
446 IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL 6. NO 2. MARCH 1995

Complete and Partial Fault Tolerance
of Feedforward Neural Nets

Dhananjay S. Phatak and Israel Koren, Fellnx7, IEEE

Abstract-A method is proposed to estimate the fault tolerance
of feedforward artificial neural nets (ANN’S) and synthesize
robust nets. The fault model abstracts a variety of failure modes
of hardware implementations to permanent stuck-at type faults of
single components. A procedure is developed to build fault toler-
ant ANN’S by replicating the hidden units. It exploits the intrinsic
weighted summation operation performed by the processing units
to overcome faults. It is simple, robust, and applicable to any
feedforward net. Based on this procedure, metrics are devised to
quantify the fault tolerance as a function of redundancy.

Furthermore, a lower bound on the redundancy required to
tolerate all possible single faults is analytically derived. This
bound demonstrates that less than triple modular redundancy
(TMR) cannot provide complete fault tolerance for all possible
single faults. This general result establishes a necessary condition
that holds for all feedforward nets, regardless of the network
topology or the task it is trained on. Analytical as well as extensive
simulation results indicate that the actual redundancy needed to
synthesize a completely fault tolerant net is specific to the problem
at hand and is usually much higher than that dictated by the
general lower bound. The data implies that the conventional TMR
scheme of triplication and majority vote is the best way to achieve
complete fault tolerance in most ANN’S.

Although the redundancy needed for complete fault tolerance
is substantial, the results do show that ANN’S exhibit good partial
fault tolerance to begin with (i.e., without any extra redundancy)
and degrade gracefully. The first replication is seen to yield
maximum enhancement in partial fault tolerance compared with
later successive replications. For large nets, exhaustive testing
of all possible single faults is prohibitive. Hence the strategy of
randomly testing a small fraction of the total number of links is
adopted. It yields partial fault tolerance estimates that are very
close to those obtained by exhaustive testing. Moreover, when the
fraction of links tested is held fixed, the accuracy of the estimate
generated by random testing is seen to improve as the net size
grows.

I. lNTRODUCTION

EURAL computing is rapidly evolving as a viable solu- N tion to several problems. For use in applications requiring
high reliability, artificial neural nets (ANN’s) have to be fault
tolerant. The ANN should possess a high degree of fault
tolerance to begin with and its performance should degrade
gracefully with increasing number of faults. Fault tolerance of
ANN’S is often taken for granted or treated as a subsidiary

Manuscript received August I. 1992: revised April 4 and October 1 I , 1993.
This work was supported in part by the National Science Foundation, Grant
MIP 90-13013.

D. S. Phatak was with the Department of Electrical and Computer En-
gineering. University of Massachusetts. Amherst, MA. he is now with
the Department of Electrical Engineering, State University of New York,
Binghamton, NY 13902-6000 USA.

I. Koren is with the Department of Electrical and Computer Engineering,
University of Massachusetts, Amherst, MA 01 003 LISA.

IEEE Log Number 9214290.

issue [I] , [2]. Investigations by Carter et al. [l] , [3] indicated
that ANN’S are not always fault tolerant and demonstrated
the need to quantitatively evaluate their robustness. Several
expositions have addressed various aspects of fault tolerance

Simulation results on the XOR problem are reported in
[4], but these are quite specific to this one example and the
underlying fault model. The emphasis of [5] is on recovery
through releaming. The issue of on-line or operational fault
tolerance is not considered there. Fault tolerance of Hopfield
type ANN’s for optimization problems was investigated in
[6]. It does not, however, address fault tolerance in trainable
ANN’S. Belfore et al. have developed an analytical technique
for estimating the performance of ANN’s in presence of faults
[7], [8]. They construct a Markov model for the ANN by
drawing analogy with magnetic spin systems using statisti-
cal mechanics. Emmerson et al. studied fault tolerance and
redundancy of neural nets for the classification of acoustic
data [9]. They found that a single layer perceptron (direct 1/0
connections without any hidden units) was far less damage
resistant than a multilayer version, which had a single hidden
layer consisting of five to 25 hidden units. However, increasing
the redundancy by increasing the number of hidden units
did not yield significant improvement in the performance
under faulty conditions. They then performed a singular value
decomposition (SVD) analysis of the weight matrix and found
that there were no linear dependencies in the hidden units, i.e.,
none of the units was redundant as per the SVD analysis. They
concluded that back propagation training discovers intemal
representations that appear to be distributed but may not be
suited for fault tolerance. Sequin et al. [I O] set a predetermined
number of randomly chosen hidden units stuck at faulty output
values during training. The set of units that are assumed to be
faulty varies from epoch to epoch during the training. This
type of training yields a more fault tolerant net as expected,
but it needs longer leaming times, may not converge unless the
number of faulty units is small, and does not necessarily lead to
a better utilization of available resources. Neti et al. recently
reported numerical results on the synthesis of fault tolerant
nets [1 I] . They add constraints to ensure fault tolerance and
look for a solution to the constrained optimization problem.
This approach is analytically well founded, but it is also
very computation intensive, and more experiments are needed
to draw any general conclusions about the resulting fault
tolerance. Training procedures that attempt to increase fault
tolerance also appear to enhance generalization capability
[1 11, [121. Segee and Carter 1131 have developed a measure

of ANN’S [3]-[14].

1045-9227/95$04.00 0 1995 IEEE

PHATAK AND KOREN: FAULT TOLERANCE OF FEEDFORWARD NEURAL NETS 447

of graceful degradation for continuous valued ANN’S. They
performed an extensive study of the fault tolerance capabilities
of multilayer perceptrons and Gaussian radial basis function
networks by fault injection experiments and found that setting
a few units stuck at zero during training yielded a substantial
enhancement in fault tolerance of radial basis nets but only
a marginal improvement in the fault tolerance of multilayer
perceptrons. However, they did not try to evaluate how much
redundancy is necessary to achieve a given level of fault
tolerance or how to make a given net fault tolerant.

The issue of redundancy required to achieve fault tolerance
has not yet been adequately addressed. Also, the fault models
usually adopted are very restrictive. Most researchers consider
only a disconnection of links or units which usually amounts
to stuck-at zero type permanent faults. While this may be
sufficient to model a bumt out link or open circuit type fault,
it may not appropriately model a short to power supply, which
can be of dual polarity in an analog implementation. We extend
the fault model to allow permanent stuck-at h W type faults on
a single component (weightbias). This considerably enlarges
the number of actual faults that can be abstracted by the stuck-
at model. We have proposed a scheme of replication of hidden
units to render a feedforward net fault tolerant [141. It exploits
the intrinsic weighted summation operation performed by the
units to overcome faults. Based on this scheme, metrics were
devised to measure the fault tolerance of ANN’S as a function
of redundancy [14]. Our results indicated that a significant
amount of redundancy is needed to achieve complete fault
tolerance, despite the somewhat restrictive assumption of
single faults. Based on analytical results for a few canonical
problems and extensive simulations on several benchmarks,
we conjectured a lower bound on the amount of redundancy
needed to achieve complete fault tolerance in any net [14].
In this paper, we analytically prove a modified form of that
conjecture and obtain a lower bound on the redundancy that
holds for any net. It demonstrates that less than triple modular
redundancy (TMR) cannot provide complete tolerance for all
possible single faults, if any of the fan-in links feeding any
output unit is essential (a link is defined to be essential if
the disconnection of that link, or equivalently, a stuck-at zero
fault on the associated weight, causes the net to malfunction).
Furthermore, analytical as well as simulation results indicate
that the actual amount of redundancy needed to synthesize a
completely fault tolerant net is usually much higher than that
dictated by the general lower bound. The implication is that
the conventional strategy of triplication and majority vote is
a better way of achieving complete fault tolerance for most
ANN’S. Our approach also reveals a simple way to improve
the fault tolerance of any net to a desired level by adding
redundancy.

The next section describes the topology and fault model.
Section I11 presents a general procedure to build a fault tolerant
net by replication of hidden units and compares and contrasts
it with the conventional TMR/n-MR schemes. Based on this
procedure, a lower bound on the redundancy needed to achieve
complete fault tolerance is derived in Section IV. Analytical
and simulation results obtained by applying the replication
scheme to several canonical and benchmark problems are then

summarized. The results show that the redundancy required for
complete fault tolerance is usually very high. It is extremely
hard if not impossible to realize the above lower bound on
redundancy in practice. If less redundancy is provided, only
partial fault tolerance is feasible. Section V considers this issue
of partial fault tolerance. A simple but accurate testing strategy
is proposed for large nets, where exhaustive testing is not
feasible. Conclusions and future extensions are presented in
the last section.

11. TOPOLOGY AND FAULT MODEL

A. Topology

We consider feedforward networks of sigmoidal units
trained with supervised leaming algorithms. The inputs and
weights (includes biases unless mentioned otherwise) are real
valued and can take any value in (--00, +m). The output of
the ith unit is given by

o; = f(resultant-inputi)

where

f (z) = a - b
1 + e-x

and
N ,

resultant-inputi = c l u i j o j - bias;. (1)

Here Ni is the total number of units that feed the ith unit, wi j

is the weight of the link from unit j to unit i, oj is the output
of the j th unit., and a , b are constants. In the analysis and
simulations, we have used (a = 2, b = 1) giving symmetric
output in (-1,l); (a = l,b = 0.5) giving symmetric output
in (-0.5, f0.5); and (a = 1, b = 0) with asymmetric output
in (0, 1). We concentrate only on classification tasks. Here, N
distinct output classes can be encoded into [log, N1 (or more
if desired) bits. The output units produce the bit pattem which
encodes the exemplar’s category. Thus the output values can
be separated into two distinct logical classes viz. “0’ and “1.”
This does not mean that real valued units are being (mis)used
just to implement a switching function, because the inputs
and weights of the ANN are real valued. Typically, training
stops when the outputs are within 5% of the target. Besides the
back propagation leaming algorithm and its variants [161-[191,
we have also considered the cascade correlation learning
algorithm [20]. These two algorithms often lead to very diverse
architectures.

j=1

B . Fault Moder‘
The fault tolerance properties of ANN’S can be broadly

classified as 1) on-line or operational fault tolerance and 2)
fault-tolerance through releaming. The first refers to the ability
to function in the presence of faults without any releaming or
any correcting action whatsoever. This is possible only if the
net has built-in redundancy. The second is the ability to recover
from faults by reallocating the tasks performed by the faulty
elements to the good ones. On-line fault tolerance is attractive

338 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 2 , MARCH 1995

because a net with this property can function correctly even in
the presence of faults, as long as the fault tolerance capacity
is not exceeded. No diagnostics, releaming, or reconfiguration
is needed. Thus fault detection and location can be totally
avoided. In this paper, we consider only the on-line fault
tolerance and evaluate the redundancy needed to achieve it.

Hardware can fail in a number of complex ways. This is
especially true of ANN’S, since these can be implemented
in many radically different ways such as analog VLSI or
as virtual nets simulated on a multiprocessor network, etc.
It is extremely difficult to account for all types of physical
faults. However, permanent physical faults must manifest
themselves via their effect on the network parameters. We
therefore model faults at a more abstract level: as changes in
the weight/bias values. Weights are set stuck at zero and f W ,
where W’ =maximum of {maximum magnitude among all the
parameter values developed during leaming; value needed to
drive a unit into saturation}.

These stuck-at faults on weights and biases model a wide
range of physical faults. For instance, in a digital imple-
mentation, a stuck-at fault affecting the sign bit of a weight
might cause its value to change from +R’ to -111 or vice
versa and is covered by this fault model. In an analog VLSI
implementation, on the other hand, an open circuit leading
to a disconnection of a link could be modeled by setting its
weight stuck at zero. If a link got shorted to power supply
(which could be of a dual polarity & V d d) , the fault could be
abstracted by setting the associated weight stuck at f 1 V . If
the weights are implemented as resistors, their values may
degrade over time due to aging. A stuck-at f W fault on the
weight can appropriately model even the worst case of such
a degradation due to aging. A change in the offset voltage of
a transconductance amplifier will affect its output. This might
be modeled as a change in the bias of the corresponding unit.
Setting a bias to fW and -17’ results in a unit’s output stuck
at “high” or “low” and models the failure of a unit. Note that
setting the weight associated with a link to zero corresponds to
a disconnection of that link. Setting a bias to zero, on the other
hand, has no physical significance. Bias faults are therefore
limited to being stuck at fW’. During testing, an output is
classified as follows

output
1 = { 0 (2)

An output is considered wrong only if it switches the logical
level. This happens if the resulratzt-input to an output-layer
unit switches its sign [(l) , (2)].

We conclude this section with a few more comments about
the fault model. First, the model essentially investigates the
fault tolerance at the algorithm level. independent of the
underlying implementation or peculiarities of physical faults.
It abstracts and simplifies physical failures into stuck-at faults
affecting single components. It is certainly true that the phys-
ical faults are much more complex and lead to multiple
component failures more often than not. Before modeling
the complex physical faults in all their detail, however, it is
more appropriate to treat them as equivalent to (arbitrarily)

if resultant-input = net-input - bias > 0
if resultant-input = net-input - bias < 0 ‘

large changes in single parameter values and test whether
the model/algorithm can still yield correct results. Such an
abstraction to stuck-at faults has been very widely used in
testing of digital circuits and has proved to be sufficient to
model majority of physical faults. We have extended it to
cover continuous valued parameters so that it can model many
physical faults of interest.

Second, it tums out that even with this simplified fault
model, ANN’S need large redundancy (TMR or higher) to
tolerate all possible single faults (this is shown in the following
sections). If the simplest of faults require no less than TMR
to achieve complete tolerance, multiple and complex faults
must require much higher redundancy. The unwieldy and
cumbersome general analysis of multiple faults is therefore
unnecessary. Finally, we would like to point out that this
model is more general than the fault models usually adopted in
the available literature. Most researchers consider only stuck-
at zero faults which are inadequate to cover many faults of
interest as shown above.

111. A GENERAL PROCEDURE TO
BUILD A FAULT TOLERANT NET

A simple way to achieve fault tolerance is through redun-
dancy. Triple modular redundancy (TMR) and n-MR schemes
with majority voters have been widely used for reliability
enhancement in digital systems. Extension of these schemes
to ANN’S is the most obvious way to render them fault
tolerant. In a TMR scheme for ANN’S, the whole net would
be triplicated and a majority voter would be added for every
triplet of output units. This way the number of majority voters
equals the number of output units in the original net and could
be large. Although a gate that performs majority voting on
analog signals is not that complex, it is not as simple as a
digital majority voter. A majority gate, in effect, evaluates the
median of all the input values. It is well known from signal
processing literature that the median value is far more robust
than the mean when the inputs are noisy or faulty. Thus TMR
is a very robust and well proven technique, applicable to any
net.

ANN’S, however, are quite different from digital systems.
Typically, they are composed of a densely interconnected
network of processing units or nodes. The units themselves
may not be very complex, but a large number of them
independently operate in parallel at any given time. The
gross similarity between ANN’S and biological systems along
with the highly parallel mode of operation suggests that
ANN’S could be inherently fault tolerant. Any such intrinsic
fault tolerance in ANN’S must be quantified vis-a-vis the
redundancy required to achieve it. This is one of our main
goals. To this end, we have developed a scheme of replicating
the hidden units to achieve fault tolerance. It exploits the
intrinsic weighted summation operation performed by the units
to overcome faults. It is quite simple, is applicable to any net,
and can be used as a yardstick to measure the redundancy
needed to achieve fault tolerance.

From (1) and (2) it is easy to verify that the output changes
its logical level only if the resultant-input changes its sign.

PHATAK AND KOREN: FAULT TOLERANCE OF FEEDFORWARD NEURAL NETS 449

output units

....................

i Group Group i
i one two i

.................,

Input units

(a) 0))
Fig. 1.
the output units) are also scaled by 2.0.

Replication of hidden units. (a) Original net. (b) One extra group of hidden units. Biases of output units (shown inside the circles representing

Thus ensuring that the resultant-input (to every output unit)
is of the correct sign for every training sample ensures that
the output is correct as well. The output retains its logical
value, even if the resultant-input is multiplied by any positive
number. Thus, if all the hidden units of a net are replicated g
times, and the biases of the output units are scaled by g, the
resulting net yields the same classification (logical) outputs
as the original net. This process of replication is illustrated
in Fig. 1. Each replication is referred to as a “group” or
a “module.” Here, the number of input and output units is
unchanged. Only the hidden units and links that directly feed
the output units are replicated and the biases of the output units
are scaled accordingly. The single fault assumption implies
that the contribution (to resultant-input of an output unit) of
at most one group can be incorrect. Each correctly working
group contributes an input of the right polarity (sign). Hence, a
sufficient number of these correcting influences can overcome
the erroneous contribution of one faulty group by restoring the
correct polarity of resultantinput. This can be used to build
a net that tolerates all single failures as summarized by the
following steps:

Step I) Start with a net that leams the given inpudoutput
pattem mapping. It is preferable to have a minimal or near
minimal net.

Step 2) Find the number of groups needed to correct each
fault as follows: For each component stuck-at a faulty weight
value, calculate the resultant-input for each output unit that
malfunctions. Call it 1,. If the desired resultant-input is I d
and each correctly working group contributes Is, then the
number of additional groups needed to restore the polarity of
resultantinput and the total number of groups are, respectively

Step 3) The maximum among all the values found in Step

Step 4) If the number of groups needed is g, scale (multiply)
2 is the required number of replications.

the bias of each output unit by g.

The number of replications needed depends on the initial
“seed” group which should be minimal or near minimal.

Even though this method appears no different from the con-
ventional TMR or n-MR schemes, it is distinct in many ways.
In particular, the input and output units are not replicated as
mentioned above. Only the hidden units and all the connections
feeding the output units are replicated and the biases of the
output units are scaled accordingly. Moreover, there is no
majority voter to explicitly mask out the faults. Rather, the
fault tolerance is achieved through the weighted summation
process itself, which is an intrinsic characteristic of the ANN
model. Fault tollerance achieved this way is therefore the same
as intrinsic fault tolerance arising due to the high connectivity
and other attributes of ANN’S. It is this feature which is the
most important from our perspective.

This brute force method appears to be very expensive in
terms of the number of units and links needed. However,
it has some distinct advantages. Izui et al. [21] have shown
that the rate of convergence during leaming as well as the
solution accuracy improves with the number of replications.
Similar observations have been made in [22] where it is
inferred that clustering of multiple nets improves not only the
fault tolerance but also the performance. This method can be
extended for nets with continuous valued outputs by scaling
the resultant-input to each output unit by the factor llg. In
fact such a scaling amounts to the evaluation of algebraic
mean value of the contributions of each of the g groups.
Unfortunately, the required redundancy tums out to be too
large to be practical. This is not too surprising: it is well known
that the mean value is far less efficient at suppressindfiltering
out faults than other measures such as the median. A single
bad sample can significantly corrupt the mean, but the median
can remain unaffected. Hence, median filters are more widely
used instead of computing the mean values in applications
such as image processing.

In summary, the above procedure gives a simple way of
evaluating fault tolerance as a function of the number of
replications, i.e., redundancy (this is further elaborated in
the section on partial fault tolerance). It therefore serves

450 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 2 , MARCH 1995

to measure the fault tolerance of ANN’S as a function of
redundancy. This is the main motivation behind the replication
scheme.

IV. A LOWER BOUND ON REDUNDANCY

This section establishes a lower bound on the redundancy
necessary to tolerate all possible single faults. It is based on
the replication procedure described above. It holds for all
feedforward nets, regardless of the topology or the specific
task at hand.

In the following, a link is defined to be essential if the
disconnection of that link (i.e., a stuck-at zero fault on the as-
sociated weight) causes the net to malfunction. A malfunction
refers to a classification error which means that the output unit
at the receiving end of the disconnected link produces output
of wrong logical value for at least one 1/0 pattern.

Theorem 1: In a feedforward net consisting of sigmoidal
units, if any of the links feeding any output unit is essential,
or in other words, if a stuck-at zero fault on any of the
links feeding any output unit causes the unit to produce a
classification error, then at least two extra replications, or
equivalently, three or more groups of hidden units, are required
to achieve complete fault tolerance for all single faults.

The proof is included in the Appendix.
This result suggests that the conventional TMR scheme is as

good or better than the replication of hidden units. Note that a
conventional TMR scheme would need to replicate the output
units as well, besides adding the majority voters. Even if the
number of output units (and hence the number of voters to be
added) is comparable to or higher than the number of hidden
units, the TMR scheme is not that expensive in terms of area
overhead (as compared with the replication of hidden units)
because the units and the voters tend to take a small area.
In a neural net it is the interconnections in between the units
that take the most area, and the interconnections have to be
replicated in both the schemes. In a majority of nets though, the
number of outputs is much smaller than the number of hidden
units. Furthermore, the lower bound established by the above
theorem is not attainable in most cases. Hence, a conventional
TMR scheme is as good or better for all feedforward ANN’S.

Theorem 1 establishes a necessary condition on the amount
of redundancy needed, when at least one output link is
essential. Note that it does not include sufficiency conditions,
i.e., this lower bound may not be attainable. In other words,
three groups are necessary but might not be sufficient to
tolerate all single failures. The number of groups that are
sufficient to achieve complete fault tolerance depends on
the specific problem at hand, the topology of the net, and
the type of units employed. Also, Theorem 1 says nothing
about the case when none of the links feeding the output
units is essential. In such a case (when none of the output
unit links is essential) fewer groups might render the net
completely fault tolerant. If any of the output unit fan-in links
is essential, however, the above theorem holds. It shows that
large redundancy is needed even if only single failures are
considered. Finally, we would like to point out that Theorem
1 is not restricted only to sigmoidal activation functions. It can

be extended to incorporate any activation function as long as
the function is monotonic.

In fact, the attainable or feasible lower bound is often higher
than the above. This is corroborated by a substantial number of
analytical and simulation results. We have applied the above
process of replications to several problems. The minimum
redundancy sufficient to synthesize completely fault tolerant
nets has been analytically derived for some canonical problems
[14], 1231, 1241. In 1241 it is proved that a single hidden unit
can solve only the 2 x 2 encoding problem, while only two
hidden units are sufficient to solve any 71 x n size problem.
Thus the minimum sized net or the seed-net for the replication
procedure is known a priori. This makes it possible to derive an
attainable lower bound on the amount of redundancy needed
for complete fault tolerance. For the encoding and XOR
problems, it has been proved 1141, [23] that the minimum
number of groups of hidden units sufficient for tolerating all
single faults is 4 if the sigmoid is asymmetric (i.e., the sigmoid
output is in [0, 11). The corresponding minimum number of
groups is 3 if the sigmoid is symmetric (i.e., the sigmoid
output is in [-1, 11) 1141. 1231. These results are stronger
(than the general lower bound proved above) because they are
true regardless of whether any of the output links is essential.
These results clearly indicate that the attainable lower bound
is dependent on the specific problem, as well as the type of
units used and the topology of the net.

Extensive simulation data on realistic benchmark problems
which are well suited for ANN’S also corroborates the above
fact, i.e., the actual redundancy required for synthesizing
completely fault tolerant nets is much higher than that dictated
by the general lower bound. We have run a large number of
simulations on all the benchmarks from the CMU database
[2S] and some from other sources. For each of these problems,
many nets were generated using the cascade correlation and/or
back propagation algorithms. Simulations showed that the
amount of redundancy required to achieve complete fault toler-
ance is usually extremely high (more than 6 replications). The
results also reveal a nonuniform distribution of computational
load. Few dominant weights are fault tolerance bottlenecks,
while many others can be dispensed without significantly
degrading the performance. This happens even if the fan-in
is very large. In the Sonar benchmark [23], [25], [26], for
example, the fan-in of the output unit was 63 in some nets.
In the NETtalk benchmark [23], [2S], [27], the fan-in of the
output units was as high as 27 1. Then it might appear that each
individual link would not be so critical. Despite the large fan-
in, however, the nets still need a large number of replications
(no less than five) to achieve complete fault tolerance. It
appears that the theoretical lower bounds derived above are
almost impossible to realize in practice. Merely providing a
large number of hidden units is therefore insufficient. Similar
observations were reported in [9] and [13]. This is not too
surprising, since the training procedure is not geared toward
fault tolerance. It must be modified to equitably distribute the
computation among all units.

All this data clearly demonstrates that the conventional
TMR scheme of triplication and majority vote is the best way
to achieve fault tolerance for most practical problems. This is

PHATAK AND KOREN: FAULT TOLERANCE OF FEEDFORWARD NEURAL NETS

~

45 I

U

a,

k
0

C
-4
m
ti
k
c,
G
c,
m
U
3 a
c,
3

4

U

U

cw

C
-4
U
U
&I
Irc

m

1

0.999

0.998

0.997

0.996

0.995

0.994 11
0.993 ’

net with 60 hidden units -
net with 42 hidden units

0.992 I I

0 1 2 3 4
Number of replications of hidden units

Fig. 2.
with 42 hidden units.

Partial fault tolerance of nets trained on the sonar benchmark [25], [26] by back propagation. -0-: Net with 60 hidden units. +. . .: Net

consistent with the fact that a replication of modules is better
than replicating individual elements, which is well established
for digital systems. Neural nets are different, however, and it is
a bit surprising that the conventional TMR strategy that works
so well for digital systems also happens to be the best one
for most ANN’S. The following qualitative argument might
provide more insight into why this happens. In Section I11
it was pointed out that the evaluation of the mean value, or
performing a weighted algebraic sum (which is what a unit in
the ANN does), is not an efficient way of masking faults.
Instead, the extraction of the median value is a far more
efficient way of masking faults. A scheme based on majority
voting essentially performs such a median extraction and hence
is more efficient.

V. PARTIAL FAULT TOLERANCE

The amount of redundancy needed for complete fault tol-
erance is prohibitive as shown above. If less redundancy is
provided, fewer faults are tolerated. This directly leads to the
notion of partial fault tolerance which is particularly important
for ANN’S. Unlike digital logic, ANN’S are expected to
perform better on larger, random problems. The specification
of such tasks might be incomplete or might allow a few
erroneous outputs. In some classification tasks, for instance, a
“closest match” with one of the output classes is an acceptable
criteria, rather than insisting on an exact match. In such cases,
there can be a multitude of outputs that satisfy the closest
match criteria. Thus an ANN’S task might not be as rigidly
defined as that of a digital system. Partial fault tolerance is
therefore more pertinent for ANN’S. Equally desirable is the
ability to degrade gracefully.

A simple metric to quantify the partial fault tolerance is
to count the number of faults tolerated as a function of the
number of replications. We have applied this metric to all the
canonical and benchmark problems mentioned above. For the
sake of brevity, we illustrate the results for only two of the
benchmarks (Sonar and NETTalk benchmarks) in Figs. 2 and
5, respectively.

A. Exhaustive iresting

The correct value of the fraction of all possible single faults
that can be tolerated must be obtained through an exhaustive
testing of all possible single faults, one at a time. Such a
scheme is feasible only for small or moderately large nets.
The Sonar nets happen to be manageably large. An exhaustive
test strategy was therefore used to generate the plots in Fig. 2.

Details of the Sonar benchmark can be found in [25], [26].
The problem specification has 60 inputs and one output. For
this problem, all the nets used to generate the plots shown
in Fig. 2 were generated by the back propagation learning
algorithm, had one layer of hidden units, and employed the
asymmetric sigmoid. Nets were also generated by the cascade
correlation, as mentioned above. This algorithm was used with
both asymmetric and symmetric sigmoid activation functions.
The partial fault tolerance data for these cascade correlation
generated nets shows identical trends and is therefore excluded
from the figure for the sake of clarity.

To generate the fraction values, each weight was in turn set
at +W, 0, and -W, where W is the maximum magnitude.
This corresponds to testing every possible fault for every
weight, one at a time. Each bias was set at f W . Setting a bias
to zero has no physical significance. In contrast, it is essential

452 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 2, MARCH 1995

to set a weight to zero to model the disconnection of a link.
For each of the above settings (or faults), all the I/O pattems
were tested. All the outputs that went wrong (switched logical
levels from “0” to “1” or vice versa) were counted. This sum
was then normalized by the following factor

(number of output units x number of I/O patterns
x total number of faults).

Note that

the total number of faults
= (the number of links present in the net

x the types of faults simulated per link
+ the number of biases present in the net
x the types of faults simulated per bias).

The resultant number represents the fraction of outputs that
went wrong. Subtracting it from 1.0 yields the fraction of
outputs that were correct, which is the partial fault tolerance
metric mentioned above. This fraction is the y coordinate
in the plots shown in Fig. 2. The partial fault tolerance
was calculated for increasing number of replications until it
reached a satisfactory level (usually 95% or higher), or up to
4 replications if the initial partial fault tolerance (without any
extra replications) itself was higher than 95%.

The plots show that the partial fault tolerance is very good
to begin with: more than 99% of all possible single faults are
tolerated without any additional redundancy. Moreover, the
first replication seems to yield the maximum enhancement in
partial fault tolerance. Later successive replications yield lesser
enhancements. It should be noted that the plots appear to reach
the value 1.0 or complete fault tolerance at z = 4 in this
figure. This is only an illusion, due to the limited resolution of
the plotter. Numerical calculations showed that complete fault
tolerance is nor achieved even at x=6, i.e., 6 extra replications.
It is clear that a TMR scheme with majority voter achieves
complete fault tolerance with much less redundancy (the plot
would reach the value y = 1 at 5 = 2 , i.e., total number of
modules= 2 + 1 = 3).

B. Random Testing

For large nets such as those trained on the NETTalk bench-
mark (please refer to [25], [27] for further details about
this benchmark), the exhaustive test strategy would take pro-
hibitively large time. We therefore adopt a more efficient
testing strategy described below. In our simulations [23], we
used a net having 196 inputs, 26 outputs, and a list of 200
words, which generated 11 14 1/0 patterns. All the units had
a symmetric sigmoidal activation function with outputs in
[-0.5, +0.5]. The cascade correlation learning algorithm was
used to train the nets. It typically uses about 75 units, and
roughly 25000 independently adjustable parameters (weights
and biases).

This number of weights and biases is too large to permit
exhaustive testing. A more efficient testing strategy must
be adopted. An analogy with testing of conventional digital
circuits is in order here. Testing of digital logic is a full fledged

area that has evolved over the past 25 years or so. It is well
known that exhaustive testing of even the simplest systems,
i.e., combinatorial logic circuits (which are, in some sense,
equivalent to feedforward nets while sequential circuits are
like ANN’S with feedback connections) is prohibitive although
the number of logic gates is relatively small. All kinds of
elaborate techniques such as partitioning, testing with random
input vectors, modular testing, built-in self-testing, etc., have
to be employed to avoid exhaustive testing and still achieve
acceptable fault coverage. The same situation arises in neural
nets as well. Exhaustive testing becomes infeasible as the net
size grows. Efficient strategies have to be devised for testing
the hardware in large and complex ANN’S.

In digital systems, testing with random input vectors proved
to be quite effective and is widely used as a first step of many
state-of-the-art testing algorithms to rapidly cover most faults.
We extend this idea to the testing of ANN’S. The bias faults are
exhaustively tested. A fraction of the total number of links are
then randomly chosen to be tested for weight faults. In large
nets, the number of biases is usually a very small fraction of
the total number of parameters. In the NETTalk benchmark,
for example, out of the 25000 odd parameters, only 75 are
biases. Moreover, a bias fault is equivalent to an output fault
and thus models the failure of a unit. Hence it is more likely to
cause malfunction than the disconnection of a single link. For
these reasons, the bias faults should be tested exhaustively.

We applied this method to the Two Spirals Classification
[20], [25], [28] and the Sonar and Vowel [25], [29] benchmarks
and compared the results with the exhaustive testing scheme.
The results are shown in Figs. 3 and 4. Fig. 3 shows the
estimates of the fraction of faults tolerated for the Two Spi-
rals benchmark. The net had approximately 250 independent
parameters, including 20 biases. The x coordinate represents
the fraction of links that were actually tested for weight faults.
For each of the z values, several trials with different random
seeds were run. Each trial used a different set of links for fault
testing, due to the different random seed. The total number
of links tested, however, was held fixed, corresponding to
the fraction denoted by the x coordinate. Averages of the
values generated in these trials are plotted as the y coordinates
in the graph. It was found that 5 trials (per 5 coordinate
value) were sufficient to yield a standard deviation less than
0.009 and a 95% confidence interval smaller than 2%. It is
seen that the estimates are within 5% of the exhaustive-test
generated value, even if only 1% of the links are actually
tested for weight faults. The estimate improves slowly as
more and more links are actually tested. Analogous results
were obtained for the Vowel benchmark and are therefore
omitted.

Fig. 4 shows a similar plot for the Sonar net. Here the
number of independent parameters is significantly higher:
nearly 3700, including 60 biases. In this case, the estimates
are within 0.5% of the exhaustive test generated value when
only 1% of the links are actually tested. Testing several other
intermediate sized nets showed that the larger the number of
parameters, the more accurate is the estimate of outputs that
remain correct when the fraction of links actually tested for
faults is held fixed. Thus, for larger nets, a fairly accurate

PHATAK AND KOREN: FAULT TOLERANCE OF FEEDFORWARD NEURAL NETS 453

0 . 9
c,

a,
$4
0
U 0 . 8 6
c
-4
m
E
d
c, 0 . 8 2
m c
c,

v)
4J

2 0 .78
3
0
w
0

c,
m
h

0 .7
0 1 0 20 30 40 50 60 7 0 80 90 100

F r a c t i o n of l i n k s t e s t e d (pe rcen tage)

Fig. 3. Comparison of random link testing method with exhaustive testing for a typical net trained on the two spirals benchmark [20], [25] , [28] by the
cascade correlation algorithm. All biases are exhaustively tested. A fraction of the total number of links are then chosen at random for weight fault testing.
This fraction (the s coordinate) is vaned from 1% to 100% (exhaustive testing).

c,

a,
U

U
c
-4

$ lx
c,

c
c,
VI
cl

a
c,

0
w

c
-4
4J

m
h

1

0 .98

0 .96

0 .94

0.92

0 . 9
0 1 0 20 30 40 50 60 7 0 80 90 1 0 0

F r a c t i o n of l i n k s t e s t e d (pe rcen tage)

Fig. 4.
algorithm. The point corresponding to 100%) on the .r axis is the result generated by exhaustive testing.

Comparison of random link testing method with exhaustive testing for a typical net trained on the sonar benchmark by the back propagation

estimate can be obtained by testing a small fraction (1%) of
links for weight faults.

For the NETTalk Benchmark, we therefore tested only 1%
of the links. The resulting plot is shown in Fig. 5. Despite the
big difference in scale (number of parameters, fan-in, training
patterns, etc.), this plot exhibits features similar to the other
benchmarks: the net possesses a very good degree of partial

fault tolerance to begin with: about 99.4% of all possible single
faults are tolerated without any additional redundancy. Also,
the first replication is seen to yield the most performance
improvement. However, a large number of replications are
needed for complete fault tolerance, despite the large fan-in.

All the other nets trained on other benchmarks also showed
identical trends. It is seen that the initial partial fault tolerance

454 IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 6, NO. 2, MARCH 1995

a
U

1
.rl
U

W

U

a,

U

U
C
.-I

-

m
I
U

c U

m
U

a
7
0
U

c:
rl
U

m
h

0.998

0.996

0 . 9 9 4

0.992
0

1% of links tested -
1 2 3
number of replications

Fig. 5. Partial fault tolerance of a typical net with cascade correlation on the NE’lTalk benchmark [25], [27]. Training set consisted of 200 words which
generated 1 1 14 I/O patterns. The net had 24622 independent parameters (weights and biases) including 75 biases. All bias faults were exhaustively tested.
1% of the links were then randomly tested for weight faults.

of ANN’S is very good. Moreover, the first replication yields
greater improvement in fault tolerance than later, successive
replications. This is especially true of the larger complex
benchmark nets. It suggests that one extra replication may
be the best compromise, since the number of replications
necessary for complete tolerance is prohibitively large. In fact,
if more than one extra replication is to be employed, it is better
to use a conventional TMR scheme with a majority voter to
achieve complete fault tolerance.

VI. CONCLUSION

A method was proposed to estimate fault tolerance of
feedforward ANN’S and the redundancy required to achieve it.
Fault models appropriate for hardware implementations were
presented. A procedure was developed to build fault tolerant
ANN’S by replicating the hidden units. It relies on the intrinsic
sum-of-products operation performed by the units to overcome
faults. Based on this procedure, metrics were devised to
measure fault tolerance as a function of redundancy. A lower
bound on the redundancy required to achieve complete fault
tolerance was analytically derived. This general result holds
regardless of the topology or the specifics of the underlying
problem. It shows that if any of the links feeding the output
units is essential, then the ANN needs triple modular or higher
redundancy to achieve complete fault tolerance.

Analytical and simulation results based on the proposed
metrics show that the minimum number of groups suflcient
for achieving complete fault tolerance is usually much higher
than the minimum number necessary which was established
by the general lower bound. Substantial amount of simulation
data also indicates that the actual redundancy needed for a

realizable net is very high. An important implication is that the
conventional TMR scheme of triplication and majority voting
is the best way to achieve complete fault tolerance for most
ANN’S.

Even though the amount of redundancy needed for complete
fault tolerance is prohibitive, the data illustrates that ANN’S
do possess good partial fault tolerance to begin with (without
any extra redundancy). It can be further enhanced by adding
moderate amounts of redundancy. In particular, the first extra
replication yields the maximum improvement in fault tolerance
as compared with later successive replications.

It is evident that efficient testing strategies must be devised
to test ANN’S as they grow larger. A simple random testing
strategy was proposed for large nets where exhaustive testing
is prohibitive. This testing method is seen to yield estimates
that are very close to the exhaustive-test generated values.
Our results demonstrate that currently used learning algorithms
develop nonuniform weights and biases with a few that are
critical and many others that are insignificant. Merely pro-
viding extra units is therefore insufficient. Future extensions
should include modifications of the learning algorithms to
develop the specific weights and biases that optimize fault
tolerance.

APPENDIX
PROOF OF THEOREM 1

In the following it is assumed that there are M output units
and P I/O or pattem pairs in the training set. Without loss of
generality, assume that the ith output unit generates erroneous
logical value for the lcth 1/0 pattern. Let the fan-in of the ith
output unit be Ni. The outputs of the hidden units (that feed

PHATAK AND KOREN: FAULT TOLERANCE OF FEEDFORWARD NEURAL NETS 455

the ith output unit under consideration) for the kth pattem are
denoted by 2: , x!j, . . . xk, respectively, where 1 5 k 5 P.
The total input to unit i , denoted by resultant-inputi, for the

If n additional replications are to restore the original polarity,
then

I - wllxf - rest‘[
wr,x: - rest‘

wilxT - rest‘
w:,xT - rest’

< n - kth pattem is then -

Nt

resultant-input, = x w t J x ; - bias,. (4)

The output of the ith unit is “1” if resultaminput, > 0 and
it is “0” if resultant-input, < 0. Without loss of generality,
assume that the output of the ith unit goes wrong, i.e., switches
its logical level when the weight of the link connecting it to
hidden unit 1 is set to zero (i.e., upon a stuck-at 0 fault on
this link), for the kth pattem.

I) First consider the case when hidden unit 1 has asymmetric
sigmoidal output, i.e., x? E (0 , l) . There are two subcases: A)
The correct output has a logical level “1” that switches to an
incorrect logical level “0” and B) vice versa, i.e., a correct
output of logical level “0’ switches to an incorrect logical
level “1” upon the fault (i.e., upon setting w,1 = 0).

A) Level switch from “1” to “0’ upon fault: In this case,
for correct operation

J=1

N ,

x w z J x : = w,1xt + rest > o
J=1

or, on rearrangement

2 . rest‘
wllx: - rest‘

n > 1 +

Since rest‘ > 0, and wilx: - rest‘ > 0, the above equation
implies that

n > l + E

with

t > 0 or n 2 2, i.e., the number of groups is n + 1 2 3.
(14)

B) If the logical level switches from “0” to “1,” the deriva-
tion remains almost identical. In particular, the inequalities in
(5) and (6) get reversed. Equations (7) and (8) now become

rest > 0 and wil < 0 (15)

reserest‘ and wi1 = -wll. (16)

The following equations are obtained instead of (9), (lo), (1 1)

rest’ - w:,xt < 0: correct operation (17) where

N ,

rest = x w i j x j ” - biasi
j = 2

rest‘ - 0 = rest‘ > 0:

incorrect operation when wll gets stuck at zero (18)
(5)

whereas where

o . xf + rest < o
upon a stuck-at 0 fault on wi l .

The above equations imply that

rest’ > 0; w:, > 0.

Now consider a fault where wr1 changes its sign and gets stuck
at -wil. In that case the resultant input to the ith output unit
(for pattem k) is

rest < 0 and w;1 > 0. (7) resultant-inputi = rest’ + w:,x? > 0. (20)

Setting If n additional replications are to restore the original polarity,
then

rest‘ + w;,xf + rest‘
the following equations are obtained [rest‘ - wilx: - rest‘

rest = -rest‘ and wi l = wil (8)
< n - -

wi,x? - rest‘ > o correct operation

o - rest’ = -rest’ < O

or, on rearrangement
(9)

2 . rest‘
w:,xf - rest’

n > l +

incorrect operation when wil gets stuck-at zero (10) which is to (13)- Q.E.D.
11) Now consider the case when hidden unit 1 has symmetric

sigmoidal output, i.e., x: E (-1, 1). The proof is almost
identical to the above proof. We consider two cases: A)
wil > 0, and B) wil < 0. (under the assumption that w;1

is nonzero to begin with). Each is further classified into two
subcaseS.

where

rest‘ > 0; wi1 > 0. (11)

Now consider a fault where wi1 changes its sign and gets stuck
at -tu:,. In that case the resultant input to the ith output unit
(for pattem k) is 1) The logical level switches from “1” to “0” and

2) vice versa, i.e., the logical level switches from “0’ to
resuItant-inputi = -wilx: - rest’ < 0. (12) “ 1 .”

456 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 2, MARCH 1995

The proofs for each of these cases are almost identical to [20] S. E. Fahlman and C. Lebiere, “The cascade correlation leaming
either (IA) (IB) above. In the proof for architecture,” in D. S. Touretzsky (Ed.), Neural Information Processing

Systems 2. Morgan Kaufman, 1990, pp. 524-532.
is [21] Y. Izui and A. Pentland, “Analysis of neural networks with redundancy,”

almost identical to that of case (IA). Proofs for cases (IIA-2), Neural Computation, vol. 2, pp. 226238, 1990.

(IIB-l), and (IIB-2) are (IB), (IA), and (IB), [221 w . p. Lincoln and J. Skrzypek, ‘‘Synergy of clustering multiple back
propagation networks,” in D. S. Touretzsky (Ed.), Neural Information

respectively. The details for these cases are therefore omitted Processing Systems 2.
for the sake of brevity and can be found in [23]. Q.E.D. [23] D. S. Phatak and I. Koren, “Complete and partial fault tolerance of

feedforward neural nets,” Tech. Rep. TR-92-CSE-26, Electrical and

wil > and level switches from “ l ” to

to
Morgan Kaufman, 1990, pp. 65CL-657.

REFERENCES

M. J. Carter, “The illusion of fault tolerance in neural nets for pattem
recognition and signal processing,” in Proc. Technical Session on Fault
Tolerant Integrated Systems, Univ. New Hampshire, Durham, 1988.
Y. Le Cun, J. S. Denker, and S. Solla, “Optimal brain damage,” in
Advances in Neural Information Processing Systems 2, D. S. Touretzsky,
Ed. Morgan Kaufman, 1990. pp. 598605.
M. J. Carter, F. J. Rudolph, and A. J. Nucci, “Operational fault tolerance
of CMAC networks,” in Advances in Neural Information Processing
Systems 2, D. S. Touretzsky, Ed. Morgan Kaufman, 1990.
T. R. Damarla and P. K. Bhagat, “Fault tolerance of neural networks,” in
Proc. Southeastcon. New York; IEEE Computer Society Press, 1989,
pp. 328-331.
T. Petsche and B. W. Dickinson, “Trellis codes, receptive fields, and
fault tolerant, self-repairing neural networks,” IEEE Trans. Neural
Networks, vol. 1, pp. 154-166, Jun. 1990.
P. W. Protzel, D. L. Palumbo, and M. K. Arras, “Performance and fault
tolerance of neural networks for optimization,” in Proc. Int. Joint Conf.
Neural Networks (IJCNN), Jan 1990, pp. 455-459.
L. A. Belfore I1 and B. W. Johnson, “The fault tolerance characteristics
of neural networks,” Int. J . Neural Networks Res. Appl., pp. 24-41, Jan
1989.
-, “Analysis of the faulty behavior of synchronous neural networks,”
IEEE Trans. Computers, pp. 1424-1428, Dec. 1991.
M. D. Emmerson, R. I. Damper, et al.. “Fault tolerance and redundancy
of neural nets for the classification of acoustic data,” in Proc. Int. Conf.
Acoustics Speech Signal Processing (ICASSP), vol. 2, Toronto, Canada,
May 1991, pp. 1053-1056.
C. H. Sequin and R. D. Clay, “Fault tolerance in artificial neural
networks,” in Proc. Int. Joint Conf. on Neural Nets (IJCNN), vol. 1,
San Diego, CA, June 1990, pp. 1-703-1-708.
C. Neti, M. H. Schneider, and E. D. Young, “Maximally fault tolerant
neural networks,” IEEE Trans. Neural Nehvorks, vol. 3, pp. 14-23, Jan.
1992.
R. D. Clay and C. H. Sequin, “Fault tolerance training improves
generalization and robustness,” in Proc. Int. Joint Conf. Neural Nets
(IJCNN), vol. 1, Baltimore, MD, June 1992, pp. 1-769-1-774.
B. E. Segee and M. J. Carter, “Comparative fault tolerance of parallel
distributed processing networks (debunking the myth of inherent fault
tolerance),” Intelligent Structures Group, Robotics Lab., Electrical and
Computer Engineering Dept., Univ. of New Hampshire, Durham, Tech.
Rept. ECE.lS.92.07, Feb. 1992.
D. S. Phatak and I. Koren, “Fault tolerance of feedforward neural nets
for classification tasks,” in Proc. Int. Joint Conf. Neural Nets (IJCNN),
vol. 2, Baltimore, MD, June 1992. pp. 11-386-11-391.
A. E. Bryson and Y. C. Ho, Applied Optimal Control. Hemisphere
Publ. Corp., 1975.
D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing,
vol. 1: Foundations. Cambridge, MA: MIT Press, 1986.
Y. le Cun, “Une Procedure d’appresntissage pour reseau a sequil
assymetrique (a leaming procedure for asymmetric threshold network),”
in Proc. Cognitiva, Paris, France, 1985, pp. 599406.
- , “A theoretical framework for back-propagation,” in D. Touretzsky,
G. Hinton, and T. Sejnowski, (Ed.), Proc. 1988 Connectionist Models
Summer School, San Mateo, CA, 1988, pp. 21-28.
S. E. Fahlman, “Faster leaming variations on back propagation: An
empirical study,” in D. Touretzsky, G. Hinton, and T. Sejnowski (Ed.),
Proc. 1988 Connectionist Models Summer School, San Mateo, CA.

Computer Engineering Dept., Univ. of Massachusetts, Amherst, July
1992.

[24] D. S. Phatak, H. Choi, and I. Koren, “Construction of minimal R - 2 - 17

encoders for any n.” Neural Computation, vol. 5, pp. 783-794, Sept.
1993.

1251 S. E. Fahlman et al., “Neural nets learning algorithms and benchmarks
database,” maintained by S. E. Fahlman et al. at the Computer Science
Dept., Camegie Mellon Univ.

[26] R. P. Gorman and T. J. Sejnowski, “Analysis of hidden units in a layered
network trained to classify sonar targets,” Neural Networks, pp. 75-89,
1988.

[27] T. J. Sejnowski and C. R. Rosenberg, “Parallel networks that leam to
pronounce English text,” Complex Sysr., vol. 1, pp. 145-168, 1987.

1281 K. J. Lang and M. J. Witbrock, “Learning to tell two spirals apart,” in D.
Touretzsky, G. Hinton, and T. Sejnowski (Ed.), Proc. I988 Connectionisr
Models Summer School, San Mateo, CA, 1988.

1291 A. J. Robinson and F. Fallside, “A dynamic connectionist model for
phoneme recognition,” in Proc. nEuro, Paris, June 1988.

Dhananjay S. Phatak received the B. Tech. degree in electrical engineering
from the Indian Institute of Technology, Bombay, in 1985; the M.S. degree
in microwave engineering in 1990, and the Ph.D. degree in computer systems
engineering in 1993, both from the Department of Electrical and Computer
Engineering, University of Massachusetts, Amherst.

He is currently an Assistant Professor of Electrical Engineering at the State
University of New York, Binghamton. His current research interests are in
theory, applications, and electronic as well as optical implementations of
neural networks, digital and analog VLSI design and CAD, fault tolerant
computing, computer arithmetic algorithms and their VLSI implementations.
His research interests also include microwave and optical integrated circuits.

Dr. Phatak has published papers in various joumals and presented papers
at conferences related to computer arithmetic algorithms and their implemen-
tations.

Israel Koren (S’72-M’76-SM’87-F’91) received the B.Sc., M.Sc., and D.Sc.
degrees from the Technion-Israel Institute of Technology, Haifa, in 1967,
1970, and 1975, respectively, all in electrical engineering.

He is currently a Professor of Electrical and Computer Engineering at
the University of Massachusetts, Amherst. Previously he was with the
Departments of Electrical Engineering and Computer Science at the Technion-
Israel Institute of Technology. He also held visiting positions with the
University of Califomia at Berkeley, University of Southem Califomia, Los
Angeles, and the University of Califomia, Santa Barbara. He has been
a Consultant to Intel, Digital Equipment Corp., National Semiconductor,
Tolerant Systems, and ELTA. His current research interests are fault-tolerant
VLSI architectures, models for yield and performance, floor-planning of VLSI
chips, and computer arithmetic.

Dr. Koren has published extensively in the IEEE TRANSACTIONS and has
also served as program committee member for numerous conferences. He has
edited and coauthored the book Defect and Fault-Tolerance in VLSI Systems,
vol. 1 (Plenum, 1989). He is the author of the textbook Computer Arithmetic
Algorithms (Rentice-Hall, 1993).

