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Input Size Effects on the Radiation-Sensitivity of
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Abstract—In this paper, we inspect the impact of modify-
ing benchmarks’ input sizes on parallel processors reliabil-
ity. A larger input size imposes a higher scheduler strain,
potentially increasing the parallel processor’s radiation
sensitivity. Additionally, input size affects the parallel codes
throughput, the number of resources used for computation,
and their criticality.

The impact of input size is experimentally studied
by comparing the radiation sensitivity of three modern
parallel processors: Intel Xeon Phis, NVIDIA K20, and
K40. Our test procedure has shown that parallel threads
management significantly affects the device Silent Data
Corruption sensitivity. Traditional reliability evaluation
methodologies may result is a significant error (up to
200%) in the estimated sensitivity of parallel processors
to radiation.

I. INTRODUCTION

Parallel processors are nowadays widely used in safety
critical applications as the Advanced Driver Assistance Sys-
tem, which increases vehicle safety by analyzing camera
or radar signals to detect obstacles and activate brakes to
prevent collisions [1]. On aircrafts, parallelism is studied to
integrate all the circuitry necessary to implement the collision
avoidance system [2]. Efficient parallel processing is capable
of compressing images in satellites to reduce the bandwidth
necessary to send them to ground [3]. The high computational
power of parallel processors combined with their low cost
and reduced energy consumption, and flexible development
platforms are making them indispensable also in High Per-
formance Computing (HPC) applications.

The reliability evaluation and radiation response of parallel
processors is a major concern for safety-critical applications.
Additionally, reliability has recently become a design con-
straint for HPC systems due to their large scale. As a reference,
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the Mean Time Between Failures (MTBF) of a large-scale
system such as Titan (today’s second most powerful super-
computer [4]) is in the order of dozens of hours [5]. As we
approach exascale, the resilience challenge will become even
more critical due to an increase in system-scale [6], [7]. In this
scenario, a lack of parallel devices resilience characteristics
understanding may lead to lower scientific productivity, lower
operational efficiency, and even significant monetary loss [7].

Evaluating the reliability of such devices is challenging
due to the extreme parallelism exploited in modern parallel
processors. Complex schedulers and dispatchers are required
to orchestrate parallel threads, and their reliability should
be carefully evaluated. Additionally, the number of active
threads depends on the problem size, and so does the imposed
scheduler strain, the threads dispatch policy, and resources
utilization efficiency. In this paper we demonstrate that, while
for traditional CPUs it has been sufficient to test the device
when executing representative workloads that ensures a max-
imum device utilization, for modern parallel processors it is
also necessary to vary the benchmark’s input size to precisely
evaluate their behaviors under radiation.

The contributions of this paper are twofold. First, we
demonstrate the importance of selecting a proper input size
for testing parallel devices and show the need to increase
the input size to stimulate the scheduler and control logic.
Second, we present a first experimental comparison of the
raw (i.e., with mitigation strategies disabled) reliability of
the parallel devices that dominate the HPC market: Intel
Xeon Phi and NVIDIA K20 and K40. Xeon-Phi, in fact,
acts as an accelerator in Tianhe-2, today’s most powerful
supercomputer [4] and Trinity, the new Los Alamos National
Laboratory’s (LANL) cluster. NVIDIA K20 and K40 power
two of the top 10 supercomputers, including Titan.

Our experimental evaluation was performed using the accel-
erated high energy neutron beam available at Los Alamos Neu-
tron Science Center (LANSCE) at LANL. By inducing failures
in all the components of the device, including the scheduler,
dispatcher, and control logic, our neutron beam experiments
provide deeper insights into the resilience characteristics of
HPC accelerators that are, otherwise, difficult to obtain.

It is well-known that the throughput and efficiency of
parallel devices and processors, in general, depend on the
executed code and the input size. While the cross section
indicates the sensitivity and criticality of resources involved in
computation, it does not correlate them with execution time,
throughput or efficiency. Thus, the Mean Workload Between
Failures (MWBF) metric is used, in this paper, to evaluate the
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amount of useful data the device correctly produces.
The remainder of the paper is organized as follows. Sec-

tion II presents the tested devices, the selected parallel algo-
rithms and input sizes, and describes the evaluation method-
ology. Section III shows the radiation experimental results,
and Section IV compares the MWBF of modern HPC devices.
Section V concludes the paper.

II. EVALUATION METHODOLOGY

In this section we introduce the tested devices, present the
selected benchmarks, and describe how they were profiled to
select adequate input sizes. We also discuss the importance of
varying the input size for a proper parallel devices characteri-
zation and describe the adopted experimental procedure.

A. Tested Devices
We experimentally evaluated the reliability of NVIDIA K20

and K40, both including a Kepler GK110b GPU chip [8] and
of the Xeon Phi board powered by the coprocessor 3120A [9].

NVIDIA devices are fabricated using 28nm planar bulk
technology from TSMC while the Xeon Phi is fabricated
using 22nm with the Intel 3-D Trigate transistors. The physical
implementations of Intel and NVIDIA devices are extremely
different. As circuit level details are proprietary, it is not
possible to evaluate the devices low-level resources sensitivity.
A direct comparison between NVIDIA and Intel devices is then
unfeasible and out of the scope of this paper. We will focus
on input size impact on the reliability of NVIDIA and Intel
devices, which is related to parallelism management and not
to the transistor layout.

The K20 includes 13 Streaming Multiprocessors (SMs),
while the K40 has 15 SMs. Both devices can instantiate up to
2048 threads per SM. The Xeon Phi includes 57 physical in-
order cores with four hardware threads and 32 512-wide vector
registers per core. NVIDIA’s and Intel’s management of paral-
lel processes are extremely different and may impact both the
device efficiency and reliability. NVIDIA, for instance, has a
hardware scheduler while Intel relies on a dedicated Operating
System (OS) to orchestrate execution. The characterization of
the parallel threads management is part of the goal of our test
procedure.

Most of our experiments were conducted with the Error
Correcting Code (ECC), parity mechanism, and Machine
Check Architecture (MCA) disabled. On the K40 and K20
ECC can be completely disabled using the nvidia-smi tool [8]
while for the Xeon Phi we can disable only MCA error
log and double bit error detection (i.e., single bit errors are
still being corrected) [9]. This should be taken into account
when comparing Xeon Phi and K40 or K20 cross sections
presented in Section III. Performing the experiments with
reliability mechanisms enabled would impede the gathering
of a statistically significant amount of data as ECC reduces
the Silent Data Corruption (SDC) rate by about one order
of magnitude [10]. Additionally, to find the raw architectures
reliability it is necessary to disable mitigation mechanisms.
ECC, for instance, could mislead the distinction between SDCs
and Crashes. In fact, when the ECC is disabled a double

Fig. 1: Part of the experimental setup at LANSCE. Neutrons
direction is indicated by the arrow.

bit error may be masked and will not affect the applica-
tion’s output [11]. The same double bit error will trigger an
application Crash when ECC is ON [8]. In contrast, MCA
triggers an automatic checkpoint-rollback procedure upon the
occurrence of a double bit error. Such a procedure takes at
least 6 minutes to complete, impeding radiation experiments.
A detailed discussion on ECC and MCA efficiency and efficacy
is presented in Section III.

B. Tested Benchmarks and Input Size Selection
We select two parallel benchmarks for evaluating the effects

of radiation on modern parallel processors: matrix multipli-
cation (DGEMM) and LavaMD.

DGEMM serves as a cornerstone kernel for several appli-
cations and performance evaluation tools. LavaMD calculates
particle potential and relocation due to mutual forces between
particles within a large 3D space. The main computation in
this program is the calculation of dot products with floating-
point data, where each thread computes the interaction of one
particle with all particles in neighboring boxes.

The only constraint that has been traditionally imposed on
the input size for processor reliability evaluation, as reported
in the literature, has been to excite all available resources [12],
[13]. This ensures the evaluation of the worst case sensitivity
of a CPU. In fact, increasing the input size would simply
mean that the same resource is used more than once, and this
affect neither the sensitive area of the device nor the resource
criticality [14], [13]. For example, if a cache region is used
twice because the data does not fit in the cache, the data the
cache holds changes, but the exposed area remains the same.
An increase in input size has no impact on the amount of
vulnerable resources. Input size changes, in other words, have
little to no impact on CPUs’ Architecturally Correct Execution
(ACE) bits [13].

The situation is different in practice, for parallel processors.
Increasing the input size typically increases the number of
instantiated threads, too. Depending on the architecture, a
higher number of parallel threads can significantly affect the
device cross section and execution efficiency.
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Threads on Xeon Phi are managed by a dedicated OS,
which maps at most four threads to each IMT (Interleaved
Multithreading) core. The OS avoids scheduling additional
threads on a core as it would lead to context switches and
cache conflicts. Additionally, as data is accessed in mostly
regular contiguous blocks in the selected benchmarks, cache
sensitivity is expected to be unaffected by additional increases
in input size. The additional data transfer could affect the
efficiency and reliability of the ring that interconnects cores
and memory.

NVIDIA uses a different parallel process management for
their GPUs. The scheduler and dispatcher, in charge of or-
chestrating parallel threads execution, are implemented in
hardware. A higher number of parallel threads may increase
the scheduler strain and, in turn, increase its exposed area.
Additionally, data required by active threads that wait to be
dispatched is maintained in the large register file available in-
side the NVIDIA SM. This means that, before being executed,
active threads data is exposed and is critical (i.e., an error in
active threads data is likely to propagate to the output). By
changing the number of active threads, one can also change
the time required for a thread to be scheduled again, potentially
increasing the exposure time of critical data [15]. Nevertheless,
input size increases commonly result in higher throughput [8].
As a result, while increasing the number of threads is likely
to increase the GPU cross section, it is also likely to increase
the amount of data correctly produced by the GPU and so its
MWBF (please refer to Section IV).

To experimentally measure the sensitivity of parallel pro-
cessors and evaluate the reliability of the parallel threads
management, we tailored input dimensions that achieve high
resource utilization in the irradiated devices (over 97.5%
multiprocessor activity). Stressed resources include register
files, cache memories, buses, ALUs, FPUs, control resources,
and others. Similarly to traditional CPU tests, in fact, a not
fully used resource will show a low cross section not because
of a higher reliability but due to a smaller exposed area. Then,
to stimulate the peculiar scheduler and dispatcher required
in parallel processors, DGEMM input dimensions (number of
elements in row/column) were varied between 512 and 8192
in powers of two. From 2048 and on, the devices are fully
utilized. LavaMD’s number of cubes in each dimension of a
3D grid was set to 13, 15, 19, and 23 (each cube contains 100
particles on Xeon Phi and 192 particles on K20 and K40. The
number of particles was selected to best fit the hardware).

C. Experimental Procedure
Experiments were performed at the LANSCE facility, Los

Alamos, NM, in November 2015. The neutron flux available
at LANSCE was about 2.5× 106neutrons/(cm2 × second).
Experiments were tuned to guarantee observed output error
rates lower than 10−3 errors/execution, ensuring a negligible
probability to have more than one neutron failure in a single
code execution.

The beam was restricted to a spot with a diameter of
2 inches, which was enough to fully irradiate the tested chips
without directly affecting nearby board power control circuitry

and DRAM chips. This implies that data stored in the main
memory is not to be corrupted, allowing an analysis focused
on the devices’ core reliability.

Figure 1 shows the experimental setup at LANSCE. We
irradiate a total of 2 Xeon Phis, K20s, and K40s, placed at
different distances from the neutron source. A de-rating factor
was applied to consider distance attenuation. After de-rating,
the cross section was independent of the position, suggesting a
negligible neutron attenuation caused by other boards between
the source and the device under test.

A host computer initializes the test by sending pre-selected
inputs to the parallel device, collecting results, and comparing
them with a pre-computed golden output. When a mismatch
is detected, the execution is marked as affected by a Silent
Data Corruption (SDC). Software and hardware watchdogs
were included in the setup to monitor the application under
test, detect application Crashes, and perform a power cycle of
the host computer in the event of system hang.

III. EXPERIMENTAL RESULTS

In this paper, we report the normalized SDC and Crash
cross sections for NVIDIA K20, K40 and Intel Xeon Phi
to allow a direct comparison of the considered devices and
kernels without revealing business-sensitive data. All values
are reported with 95% confidence intervals deriving from
Poisson’s distribution.

Figs. 2 and 3 show the relative SDC and Crash cross sections
for DGEMM and LavaMD, respectively, obtained increasing
the input size. For LavaMD, K20 was not tested and K40 with
13 cubes did not provide a statistically significant number of
errors. LavaMD values for Xeon Phi are multiplied by 10 to
allow the inclusion of all the curves in one figure. For these
experiments the mitigation mechanisms available on the tested
devices were disabled as discussed in Section II-A.

A. Silent Data Corruption
From results reported in Figs. 2 and 3 it is clear that Xeon

Phi and NVIDIA devices have a different behavior under
radiation, which depends on the executed code. The Xeon Phi
SDC cross section seems smaller than the K20 and K40 one for
all the codes and configurations but DGEMM executed with
29 × 29 double data.

Cross sections are influenced by the different transistor
technology and layout (28 nm planar bulk for K40 and 22nm
Trigate for Intel). 3-D transistors, in fact, have shown an
improved per bit reliability to neutron compared to planar
devices [16]. As said in Section II-A, the comparison of the
radiation response of the different implementation processes is
unfeasible and out of the scope of this paper. Moreover, the
different implementation of mitigation solutions intrinsically
bias the direct comparison between Intel and NVIDIA (nvidia-
smi disables completely the ECC, while MCA only disables
error logs and double bit error detection). Thus, we limit our
discussion to the architectural response of devices.

Even if device resources are saturated the input size has a
strong impact on NVIDIA devices cross section but not on
Xeon Phi cross section. The only significant increase for the
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Fig. 2: DGEMM normalized cross section.

Xeon Phi occurs for DGEMM with smaller input sizes (for
which the device is not fully utilized). Please notice that all
input sizes (but for DGEMM executed with 29 × 29) are suf-
ficient to stimulate most of the resources on both devices (see
Section II-B). A bigger input size, then, does not increase the
amount of resources required for computation and should not
affect the cross section (see Section II-B). However, increasing
the input size increases the number of parallel threads required
for computation. The different behavior between NVIDIA and
Intel devices when input size is increased depends mainly
on two reasons that derive from the different parallel threads
management philosophies.

(1) Increasing the number of parallel threads increases the
scheduler strain required to manage and dispatch threads. The
scheduler on NVIDIA devices is implemented in hardware
and has already been demonstrated to contribute to the device
radiation sensitivity [17]. Intel Xeon Phi relies on a dedicated
operating system to manage execution [9] which may be less
susceptible to radiation-induced failures.

(2) NVIDIA and Intel adopt opposite solutions to manage
those threads that are active but waiting to be dispatched. On
the K20 an K40, active threads data is kept in registers while
other threads are being executed. A larger number of threads
increases, then, the time data stays exposed in registers waiting
to be used, increasing data criticality and so the cross section.
On the contrary Xeon Phi waits for current threads (up to four
per core) to finish before launching other ones, so there is no
expected cross section increase caused by additional threads.

LavaMD’s SDC FIT rate increase with input size is less
remarkable than the one seen for DGEMM on the K40. For
DGEMM the cross section is more than doubled from one input
size to the next one while for LavaMD it is increased of about
30%. This seems to be in contrast with (1) and (2). In fact,
LavaMD makes heavy usage of local memory (≈14 KB per
block of threads), which limits the number of active threads at
any given time on the K40. Thus, the increase in number of
active threads is limited for LavaMD, reducing the impact of
(1) and (2).

These observations are possible for parallel devices only if
different input sizes are tested. As shown in Figs. 2 and 3,
testing only one input size as for a single CPU would result in
a significant underestimation of parallel devices cross section.
It is worth noting that while the K40 thread management seems
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Fig. 3: LavaMD normalized cross section (Xeon-Phi cross
sections are multiplied by 10 allow the inclusion of all curves
in the figure). K20 was not tested and the test on the K40 with
13 cubes did not provide a statistically significant number of
errors.

to increase its cross section, it may be more efficient. The K40
may then produce more correct data before experiencing a fail-
ure. Thread management effects on reliability and throughput
give rise to the necessity of considering the MWBF of both
devices to draw pragmatic reliability conclusions (Section IV).

B. Crashes
As shown in Figs. 2 and 3, the Crash probabilities are only

slightly affected by the input sizes. Even if increasing the input
size imposes a higher scheduler strain in the parallel device,
the Crash sensitivity remains constant for both devices. As a
general result, we can conclude that most of the errors affecting
the scheduler do not result in Crash but contribute to SDCs,
in accordance with (1) and (2).

An additional insight of our experiments is that the Crash
cross sections are found to be almost independent of the
executed code for the Xeon Phi while, depending on the code,
it changes by more than 1 order of magnitude for the K40. In
fact, while Xeon Phi Crash rates are in the order of tens of a.u.
for both DGEMM and LavaMD, K40 Crash rate varies from
tens of a.u. for DGEMM to hundreds for LavaMD. We believe
this behavior to be caused by the hardware versus software
threads management.

C. ECC and MCA
NVIDIA HPC devices are protected with a Single Error

Correction Double Error Detection ECC mechanism, while
Xeon Phi includes MCA. Some experiments were performed
with MCA and ECC enabled. What we have observed is that
both NVIDIA ECC and Intel MCA reduced the SDC rate
by about 1 order of magnitude and significantly increased
Crashes. The main issue with MCA is that after the Crash
the Xeon Phi triggers a checkpoint procedure, whose recovery
time may take up to 6 minutes. This is the main reason for
not having a good statistic on MCA efficiency. However, the
only expected difference in our results for the Xeon Phi when
MCA is enabled, would be caused by double bit errors (single
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Fig. 4: DGEMM normalized MWBF (log scale).

errors are still corrected with MCA off). In contrast, enabling
NVIDIA ECC could also lower the effect of input size on the
GPU cross section. In fact, the register file would be protected
reducing the impact of reason (2) discussed in Section III-A.

IV. MEAN WORKLOAD BETWEEN FAILURES

In this section, we discuss the Mean Workload Between
Failures (MWBF) of Xeon Phi, K20, and K40. The MWBF
is the amount of useful work the device produces between
failures (SDC or Crash) [18], [17]. The MWBF depends on
the cross section (device sensitivity and code criticality) but
also on the resources efficiency and throughput. Therefore, we
believe the MWBF a more precise reliability metric for parallel
processor.

The MWBF is evaluated from the Mean Executions Between
Failures (MEBF), which is calculated by dividing the device
Mean Time Between Failures by the code execution time.
The MEBF is the number of executions correctly completed
before experiencing a failure. By multiplying the MEBF by
the amount of useful data produced by the device executing
the code one obtains the MWBF [17].

Figs. 4 and 5 present the relative MWBF for DGEMM and
LavaMD, for all the tested input sizes. Reported values were
normalized to the same value for all the codes, configurations,
and devices. From Fig. 4 it is clear that the MWBF of DGEMM
decreases significantly as the input size increases for the K40
and the Xeon-Phi. The K40 MWBF is higher than Xeon Phi for
inputs lower than 212×212. However, when the input is equal
or greater than 212 × 212, the parallel process management
impact is heavier in K40 due to a large number of threads
(please refer to the discussion in Section III-A). As a result,
the Xeon Phi MWBF becomes comparable with the K40 one.
The K20, in contrast, has an increasing MWBF. Regardless
the increased cross section caused by the additional scheduler
strain (see Fig.. 2), the K20 becomes more reliable as the
input size increases. This is because a larger increases the K20
efficiency faster than its cross section.

For LavaMD (Fig. 5), the execution time is linear with the
workload. Therefore, the MWBF decreases in agreement with
the cross section increase. The behavior is similar to the one
seen for DGEMM, where the MWBF of K40 decreases rapidly
with the increase in the number of parallel threads.
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Fig. 5: LavaMD normalized MWBF (log scale).

The MWBF also highlights the impact of the parallel process
management philosophies. To achieve a good efficiency in K20
or K40, regarding performance and reliability, one needs to
reach the processors full utilization. Finally, while the number
of threads does not significantly impact Xeon Phi’s efficiency
and reliability, it does for NVIDIA devices. The increase of
parallel threads is reliable only if the efficiency improvement
it brings is sufficient to compensate the cross section increase.

V. CONCLUSION

We discuss the importance of using various input sizes to
precisely evaluate parallel processors behavior under radiation.
Varying the input size, in fact, impacts the scheduler strain, the
number of active threads, resource distribution, and resource
efficiency. All these effects of input size variation significantly
impact the devices’ reliability. As experimentally illustrated,
the different parallel threads management of the Xeon Phi,
K20, and K40 show different radiation behaviors when the
number of threads is increased.
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