output 
units is essential, then the ANN needs triple modular or higher 
redundancy to achieve complete fault tolerance. 

Analytical and simulation results based on the proposed 
metrics show that the minimum number of groups suflcient 
for achieving complete fault tolerance is usually much higher 
than the minimum number necessary which was established 
by the general lower bound. Substantial amount of simulation 
data also indicates that the actual redundancy needed for a 

realizable net is very high. An important implication is that the 
conventional TMR scheme of triplication and majority voting 
is the best way to achieve complete fault tolerance for most 
ANN’S. 

Even though the amount of redundancy needed for complete 
fault tolerance is prohibitive, the data illustrates that ANN’S 
do possess good partial fault tolerance to begin with (without 
any extra redundancy). It can be further enhanced by adding 
moderate amounts of redundancy. In particular, the first extra 
replication yields the maximum improvement in fault tolerance 
as compared with later successive replications. 

It is evident that efficient testing strategies must be devised 
to test ANN’S as they grow larger. A simple random testing 
strategy was proposed for large nets where exhaustive testing 
is prohibitive. This testing method is seen to yield estimates 
that are very close to the exhaustive-test generated values. 
Our results demonstrate that currently used learning algorithms 
develop nonuniform weights and biases with a few that are 
critical and many others that are insignificant. Merely pro- 
viding extra units is therefore insufficient. Future extensions 
should include modifications of the learning algorithms to 
develop the specific weights and biases that optimize fault 
tolerance. 

APPENDIX 
PROOF OF THEOREM 1 

In the following it is assumed that there are M output units 
and P I/O or pattem pairs in the training set. Without loss of 
generality, assume that the ith output unit generates erroneous 
logical value for the lcth 1/0 pattern. Let the fan-in of the ith 
output unit be Ni. The outputs of the hidden units (that feed 
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the ith output unit under consideration) for the kth pattem are 
denoted by 2: , x!j, . . . xk, respectively, where 1 5 k 5 P. 
The total input to unit i ,  denoted by resultant-inputi, for the 

If n additional replications are to restore the original polarity, 
then 

I - wllxf - rest‘[ 
wr,x: - rest‘ 

wilxT - rest‘ 
w:,xT - rest’ 

< n  - kth pattem is then - 

Nt 

resultant-input, = x w t J x ;  - bias,. (4) 

The output of the ith unit is “1” if resultaminput, > 0 and 
it is “0” if resultant-input, < 0. Without loss of generality, 
assume that the output of the ith unit goes wrong, i.e., switches 
its logical level when the weight of the link connecting it to 
hidden unit 1 is set to zero (i.e., upon a stuck-at 0 fault on 
this link), for the kth pattem. 

I) First consider the case when hidden unit 1 has asymmetric 
sigmoidal output, i.e., x? E (0 , l ) .  There are two subcases: A) 
The correct output has a logical level “1” that switches to an 
incorrect logical level “0” and B) vice versa, i.e., a correct 
output of logical level “0’ switches to an incorrect logical 
level “1” upon the fault (i.e., upon setting w,1 = 0). 

A) Level switch from “1” to “0’ upon fault: In this case, 
for correct operation 

J=1 

N ,  

x w z J x :  = w,1xt + rest > o 
J=1 

or, on rearrangement 

2 . rest‘ 
wllx: - rest‘ 

n > 1 +  

Since rest‘ > 0, and wilx: - rest‘ > 0, the above equation 
implies that 

n > l + E  

with 

t > 0 or n 2 2, i.e., the number of groups is n + 1 2 3. 
(14) 

B) If the logical level switches from “0” to “1,” the deriva- 
tion remains almost identical. In particular, the inequalities in 
(5) and (6) get reversed. Equations (7) and (8) now become 

rest > 0 and wil < 0 (15) 

reserest‘ and wi1 = -wll. (16) 

The following equations are obtained instead of (9), (lo), (1 1) 

rest’ - w:,xt < 0: correct operation (17) where 

N ,  

rest = x w i j x j ”  - biasi 
j = 2  

rest‘ - 0 = rest‘ > 0: 

incorrect operation when wll gets stuck at zero (18) 
( 5 )  

whereas where 

o . xf + rest < o 
upon a stuck-at 0 fault on wi l .  

The above equations imply that 

rest’ > 0; w:, > 0. 

Now consider a fault where wr1 changes its sign and gets stuck 
at -wil. In that case the resultant input to the ith output unit 
(for pattem k) is 

rest < 0 and w;1 > 0. (7) resultant-inputi = rest’ + w:,x? > 0. (20) 

Setting If n additional replications are to restore the original polarity, 
then 

rest‘ + w;,xf + rest‘ 
the following equations are obtained [rest‘ - wilx: - rest‘ 

rest = -rest‘ and wi l  = wil (8) 
< n  - - 

wi,x? - rest‘ > o correct operation 

o - rest’ = -rest’ < O 

or, on rearrangement 
(9) 

2 . rest‘ 
w:,xf - rest’ 

n > l +  

incorrect operation when wil gets stuck-at zero (10) which is to (13)- Q.E.D. 
11) Now consider the case when hidden unit 1 has symmetric 

sigmoidal output, i.e., x: E (-1, 1). The proof is almost 
identical to the above proof. We consider two cases: A) 
wil > 0, and B) wil < 0. (under the assumption that w;1 

is nonzero to begin with). Each is further classified into two 
subcaseS. 

where 

rest‘ > 0; wi1 > 0. (11) 

Now consider a fault where wi1 changes its sign and gets stuck 
at -tu:,. In that case the resultant input to the ith output unit 
(for pattem k) is 1) The logical level switches from “1” to “0” and 

2) vice versa, i.e., the logical level switches from “0’ to 
resuItant-inputi = -wilx: - rest’ < 0. (12) “ 1 .” 
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The proofs for each of these cases are almost identical to [20] S. E. Fahlman and C. Lebiere, “The cascade correlation leaming 
either (IA) (IB) above. In the proof for architecture,” in D. S. Touretzsky (Ed.), Neural Information Processing 

Systems 2. Morgan Kaufman, 1990, pp. 524-532. 
is [21] Y. Izui and A. Pentland, “Analysis of neural networks with redundancy,” 

almost identical to that of case (IA). Proofs for cases (IIA-2), Neural Computation, vol. 2, pp. 226238,  1990. 

(IIB-l), and (IIB-2) are (IB), (IA), and (IB), [221 w .  p. Lincoln and J. Skrzypek, ‘‘Synergy of clustering multiple back 
propagation networks,” in D. S. Touretzsky (Ed.), Neural Information 

respectively. The details for these cases are therefore omitted Processing Systems 2. 
for the sake of brevity and can be found in [23]. Q.E.D. [23] D. S. Phatak and I. Koren, “Complete and partial fault tolerance of 

feedforward neural nets,” Tech. Rep. TR-92-CSE-26, Electrical and 

wil > and level switches from “ l ”  to 

to 
Morgan Kaufman, 1990, pp. 65CL-657. 
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