
930 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5 ,  NO. 6, NOVEMBER 1994 

Connectivity and Performance Tradeoffs in the 
Cascade Correlation Learning Architecture 

D. S. Phatak and I. Koren, Fellow, ZEEE 

Abstruct- The Cascade Correlation [l] is a very flexible, 
efficient and fast algorithm for supervised learning. It incremen- 
tally builds the network by adding hidden units one at a time, 
until the desired input/output mapping is achieved. It connects 
all the previously installed units to the new unit being added. 
Consequently, each new unit in effect adds a new layer and the 
fan-in of the hidden and output units keeps on increasing as 
more units get added. The resulting structure could be hard to 
implement in VLSI, because the connections are irregular and 
the fan-in is unbounded. Moreover, the depth or the propagation 
delay through the resulting network is directly proportional to 
the number of units and can be excessive. 

We have modified the algorithm to generate networks with re- 
stricted fan-in and small depth (propagation delay) by controlling 
the connectivity. Our results reveal that there is a tradeoff be- 
tween connectivity and other performance attributes like depth, 
total number of independent parameters, learning time, etc. 
When the number of inputs or outputs is small relative to the size 
of the training set, a higher connectivity usually leads to faster 
learning, and fewer independent parameters, but it also results 
in unbounded fan-in and depth. Strictly layered architectures 
with restricted connectivity, on the other hand, need more epochs 
to learn and use more parameters, but generate more regular 
structures, with smaller, limited fan-in and significantly smaller 
depth (propagation delay), and may be better suited for VLSI 
implementations. When the number of inputs or outputs is not 
very small compared to the size of the training set, however, 
a strictly layered topology is seen to yield an overall better 
performance. 

I. INTRODUCTION 

LGORITHMS like the Cascade Correlation [ l ]  or the A Continuous ID3 (CID3, which is derived from a machine 
learning paradigm [2]), incrementally build a neural net. These 
algorithms take the guess work out of the training process, 
there is no need to guess the number of hidden units or their 
connections ahead of time. The algorithms themselves add 
units and connections as required, during the training process. 
However, these algorithms can lead to unrestricted fan-in 
and large depth (propagation delay). Also, the connections 
generated are irregular and unsuitable for VLSI implemen- 
tation (an efficient VLSI implementation requires regularity 
and local interconnects). In this paper, we propose a modified 
version of the Cascade Correlation algorithm which leads to 
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restricted fan-in, more regular connections and significantly 
smaller depth. 

We begin with a brief introduction to the Cascade Correla- 
tion [l]. In this method, all the inputs and outputs are directly 
connected first and these connections are trained to minimize 
the error (i.e., squared error summed over all outputs over 
all I/O pattems). Hidden units are then installed one by one, 
incrementally reducing the error, till the desired error bound 
is met. Each unit is installed in two steps. In step 1, all the 
inputs and previously installed hidden units are connected to 
the input of the new hidden unit. Its output is not yet connected 
anywhere in the net. The input side connections of the new 
unit are then trained to maximize the correlation between 
its output and the residual error at the network outputs. This 
can be thought of as a maximal “alignment” with the residual 
error. The input side connection weights are frozen hereafter. 
In the second phase of installing the hidden unit, its output is 
connected to all the network output units. All the connections 
feeding the output units are then trained to minimize the error. 
This can be thought of as “canceling” the error as much as 
possible by exploiting the “alignment” accomplished in step 
1. This process is continued, and new units are added until the 
desired error bound is met. 

This tums out to be an extremely efficient, very flexible, 
and fast training procedure. However, each new unit in effect 
adds a new layer, which leads to a very deep structure with a 
long propagation delay. It should be noted that the presence 
of layer(s) skipping or shortcut connections dues not reduce 
the propagation delay because the delay is proportional to 
the longest path through the network which is unaffected 
by the presence of shortcut connections. The propagation 
delay is an important performance parameter especially for 
high-speed applications. Moreover, learning is likely to occur 
infrequently v d  perhaps off-line. Hence, it is worthwhile to 
spend more time in learning if the resultant net has a much 
smaller propagation delay. Another drawback of the Cascade 
Correlation algorithm is that the fan-in of the hidden and 
output units keeps on increasing as more units are added. The 
resulting structure with irregular connections and unbounded 
fan-in might be hard to implement in VLSI. 

Attempts have been made to reduce the connectivity [3] of 
the Cascade Correlation algorithm. Smotroff et al. [3] used 
“iterative atrophy” to prune less important connections. They 
came up with a saliency measure for each weight and used 
saliency windows to eliminate non-useful connections. Such 
an approach becomes computation intensive. Estimating the 
correct saliency for each weight can itself be a nontrivial task. 
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This type of algorithm therefore spends effort first in finding 
all the connection weights and then in trying to undo a part of 
what it did and remove the non-salient connections. Another 
drawback of weight-pruning by saliency is that it does not lead 
to any improvement in the depth. In fact, the use of saliency 
windows would imply that the nets derived by weight pruning 
can be as deep as those obtained by the original version. 

We have approached the problem differently and modified 
the Cascade Correlation algorithm to yield architectures with 
restricted fan-in and much smaller depth. An obvious way 
of controlling the fan-in and depth is to generate a “strictly 
layered” structure. By strictly layered, it is meant that there 
are no connections that skip a layer. Thus, the fan-in of a unit 
is limited to the number of units in the previous layer. If the 
number of units in each layer is sufficiently large, the number 
of layers needed (i.e., the depth) is usually very small as well. 
Next, we describe the algorithm(s) that generate the various 
layered topologies. 

11. THE TRAINING PROCEDURE 
Step 1 :  Train the biases of the output units as best as 

possible, to minimize the error. Note that the inputs and 
outputs are not connected at this time. This is illustrated in 
Fig. l(a). 

Step 2: Install the first hidden layer, adding one unit at a 
time. Hidden units in this layer receive connections only from 
the input units and are not connected to other hidden units. 

To install a hidden unit, it is connected to all of the 
network inputs and the connections are trained to maximize 
the correlation between its output and the residual error. Note 
that all the weights (input as well as output weights) associated 
with previously installed hidden units are held fixed when the 
input connections of the new unit are being trained. As a result, 
the new unit sees smaller residual error (at installation time) 
than previous units, because the previous units have already 
reduced the total error. The input-side weights of the new 
hidden unit remain frozen hereafter, as in the original Cascade 
Correlation algorithm. 

In the second phase of installing a unit, its output is 
connected to all the network output units. All the fan-in 
connections of the output-layer units (those emanating from 
previously installed hidden units as well as those connected to 
the hidden unit being currently installed), and their biases are 
then trained to minimize the error. 

In order to restrict the fan-in and achieve regularity, the 
number of units in each layer is held fixed at a predetermined 
value. Thus, all hidden layers (except possibly the last) have 
the same number of units. The creation of the first layer is 
illustrated in Fig. l(b). 

Step 3: Collapse the output layer into the next hidden layer. 
This means that the N units which were output units so far, 
are now deemed to be the first N units in the next hidden 
layer. The old output layer thus becomes a part of the next 
hidden layer. A new output layer is created and all the previous 
output units (which are now a part of the new hidden layer) are 
connected to all the new output units. These connections are 
trained to minimize the error. This step is depicted in Fig. l(c). 

Oulput units 

First hidden layer 

Input units 

Second hidden 

Firsl hidden layer 

layer 

(C) 

Fig. 1. (a) Step 1. Train the biases of the output units. Note that the inputs 
are not yet connected. (b) Step 2. Install the first hidden layer. Units are added 
one at a time. Input side connections are trained first. Once trained, the input 
side weights remain fixed. Output side connections for the new unit are then 
installed and all the output connections are trained. (c) Steps 3 and 4. Install 
the second (and successive) hidden layers. Units in the old output layer (shown 
by dotted ellipses) are collapsed into the next (second) hidden layer. A new 
output layer is created. Input side weights of the newly collapsed hidden layer 
remain fixed. The output side connections of the newly formed hidden layer 
(shown in dotted line style) are all trained simultaneously. Then the hidden 
layer is further expanded by installing more units, one at a time, as in step 2. 

The motivation for utilizing the old output units and their 
connections in this manner is threefold. First, this reduces 
the training time. Second, the set of weights feeding these 
(previous output, now hidden) units are repeatedly trained 
many times, during the creation of the previous (just com- 
pleted) hidden layer. Hence, the possibility of incorporating 
suboptimal and wasteful connections is reduced. Third, this 
facilitates good initial guesses of weights connecting this layer 
to the new output layer as explained next. 

Denote the previous output units by 1 , 2 , .  . . , i, . . . N; the 
new output units by l’, 2’, . . . , i’, . . . N‘;  and the weight of 
the link from unit j to unit i’ by Wj;). The biases of all 
the new output units are initialized to 0. The magnitude of 
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Parameter 
1 

max 

weight Wji! is set proportional to the correlation between the 
output of unit j and the target values of the ith network output. 
If the magnitude is above a preset threshold, the sign is set 
positive, otherwise the sign is set negative. This way, if the ith 
unit had produced correct outputs for most pattems, then Wii~ 
(weight of the link from unit i to the corresponding output 
unit i’) would be initialized to a large positive value, which 
would favor unit i’ to turn on whenever unit i is on. On the 
other hand, if the ith unit produced wrong outputs for most 
patterns, then Wii, would be initialized to a large negative 
value, which would favor unit i’ to tum ofs whenever unit i is 
on. Thus, this choice of initial values leads to a reduction in 
the output error. It was found to result in faster convergence 
in most cases. 

Step 4: Expand the newly formed hidden layer by adding 
more hidden units one at a time, exactly as in step 2 .  

Step.5: Repeat steps 3 and 4 creating new layers until 
the training is successful or until a predetermined number 
of iterations where the trial is declared unsuccessful and is 
abandoned. 

It should be emphasized that creating a layered topology 
is just one of a large number of possible ways of limiting 
the depth and fan-in. Even the layered topology itself can 
have several different variations, each of which in tum can 
be generated in many different ways. Indeed the Cascade 
Correlation is a very flexible algorithm and it is not feasible to 
try out all possible modifications or even a significant fraction 
thereof. We have tested several possibilities [4] and selected 
the above method for the purpose of illustration because it 
performs well and is relatively simple. 

c Algorithm Type - 
Original Strictly Layered Loorely Layered 
Caseade units per layer units per layer 

Correlation 15 15 

40 I 15 17 

111. RESULTS AND DISCUSSION 
We have run this algorithm on a large number of problems 

and compared its performance to the original Cascade Corre- 
lation algorithm. For the sake of brevity, we have illustrated 
the results for three benchmarks namely, the Two Spirals, 
Vowel, and the NETTalk benchmarks from the CMU collection 
[ 5 ] ,  in Tables I, 11, and 111, respectively. We ran 100 trials 
(10 sets of 10 trials each) with each algorithm, for the first 
two benchmarks and 10 trials with each algorithm for the 
NETTalk benchmark. The NETTalk nets are big and take a 
formidable amount of time to learn. The time required for 
running more than 10 trials is prohibitive. For each set, we 
used the same seed to initialize the random number generator 
in all algorithms. 

Relevant parameters of interest are: maximum fan-in, num- 
ber of units, total number of independent adjustable parameters 
(all weights and biases in the net), depth, number of epochs 
needed for training, number of connection crossings (please 
refer to [l] for definition and description of this parameter. 
It is a better measure of the overall learning complexity and 
time than the number of epochs) and the number of bit errors 
on the test set. These parameters were stored for each of the 
runs, but only the values from successful runs were used to 
accrue the statistics (the success rate of each of the algorithms 
on each of the benchmarks illustrated in the tables was loo%, 
i.e., all the trials were successful). 

Independent Parameters average 
std dev 

TABLE I 

SIGMOIDAL UNITS (OUTPUT E [o, 11). THE PROBLEM 
SPECIFICATION HAS Two INPUTS AND ONE OUTPUT 

THE TWO SPIRALS BENCHMARK [5 ] ,  [6] WITH ASYMMETRIC 

570 962 784 
1138 179.2 111.1 

_ .  . 
average 

max 
Bit errors on min 

std de”. (percentage of the mean) 

Marim- Fan-in 

Number of Kdden Units 46 
72 

Total number of 543 527 

8.1 6.78 9.51 
19.87% 18.6% 23.9% 

30(15.5%) 27(13.9%) 17(8.8%) 
512.6%) 4(2 1%) 30 .5%)  

Depth 

Number ofEpachs 4008 3791 
5828 5134 
719.3 1720.5 

5.29 5.48 

Test Set average / /  15.4(7.98) I 13.4(69%) 1 8.9(4.6%) I/ 

A. The Two Spirals Benchmark [SI, [61 
Table I shows the results for the Two Spirals classification 

problem where asymmetric sigmoidal units (output E (0,l)) 
were used. The problem specification has two inputs and one 
output and 194 training pattems (97 points from each spiral). 

Note that the table also shows a “loosely layered” version 
besides the strictly layered version. In the loosely layered 
version, all the units in a hidden layer receive connections from 
the original (extemal) inputs as well, besides the connections 
from the previous hidden layer. The motivation for adding the 
connections to the network inputs is twofold. First, note that in 
a strictly layered structure, the units in a layer “see” the inputs 
only through the previous layer. Here, it is conceivable that 
there could be a “loss of information” in the earlier (closer to 
input) layer(s) which may prevent the later (closer to output) 
layers from successfully learning the task. This may happen 
if, for example, a layer has too few units (or independent 
parameters) to capture all the features associated with the 
inputs or if certain combinations of weight values evolve 
during training. We encountered this situation in practice. It 
is intuitively clear that if the hidden units have access to 
the original extemal inputs, this kind of “irrecoverable loss 
of information” is not possible. Second, these connections 
considerably speed up the learning process, without increasing 
the depth, while maintaining the restricted fan-in. Note that 
the number of inputs is a constant. Adding connections to the 
inputs therefore increases the maximum fan-in by a constant 
amount. The fan-in is still independent of the number of hidden 
units installed, and is not unbounded as in the original version. 

We used 15 units per hidden layer in this version. As 
mentioned above, the number of units (parameters) in a layer 
should be large enough to capture all the features of the inputs, 
otherwise there could be a loss of information leading to an 
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std. de". 

TABLE I1 
THE VOWEL BENCHMARK [5], [7] WITH SYMMETRIC SIGMOIDAL UNITS (OUTPUT 
E [ - 0 . 5 ,  +os] ) .  THE PROBLEM SPECIFICATION HAS 10 INPUTS AND 11  OUTPUTS 

c Algorithm Type - 
Parameter 

by number of input units = 10) average 
std. de". 

mar 
NumherofHidden Units rmn 
(all in a single layer average 4.84 
for the layered version) std. de". 0 0 42 

143 
Total number of 99 
Independent Parameters 117 

36.96 55.98 

H std. de;. 11 0 1 9.23 
max I/ 2 I 2 

max 
Connection ~rossings [ x106 ) min 

Depth min 
average 

std. de". 
mal  406 1 579 

2.34 1.82 
1.11 0 88 . .  . 

average 
std. de". (percentage of the mean) 

max 
Bit errors on min 
Teat Set average 

1.61 1.36 
13.5% 13.2% 

166(31.4%) lOO(l8.9%) 
143(27.1%) 69(13.1%) 
158.8(30.1%) 80.8(15.3%) I 

all previously installed hidden layers to the new layer being 
created, which leads to an unbounded fan-in and irregular 
connections. 

The spirals used to generate Table I had a radius R = 2.0 
and were centered at (2,2) in the zy plane. Consequently, they 
were contained in the square with vertices ((O,O), (0,4), (4,4), 
(4,O)) which lies entirely in the first quadrant. The net reported 
in [2], on the other hand, was trained on spirals centered at 
the origin. For a proper comparison with CID3, we therefore 
used spirals centered at the origin (0,O) with a radius R = 6.5. 
This way the z and y coordinates of the points on the spirals 
take both positive and negative values and are symmetric with 
respect to the origin. For this training data, the loosely layered 
version of our algorithm generated nets with an average of six 
hidden layers (depth = 7), with seven hidden units per layer, 
and utilized 436 independent parameters on the average (the 
table corresponding to this data had to be excluded from the 
manuscript for the sake of brevity). These nets are better than 
the net generated by the CID3 algorithm since the depth and 
number of independent parameters used is about the same, but 
the maximum fan-in is restricted to the fixed value 9 (about 
one-third), and the connections are more regular. 

unsuccessful run. After some trial and error, it was found that B. The Vowel Benchmark [SI, [71 
the strictly layered algorithm can converge if the number of 
units per layer is larger than 5. At this extreme, (5 units per 
layer) the algorithm uses too many layers and defeats the 
purpose of trying to limit the depth. On the other hand, we 
wanted to limit the maximum fan-in to about half that of the 
nets generated by the original version. It was therefore decided 
to use 15 units per layer. 

As seen in the table, the maximum fan-in (average value 
accrued over 100 trials) for the original Cascade Correlation 
algorithm is 32.2; while that for the strictly layered version is 
15; and for the loosely layered version, it is 17. Thus, the fan- 
in is reduced by about one-half. Similarly, the depths (average) 
for the layered versions are 6.3 and 5.2 while the depth 
generated by the original version is 31.2. This demonstrates 
a significant reduction in the depth or the propagation delay 
(about 5 times smaller depth). The number of units used by 
the layered versions, on the other hand, increases by a factor 
between 2 and 2.5. However, the total number of independent 
parameters (weights and biases) is a better measure of the 
overall complexity than the number of units alone, because it 
incorporates both the number of units and their connectivity. 
It is seen that the strictly layered version uses about 1.6 times; 
and the loosely layered version uses about 1.37 times the 
number of parameters used by the original algorithm. 

Cios and Liu [2] have also used the two spirals benchmark 
to illustrate their CID3 algorithm. The net reported in [2] 
has 30 hidden units distributed in FIVE hidden layers (depth 
= S) ,  a maximum fan-in of 32, and requires 431 independent 
parameters. Thus, the number of parameters utilized by CID3 
is smaller than that utilized by the loosely layered version 
(527), but the maximum fan-in is about double that of the 
loosely layered version (17). The depths of the generated 
nets are comparable. In fact, the CID3 has some of the same 
drawbacks as the Cascade Correlation algorithm: it connects 

_ .  . .  

Table I1 shows the results for the Vowel Benchmark with 
symmetric sigmoidal units (output E [-0.5, +0.5]). The net 
has 10 inputs and 11 outputs, where exactly one out of the 11 
output units is "on" at a time, to indicate the spoken vowel. 
This corresponds to a localized output encoding. As seen in 
the table, the number of hidden units employed is usually very 
small (in fact, smaller than the number of input or output 
units). The maximum fan-in is therefore dominated by the 
number of input connections. Just one hidden layer with a 
small number of hidden units was found to be sufficient for this 
task. Hence, is not necessary to try the loosely layered version. 
Note that the total number of parameters (average value) used 
by the layered version is significantly smaller than that of the 
original version. 

C .  The NETTalk Benchmark [SI, [8] 

Table I11 shows the results for this benchmark for which 
there are 196 input and 26 output units. We randomly chose 
a set of 200 words (from the 1000 available in the CMU 
version), which generated 11 14 training patterns. Here the fan- 
in is dominated by the number of input units. It interesting to 
note that the strictly layered version uses a much larger number 
of hidden units but a smaller total number of independent 
parameters. This is due to the restricted connectivity. Also, 
the depth is much smaller than that generated by the original 
version (about one-sixth). An examination of the nets revealed 
that the direct input-output connections in the original version 
is the single most dominant contributor to the total number 
of independent parameters (196 x 26 = 5096 or about 50% 
of the total number of parameters. Please refer to Table 111). 
Since the strictly layered version performs better without these 
connections, there is no need to try the loosely layered version 
where these connections are present. 
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c Algorithm Type - 
r v a l  Carcade Strictly Layered Version 

~ O Correlation (95 units per layer) 

TABLE III 
THE NETTALK BENCHMARK [5 ] ,  [8] WITH SYMMETRIC 

SIGMOIDAL UNITS. THERE ARE 196 INPUTS AND 26 OUTPUTS 

1 

by number of input u n i t s  = 196) 
Maximm Fan-in (Dominated 

max 29 
Number of Hidden Units min 24 

average 25.7 
std. de”. 1.49 

max 11995 
Total number of min 10750 
independent Parameters average 11172 

rtd. dev. 371.9 
mar 30 

Depth min 25 
average 26.70 

rtd. dev 1.49 
max 5080 I Number of Epochs min 4340 

averace 4641 

196 
196 
196 
0.0 
132 
100 

104.8 
8.71 

11115 
10041 
10265 
285.8 

5 
4 

4.08 
0.29 
5812 
5300 
5565 

std. de”. 194.9 179.4 

D. Trade-offs 
Our results indicate that the layered version always requires 

more hidden units. This is expected, since the unit being 
installed has fewer connections. It can only see units in the 
previous hidden layer and thus has less information to work 
with than a unit in the original version, which is connected to 
all the previous units and network inputs. 

The number of independent parameters, which is a better 
measure of the overall network complexity, however, shows an 
interesting behavior. When the number of training patterns is 
large compared to the number of inputs or outputs, the original 
version utilizes fewer parameters than the layered version. 
This is illustrated by the two spirals benchmark where the 
number of input units is two, and the number of U0 pairs to 
be leamed is 194 or about 100 times larger. For such problems, 
there is a tradeoff between connectivity and other performance 
attributes. The original version with full connectivity is at one 
extreme. It yields faster convergence and a smaller number 
of parameters but also leads to very deep nets with arbitrarily 
large fan-in. The strictly layered version is at the other extreme 
and requires more parameters and longer learning time, but 
yields restricted fan-in and much smaller depth. The loosely 
layered version falls in between these extremes, trading off 
more connectivity for fewer parameters and equal or smaller 
depth, and may be the best compromise. 

When the input or output dimensionality is not so small 
compared with the size of the training set, the layered version 
utilizes fewer parameters and yields overall better perfor- 
mance. This is illustrated by the Vowel and the NETTalk 
benchmarks. The ratio of the number of training patterns to 
the number of input units is about 9 and 5, for the Vowel and 
NETTalk benchmarks, respectively. In such cases, connecting 
the network inputs to the outputs results in a large (in fact 
larger than required) number of connections. Furthermore, 
training all of them simultaneously tums out to be less efficient 
than incrementally introducing hidden units and training the 

- .  I ! average 
rtd dev. (percentage of the mean) 

In conclusion, we have proposed a modified version of the 
Cascade Correlation algorithm which controls the connectivity 
of the units being added to restrict the fan-in and generates 
layered nets with a very small depth and regular connections. 
Our data illustrates the tradeoffs between connectivity and 
other performance attributes. 

Several future extensions are possible. For instance, the 
number of units per layer need not be fixed. It can be decided 
dynamically and the creation of a new layer can be started if 
the error reduction achieved by expanding the layer begins to 
taper off. Another approach is to stick to the strictly layered 
structure as far as possible and only occasionally install units 
with direct (layers skipping) connections to the network inputs, 
when there is little or no reduction in the error. 

Preliminary analysis of the generalization characteristics of 
these nets has been done. Even though the layered version 
utilizes a larger number of parameters, its generalization 
performance appears to be comparable to or better than the 
original version, as illustrated by the number of bit errors on 
the test sets for the Spirals and Vowel benchmarks in Tables 
I and 11. However, further investigation is necessary to draw 
any conclusions. 

6.64 
5.6% 2% 

’ 19.1 
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