
930 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5 , NO. 6, NOVEMBER 1994

Connectivity and Performance Tradeoffs in the
Cascade Correlation Learning Architecture

D. S. Phatak and I. Koren, Fellow, ZEEE

Abstruct- The Cascade Correlation [l] is a very flexible,
efficient and fast algorithm for supervised learning. It incremen-
tally builds the network by adding hidden units one at a time,
until the desired input/output mapping is achieved. It connects
all the previously installed units to the new unit being added.
Consequently, each new unit in effect adds a new layer and the
fan-in of the hidden and output units keeps on increasing as
more units get added. The resulting structure could be hard to
implement in VLSI, because the connections are irregular and
the fan-in is unbounded. Moreover, the depth or the propagation
delay through the resulting network is directly proportional to
the number of units and can be excessive.

We have modified the algorithm to generate networks with re-
stricted fan-in and small depth (propagation delay) by controlling
the connectivity. Our results reveal that there is a tradeoff be-
tween connectivity and other performance attributes like depth,
total number of independent parameters, learning time, etc.
When the number of inputs or outputs is small relative to the size
of the training set, a higher connectivity usually leads to faster
learning, and fewer independent parameters, but it also results
in unbounded fan-in and depth. Strictly layered architectures
with restricted connectivity, on the other hand, need more epochs
to learn and use more parameters, but generate more regular
structures, with smaller, limited fan-in and significantly smaller
depth (propagation delay), and may be better suited for VLSI
implementations. When the number of inputs or outputs is not
very small compared to the size of the training set, however,
a strictly layered topology is seen to yield an overall better
performance.

I. INTRODUCTION

LGORITHMS like the Cascade Correlation [l] or the A Continuous ID3 (CID3, which is derived from a machine
learning paradigm [2]), incrementally build a neural net. These
algorithms take the guess work out of the training process,
there is no need to guess the number of hidden units or their
connections ahead of time. The algorithms themselves add
units and connections as required, during the training process.
However, these algorithms can lead to unrestricted fan-in
and large depth (propagation delay). Also, the connections
generated are irregular and unsuitable for VLSI implemen-
tation (an efficient VLSI implementation requires regularity
and local interconnects). In this paper, we propose a modified
version of the Cascade Correlation algorithm which leads to

Manuscript received January 22, 1993; revised June 14, 1993. This work
was supported in part by the National Science Foundation under Grant MIP

D.S. Phatak is with the Electrical Engineering Department, State University

I. Koren is with the Department of Electrical and Computer Engineering,

IEEE Log Number 9212061.

90-13013.

of New York, Binghamton, NY 13902-6000 USA.

University of Massachusetts, Amherst, MA 01003 USA.

restricted fan-in, more regular connections and significantly
smaller depth.

We begin with a brief introduction to the Cascade Correla-
tion [l]. In this method, all the inputs and outputs are directly
connected first and these connections are trained to minimize
the error (i.e., squared error summed over all outputs over
all I/O pattems). Hidden units are then installed one by one,
incrementally reducing the error, till the desired error bound
is met. Each unit is installed in two steps. In step 1, all the
inputs and previously installed hidden units are connected to
the input of the new hidden unit. Its output is not yet connected
anywhere in the net. The input side connections of the new
unit are then trained to maximize the correlation between
its output and the residual error at the network outputs. This
can be thought of as a maximal “alignment” with the residual
error. The input side connection weights are frozen hereafter.
In the second phase of installing the hidden unit, its output is
connected to all the network output units. All the connections
feeding the output units are then trained to minimize the error.
This can be thought of as “canceling” the error as much as
possible by exploiting the “alignment” accomplished in step
1. This process is continued, and new units are added until the
desired error bound is met.

This tums out to be an extremely efficient, very flexible,
and fast training procedure. However, each new unit in effect
adds a new layer, which leads to a very deep structure with a
long propagation delay. It should be noted that the presence
of layer(s) skipping or shortcut connections dues not reduce
the propagation delay because the delay is proportional to
the longest path through the network which is unaffected
by the presence of shortcut connections. The propagation
delay is an important performance parameter especially for
high-speed applications. Moreover, learning is likely to occur
infrequently v d perhaps off-line. Hence, it is worthwhile to
spend more time in learning if the resultant net has a much
smaller propagation delay. Another drawback of the Cascade
Correlation algorithm is that the fan-in of the hidden and
output units keeps on increasing as more units are added. The
resulting structure with irregular connections and unbounded
fan-in might be hard to implement in VLSI.

Attempts have been made to reduce the connectivity [3] of
the Cascade Correlation algorithm. Smotroff et al. [3] used
“iterative atrophy” to prune less important connections. They
came up with a saliency measure for each weight and used
saliency windows to eliminate non-useful connections. Such
an approach becomes computation intensive. Estimating the
correct saliency for each weight can itself be a nontrivial task.

1045-9227/94$04.00 0 1994 IEEE

~

PHATAK AND KOREN: CONNECTIVITY AND PERFORMANCE TRADEOFFS 93 1

This type of algorithm therefore spends effort first in finding
all the connection weights and then in trying to undo a part of
what it did and remove the non-salient connections. Another
drawback of weight-pruning by saliency is that it does not lead
to any improvement in the depth. In fact, the use of saliency
windows would imply that the nets derived by weight pruning
can be as deep as those obtained by the original version.

We have approached the problem differently and modified
the Cascade Correlation algorithm to yield architectures with
restricted fan-in and much smaller depth. An obvious way
of controlling the fan-in and depth is to generate a “strictly
layered” structure. By strictly layered, it is meant that there
are no connections that skip a layer. Thus, the fan-in of a unit
is limited to the number of units in the previous layer. If the
number of units in each layer is sufficiently large, the number
of layers needed (i.e., the depth) is usually very small as well.
Next, we describe the algorithm(s) that generate the various
layered topologies.

11. THE TRAINING PROCEDURE
Step 1 : Train the biases of the output units as best as

possible, to minimize the error. Note that the inputs and
outputs are not connected at this time. This is illustrated in
Fig. l(a).

Step 2: Install the first hidden layer, adding one unit at a
time. Hidden units in this layer receive connections only from
the input units and are not connected to other hidden units.

To install a hidden unit, it is connected to all of the
network inputs and the connections are trained to maximize
the correlation between its output and the residual error. Note
that all the weights (input as well as output weights) associated
with previously installed hidden units are held fixed when the
input connections of the new unit are being trained. As a result,
the new unit sees smaller residual error (at installation time)
than previous units, because the previous units have already
reduced the total error. The input-side weights of the new
hidden unit remain frozen hereafter, as in the original Cascade
Correlation algorithm.

In the second phase of installing a unit, its output is
connected to all the network output units. All the fan-in
connections of the output-layer units (those emanating from
previously installed hidden units as well as those connected to
the hidden unit being currently installed), and their biases are
then trained to minimize the error.

In order to restrict the fan-in and achieve regularity, the
number of units in each layer is held fixed at a predetermined
value. Thus, all hidden layers (except possibly the last) have
the same number of units. The creation of the first layer is
illustrated in Fig. l(b).

Step 3: Collapse the output layer into the next hidden layer.
This means that the N units which were output units so far,
are now deemed to be the first N units in the next hidden
layer. The old output layer thus becomes a part of the next
hidden layer. A new output layer is created and all the previous
output units (which are now a part of the new hidden layer) are
connected to all the new output units. These connections are
trained to minimize the error. This step is depicted in Fig. l(c).

Oulput units

First hidden layer

Input units

Second hidden

Firsl hidden layer

layer

(C)

Fig. 1. (a) Step 1. Train the biases of the output units. Note that the inputs
are not yet connected. (b) Step 2. Install the first hidden layer. Units are added
one at a time. Input side connections are trained first. Once trained, the input
side weights remain fixed. Output side connections for the new unit are then
installed and all the output connections are trained. (c) Steps 3 and 4. Install
the second (and successive) hidden layers. Units in the old output layer (shown
by dotted ellipses) are collapsed into the next (second) hidden layer. A new
output layer is created. Input side weights of the newly collapsed hidden layer
remain fixed. The output side connections of the newly formed hidden layer
(shown in dotted line style) are all trained simultaneously. Then the hidden
layer is further expanded by installing more units, one at a time, as in step 2.

The motivation for utilizing the old output units and their
connections in this manner is threefold. First, this reduces
the training time. Second, the set of weights feeding these
(previous output, now hidden) units are repeatedly trained
many times, during the creation of the previous (just com-
pleted) hidden layer. Hence, the possibility of incorporating
suboptimal and wasteful connections is reduced. Third, this
facilitates good initial guesses of weights connecting this layer
to the new output layer as explained next.

Denote the previous output units by 1 , 2 , . . . , i, . . . N; the
new output units by l’, 2’, . . . , i’, . . . N‘; and the weight of
the link from unit j to unit i’ by Wj;). The biases of all
the new output units are initialized to 0. The magnitude of

932 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 6, NOVEMBER 19%

Parameter
1

max

weight Wji! is set proportional to the correlation between the
output of unit j and the target values of the ith network output.
If the magnitude is above a preset threshold, the sign is set
positive, otherwise the sign is set negative. This way, if the ith
unit had produced correct outputs for most pattems, then Wii~
(weight of the link from unit i to the corresponding output
unit i’) would be initialized to a large positive value, which
would favor unit i’ to turn on whenever unit i is on. On the
other hand, if the ith unit produced wrong outputs for most
patterns, then Wii, would be initialized to a large negative
value, which would favor unit i’ to tum ofs whenever unit i is
on. Thus, this choice of initial values leads to a reduction in
the output error. It was found to result in faster convergence
in most cases.

Step 4: Expand the newly formed hidden layer by adding
more hidden units one at a time, exactly as in step 2 .

Step.5: Repeat steps 3 and 4 creating new layers until
the training is successful or until a predetermined number
of iterations where the trial is declared unsuccessful and is
abandoned.

It should be emphasized that creating a layered topology
is just one of a large number of possible ways of limiting
the depth and fan-in. Even the layered topology itself can
have several different variations, each of which in tum can
be generated in many different ways. Indeed the Cascade
Correlation is a very flexible algorithm and it is not feasible to
try out all possible modifications or even a significant fraction
thereof. We have tested several possibilities [4] and selected
the above method for the purpose of illustration because it
performs well and is relatively simple.

c Algorithm Type -
Original Strictly Layered Loorely Layered
Caseade units per layer units per layer

Correlation 15 15

40 I 15 17

111. RESULTS AND DISCUSSION
We have run this algorithm on a large number of problems

and compared its performance to the original Cascade Corre-
lation algorithm. For the sake of brevity, we have illustrated
the results for three benchmarks namely, the Two Spirals,
Vowel, and the NETTalk benchmarks from the CMU collection
[5] , in Tables I, 11, and 111, respectively. We ran 100 trials
(10 sets of 10 trials each) with each algorithm, for the first
two benchmarks and 10 trials with each algorithm for the
NETTalk benchmark. The NETTalk nets are big and take a
formidable amount of time to learn. The time required for
running more than 10 trials is prohibitive. For each set, we
used the same seed to initialize the random number generator
in all algorithms.

Relevant parameters of interest are: maximum fan-in, num-
ber of units, total number of independent adjustable parameters
(all weights and biases in the net), depth, number of epochs
needed for training, number of connection crossings (please
refer to [l] for definition and description of this parameter.
It is a better measure of the overall learning complexity and
time than the number of epochs) and the number of bit errors
on the test set. These parameters were stored for each of the
runs, but only the values from successful runs were used to
accrue the statistics (the success rate of each of the algorithms
on each of the benchmarks illustrated in the tables was loo%,
i.e., all the trials were successful).

Independent Parameters average
std dev

TABLE I

SIGMOIDAL UNITS (OUTPUT E [o, 11). THE PROBLEM
SPECIFICATION HAS Two INPUTS AND ONE OUTPUT

THE TWO SPIRALS BENCHMARK [5] , [6] WITH ASYMMETRIC

570 962 784
1138 179.2 111.1

_ . .
average

max
Bit errors on min

std de”. (percentage of the mean)

Marim- Fan-in

Number of Kdden Units 46
72

Total number of 543 527

8.1 6.78 9.51
19.87% 18.6% 23.9%

30(15.5%) 27(13.9%) 17(8.8%)
512.6%) 4(2 1%) 30 .5%)

Depth

Number ofEpachs 4008 3791
5828 5134
719.3 1720.5

5.29 5.48

Test Set average / / 15.4(7.98) I 13.4(69%) 1 8.9(4.6%) I/

A. The Two Spirals Benchmark [SI, [61
Table I shows the results for the Two Spirals classification

problem where asymmetric sigmoidal units (output E (0,l))
were used. The problem specification has two inputs and one
output and 194 training pattems (97 points from each spiral).

Note that the table also shows a “loosely layered” version
besides the strictly layered version. In the loosely layered
version, all the units in a hidden layer receive connections from
the original (extemal) inputs as well, besides the connections
from the previous hidden layer. The motivation for adding the
connections to the network inputs is twofold. First, note that in
a strictly layered structure, the units in a layer “see” the inputs
only through the previous layer. Here, it is conceivable that
there could be a “loss of information” in the earlier (closer to
input) layer(s) which may prevent the later (closer to output)
layers from successfully learning the task. This may happen
if, for example, a layer has too few units (or independent
parameters) to capture all the features associated with the
inputs or if certain combinations of weight values evolve
during training. We encountered this situation in practice. It
is intuitively clear that if the hidden units have access to
the original extemal inputs, this kind of “irrecoverable loss
of information” is not possible. Second, these connections
considerably speed up the learning process, without increasing
the depth, while maintaining the restricted fan-in. Note that
the number of inputs is a constant. Adding connections to the
inputs therefore increases the maximum fan-in by a constant
amount. The fan-in is still independent of the number of hidden
units installed, and is not unbounded as in the original version.

We used 15 units per hidden layer in this version. As
mentioned above, the number of units (parameters) in a layer
should be large enough to capture all the features of the inputs,
otherwise there could be a loss of information leading to an

PHATAK AND KOREN CONNECTIVITY AND PERFORMANCE TRADEOFFS 933

std. de".

TABLE I1
THE VOWEL BENCHMARK [5], [7] WITH SYMMETRIC SIGMOIDAL UNITS (OUTPUT
E [- 0 . 5 , +os]) . THE PROBLEM SPECIFICATION HAS 10 INPUTS AND 11 OUTPUTS

c Algorithm Type -
Parameter

by number of input units = 10) average
std. de".

mar
NumherofHidden Units rmn
(all in a single layer average 4.84
for the layered version) std. de". 0 0 42

143
Total number of 99
Independent Parameters 117

36.96 55.98

H std. de;. 11 0 1 9.23
max I/ 2 I 2

max
Connection ~rossings [x106) min

Depth min
average

std. de".
mal 406 1 579

2.34 1.82
1.11 0 88 . . .

average
std. de". (percentage of the mean)

max
Bit errors on min
Teat Set average

1.61 1.36
13.5% 13.2%

166(31.4%) lOO(l8.9%)
143(27.1%) 69(13.1%)
158.8(30.1%) 80.8(15.3%) I

all previously installed hidden layers to the new layer being
created, which leads to an unbounded fan-in and irregular
connections.

The spirals used to generate Table I had a radius R = 2.0
and were centered at (2,2) in the zy plane. Consequently, they
were contained in the square with vertices ((O,O), (0,4), (4,4),
(4,O)) which lies entirely in the first quadrant. The net reported
in [2], on the other hand, was trained on spirals centered at
the origin. For a proper comparison with CID3, we therefore
used spirals centered at the origin (0,O) with a radius R = 6.5.
This way the z and y coordinates of the points on the spirals
take both positive and negative values and are symmetric with
respect to the origin. For this training data, the loosely layered
version of our algorithm generated nets with an average of six
hidden layers (depth = 7), with seven hidden units per layer,
and utilized 436 independent parameters on the average (the
table corresponding to this data had to be excluded from the
manuscript for the sake of brevity). These nets are better than
the net generated by the CID3 algorithm since the depth and
number of independent parameters used is about the same, but
the maximum fan-in is restricted to the fixed value 9 (about
one-third), and the connections are more regular.

unsuccessful run. After some trial and error, it was found that B. The Vowel Benchmark [SI, [71
the strictly layered algorithm can converge if the number of
units per layer is larger than 5. At this extreme, (5 units per
layer) the algorithm uses too many layers and defeats the
purpose of trying to limit the depth. On the other hand, we
wanted to limit the maximum fan-in to about half that of the
nets generated by the original version. It was therefore decided
to use 15 units per layer.

As seen in the table, the maximum fan-in (average value
accrued over 100 trials) for the original Cascade Correlation
algorithm is 32.2; while that for the strictly layered version is
15; and for the loosely layered version, it is 17. Thus, the fan-
in is reduced by about one-half. Similarly, the depths (average)
for the layered versions are 6.3 and 5.2 while the depth
generated by the original version is 31.2. This demonstrates
a significant reduction in the depth or the propagation delay
(about 5 times smaller depth). The number of units used by
the layered versions, on the other hand, increases by a factor
between 2 and 2.5. However, the total number of independent
parameters (weights and biases) is a better measure of the
overall complexity than the number of units alone, because it
incorporates both the number of units and their connectivity.
It is seen that the strictly layered version uses about 1.6 times;
and the loosely layered version uses about 1.37 times the
number of parameters used by the original algorithm.

Cios and Liu [2] have also used the two spirals benchmark
to illustrate their CID3 algorithm. The net reported in [2]
has 30 hidden units distributed in FIVE hidden layers (depth
= S) , a maximum fan-in of 32, and requires 431 independent
parameters. Thus, the number of parameters utilized by CID3
is smaller than that utilized by the loosely layered version
(527), but the maximum fan-in is about double that of the
loosely layered version (17). The depths of the generated
nets are comparable. In fact, the CID3 has some of the same
drawbacks as the Cascade Correlation algorithm: it connects

_ . . .

Table I1 shows the results for the Vowel Benchmark with
symmetric sigmoidal units (output E [-0.5, +0.5]). The net
has 10 inputs and 11 outputs, where exactly one out of the 11
output units is "on" at a time, to indicate the spoken vowel.
This corresponds to a localized output encoding. As seen in
the table, the number of hidden units employed is usually very
small (in fact, smaller than the number of input or output
units). The maximum fan-in is therefore dominated by the
number of input connections. Just one hidden layer with a
small number of hidden units was found to be sufficient for this
task. Hence, is not necessary to try the loosely layered version.
Note that the total number of parameters (average value) used
by the layered version is significantly smaller than that of the
original version.

C . The NETTalk Benchmark [SI, [8]

Table I11 shows the results for this benchmark for which
there are 196 input and 26 output units. We randomly chose
a set of 200 words (from the 1000 available in the CMU
version), which generated 11 14 training patterns. Here the fan-
in is dominated by the number of input units. It interesting to
note that the strictly layered version uses a much larger number
of hidden units but a smaller total number of independent
parameters. This is due to the restricted connectivity. Also,
the depth is much smaller than that generated by the original
version (about one-sixth). An examination of the nets revealed
that the direct input-output connections in the original version
is the single most dominant contributor to the total number
of independent parameters (196 x 26 = 5096 or about 50%
of the total number of parameters. Please refer to Table 111).
Since the strictly layered version performs better without these
connections, there is no need to try the loosely layered version
where these connections are present.

934

I Parameter
1

1

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5 , NO. 6, NOVEMBER 1994

c Algorithm Type -
r v a l Carcade Strictly Layered Version

~ O Correlation (95 units per layer)

TABLE III
THE NETTALK BENCHMARK [5] , [8] WITH SYMMETRIC

SIGMOIDAL UNITS. THERE ARE 196 INPUTS AND 26 OUTPUTS

1

by number of input u n i t s = 196)
Maximm Fan-in (Dominated

max 29
Number of Hidden Units min 24

average 25.7
std. de”. 1.49

max 11995
Total number of min 10750
independent Parameters average 11172

rtd. dev. 371.9
mar 30

Depth min 25
average 26.70

rtd. dev 1.49
max 5080 I Number of Epochs min 4340

averace 4641

196
196
196
0.0
132
100

104.8
8.71

11115
10041
10265
285.8

5
4

4.08
0.29
5812
5300
5565

std. de”. 194.9 179.4

D. Trade-offs
Our results indicate that the layered version always requires

more hidden units. This is expected, since the unit being
installed has fewer connections. It can only see units in the
previous hidden layer and thus has less information to work
with than a unit in the original version, which is connected to
all the previous units and network inputs.

The number of independent parameters, which is a better
measure of the overall network complexity, however, shows an
interesting behavior. When the number of training patterns is
large compared to the number of inputs or outputs, the original
version utilizes fewer parameters than the layered version.
This is illustrated by the two spirals benchmark where the
number of input units is two, and the number of U0 pairs to
be leamed is 194 or about 100 times larger. For such problems,
there is a tradeoff between connectivity and other performance
attributes. The original version with full connectivity is at one
extreme. It yields faster convergence and a smaller number
of parameters but also leads to very deep nets with arbitrarily
large fan-in. The strictly layered version is at the other extreme
and requires more parameters and longer learning time, but
yields restricted fan-in and much smaller depth. The loosely
layered version falls in between these extremes, trading off
more connectivity for fewer parameters and equal or smaller
depth, and may be the best compromise.

When the input or output dimensionality is not so small
compared with the size of the training set, the layered version
utilizes fewer parameters and yields overall better perfor-
mance. This is illustrated by the Vowel and the NETTalk
benchmarks. The ratio of the number of training patterns to
the number of input units is about 9 and 5, for the Vowel and
NETTalk benchmarks, respectively. In such cases, connecting
the network inputs to the outputs results in a large (in fact
larger than required) number of connections. Furthermore,
training all of them simultaneously tums out to be less efficient
than incrementally introducing hidden units and training the

- . I ! average
rtd dev. (percentage of the mean)

In conclusion, we have proposed a modified version of the
Cascade Correlation algorithm which controls the connectivity
of the units being added to restrict the fan-in and generates
layered nets with a very small depth and regular connections.
Our data illustrates the tradeoffs between connectivity and
other performance attributes.

Several future extensions are possible. For instance, the
number of units per layer need not be fixed. It can be decided
dynamically and the creation of a new layer can be started if
the error reduction achieved by expanding the layer begins to
taper off. Another approach is to stick to the strictly layered
structure as far as possible and only occasionally install units
with direct (layers skipping) connections to the network inputs,
when there is little or no reduction in the error.

Preliminary analysis of the generalization characteristics of
these nets has been done. Even though the layered version
utilizes a larger number of parameters, its generalization
performance appears to be comparable to or better than the
original version, as illustrated by the number of bit errors on
the test sets for the Spirals and Vowel benchmarks in Tables
I and 11. However, further investigation is necessary to draw
any conclusions.

6.64
5.6% 2%

’ 19.1

REFERENCES

[l] S. E. Fahlman and C. Lebiere, “The cascade correlation learning archi-
tecture,’’ in Neural Information Processing Systems 2 , D. S. Touretzsky,
ed. Morgan Kaufman, 1990, pp. 524-532.

[2] K. J. Cios and N. Liu, “A machine learning method for generation of a
neural network architecture: A continuous ID3 algorithm,” IEEE Trans.
Neural Net., vol. 3, pp. 280-291, Mar. 1992.

[3] I. G. Smotroff, D. H. Friedman, and D. Connolly, “Large scale networks
via self organizing hierarchical networks,” in Proc. SPIE Con$. Appl. AI
and Neural Net., Apr. 1991.

[4] D. S. Phatak and I. Koren, “Connectivity and performance tradeoffs in
the cascade correlation learning architecture,” Tech. Rep. TR-92-CSE-
27, Electrical and Computer Engineering Dept., Univ. of Massachusetts,
Amherst, July 1992.

[5] S . E. Fahlman, et al., “Neural nets learning algorithms and benchmarks
database,” maintained by S . E. Fahlman, et al. at the Computer Science
Dept., Carnegie Mellon University.

[6] K. J. Lang and M. J. Witbrock, “Learning to tell two spirals apart,” in
Proc. I988 Connectionist Models Summer School, San Mateo, CA, 1988.

[7] A. J. Robinson and F. Fallside, “A dynamic connectionist model for
phoneme recognition,” in Proc. Euro, Paris, France, June 1988.

[8] T. J. Sejnowski and C. R. Rosenberg, “Parallel networks that learn to
pronounce English text,” Complex Systems, vol. 1, pp. 145-168, 1987.

D. S . Phatak received the B. Tech. degree in
Electrical Engineering from the Indian Institute of
Technology, Bombay, in 1985, the M.S. in Mi-
crowave Engineering in 1990 and the Ph.D. in
Computer Systems Engineering in 1993, both from
the Electrical and Computer Engineering Depart-
ment, University of Massachusetts, Amherst.

He recently became Assistant Professor of Elec-
trical Engineering at the State University of New
York, Binghamton. His current research interests
are in theory, applications and electronic as well as - _ _

optical implementations of neural networks, digital and analog VLSI design
and CAD, fault tolerant computing, computer arithmetic algorithms and their
VLSI implementations. Dr. Phatak has published in the IEEE Transactions
on Neural Nehvorks, Neural Computation, IEEE Transactions on Compufers,
IEEE Transactions on Microwave Theory and Techniques, and in conferences

small number of associated connections at a time. related to signal processing algorithms and their implementations.

PHATAK AND KOREN: CONNECTIVITY AND PERFORMANCE TRADEOFFS

I. Koren (S’72-M’75SM’87-F’91) received the
B.Sc., M. Sc. and D. Sc. degrees from the Technion-
Israel Institute of Technology, Haifa, in 1967, 1970,
and 1975, respectively, all in electrical engineering.
He is currently a Professor of Electrical and Com-
puter Engineering at the University of Massachu-
setts, Amherst. Previously he was with the De-
partments of Electrical Engineenng and Computer
Science at the Technion-Israel Institute of Tech-
nology. He also held visiting positions with the
University of California at Berkeley, University of

Southem Califomia, Los Angeles and University of California, Santa Barbara.
He has been a consultant to several companies including Intel, Digital
Equipment Corp., National Semiconductor and Tolerant Systems.
Dr. Koren’s current research interests are fault-tolerant VLSI architectures,

models for yield and performance, floor-planning of VLSI chips and computer
arithmetic. He was a co-guest editor for the IEEE Transactions on Computers,
special issue on High Yield VLSI Systems, Apnl 1989. Since January 1992,
he serves on the Editorial Board of these Transactions. He also served as
Program Committee member for numerous conferences. He has edited and
co-authored the book, Defect and Fault-Tolerance in VLSI Systems, Vol.
1 (Plenum, 1989). He is the author of the textbook Computer Arithmetic
Algorithms, (Prentice-Hall, 1993).

