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ABRSTRACT

This paper examines the cost-effectiveness of switches
in processor array architectures, where cost is measured
by the area needed for implementing the communication
grid inherent to these architectures. The CHIP architec-
ture suggested in {1] was chosen as an example for pro-
cessing arrays containing switching elements intercon-
necting the processors.

Several variations of the CHIF architecture are con-
sidered. We estimate for each the silicon area required
and present schemes for mapping certain structures (like
binary trees) onto it. We then compare the efliciency of
embedding binary trees in CHIP arrays to that in arrays of
processors withoul switches,

In the last part of the paper the fault-tolerance capa-
bilities of CHIP arrays are analyzed and evaluated. First,
strategies for overcoming various combinations of faults
are suggested and some qualitative results are given.
Quantitative comparison is then presented, using as cri-
teria reliability, computational availability and area utiliza-
tion.

Index Terms - Processor arrays, switching elements,
embedding efliciency, area ulilization, reliability, compu-
tational availability, fault-tolerance.

i. INTRODUCTION

Several architectures for processing arrays which
include switching elements connecting the processors have
been suggested, e.g., [1], [2], and [3]. The incorporation of
gwitches in a processing array architecture offers a high
degree of flexibility, enabling various topologies to be
efficiently embedded into the same physical array. In
additien, these architectures have dynamic
reconfiguration and fauit-tolerance capabilities, which
allows a high degree of utilization of fault-free processors
in the presence of faulty elements.

However, the inciusion of switches in an array
increases its area, thus allowing a smaller number of pro-
cessors to fit into a given silicon area. Our objective in this
work is to evaluate the cost-effectiveness of switches in
processors arrays. For this evaluation, we have chosen
Snyder's "CHIP" ({Configurable Highly Parallel Com-
puter)[1], as a representative for architectures of proces-
sor arrays with switches, and for comparison, the
representative of arrays of processors without switches is
that presented in [4].

In the first part of this paper (Section 2), we estimate
the area required for the communication grid in several
variations of the CHIP architecture. The size of the proces-
sorg and the width of the internal data busses are the
parametlers in this evaluation. The area estimation is
based on a detailed exarnination of the logic and topologi-
cal design of the switches, attempting to optimally
integrate them into the data busses.
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Special attention is given to the control section of the
switch whose contribution to the total area might be sub-
stantial. A novel approach suggesting the control of the
switches indirectly by the adjacent processors is also
introduced and analyzed. In addition, an original CHIP
architecture with enhanced comrnunication flexibility is
suggested and its advantages in area utilization and fault-
tolerance are discussed.

In Bection 3, algorithms for embedding binary trees in
CHIP arrays are examined and a novel systemnatic mapping
scheme is introduced. Based on the area estimation, a
comparison of the efficiency of binary tree embeddings is
then made in Section 4, between CHIP arrays and arrays of
processors without switches.

In Section 5, the fault-tolerance capability of CHIP
arrays is analyzed and evaluated. Strategies for overcom-
ing faults in both the processors and the switches are sug-
gested and some qualitative results are given. Quantitative
comparison based on the Markov model suggested in [5]. is
then presented. The criteria used are reliability, computa-
tional availability and area utilization.

2. ESTIMATION OF ARFA REQUIREMENTS FOR THE COM-
MUNICATION NETWORK

The CHIP communication network has two com-
ponents: data busses and switches (see Figure 2.2). The
major part of the area of this network is devoted to Lhe
data busses, bul the switch size is in fact the dominant fac-
tor in the determination of the arsa. Therefore, we con-
centrate on the logical and physical structure of various
switches and in particular, on the way they are integrated
into the busses. The physical width of these busses is
clearly a function of m - the number of bits in a bus.

Our layouts follow Mead and Conway [6] NMOS design
rules for a process with one metal layer. Data busses are
implemented with metal lines, keeping the conservative
design rules, i.e., 3A for bolh line width, and metal to metal
separaticn. Bach line includes short sections of diffusion
for the purpose of switching.

The swilches in our implementation are passive, i.e.,
pass transistors which require minimum area. However,
delay considerations place a limit on the number of such
pass transistors that can be cascaded without an aclive
driver. Adding such buflers not only requires some extra
area, but also turns the data lines into unidirectional ones.

To meet the inter-processor communication needs,
either full duplex or half duplex protocols may be
employed. In the following analysis we assume half duplex
busses. It full duplex busses (two separate unidirectional
links) are selected, the calculated widith of the busses
should be doubled.

Data busses run along the sides of the processing ele-
mernts {PEs). The area for each segment of a bus is
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approximately the length of the PE side times the bus
width, For a given size of PE, the way of controlling the
arca of the communication nclwork is by keeping the bus
widlh minimal. This widlh is direclly delermined by the
switches' cross section, as the busses run through them.

Ye next derive a formula for Lhe silicon area required
for a CHIP array. The area of the bus sections along the
two sides of each PE is added to the area of the PE thus
forming o structure which is @ geometric "cell”. This cell
includes a PE, two bus sections and a corner switching
area. Denoting by @ the PE size, and by & the bus width,
we have for the cell area:

Seu =(a + b =0a®(1+ wim

The increase in area due to communication com-
ponent is proportional to #/a , where b is determined
by the width of the cross section of the corner switch.
Therefore, we concentrate on estimating b .

This estimation is based upon the topological design
and layout considerations for the principle parts of the lat-
tice: data lines, switching zones and the control section of
the switch. The switching area is treated first and a lower
bound for the bus width is formulated. Next, the area
needed for the control section, which depends on the con-
trol strategy, is calculated.

2.1. CHIF 4-1 LATTICE

We follow the terminology suggested by Snyder and
use the notation d-g for a switch having d incident
busses { d is cailed the degree of the switch), and cross-
over capacity of g links. Thus, a switch that can form
only one link between the four busses connected to it is
called a 4-1 switch, and the grid containing this type of
switches is called CHIP 4-1.

As the aqo..wdoqm_. capacity g of the 4-1 switch is 1,

there are only m =8 possible links. The logic design

approach is to let each of the busses have a controlled
access to an internal “link” through an on-ofl switch. We
have therefore, four groups of pass transistors, controlled
by four lines: left, right, up and douwn. Figure 2.1 shows a
schematic implementation of this switch. Each bus has
m bits implemented as metal lines. At the switching
zone, these lines are routed in the diffusion layer, to aliow
the formation of pass transistors. The internal link is the
area in which the busses meet. Contacts are formed
between the metal and diffusion lines, on the diagonal of
the crossing points, thus minimizing the bus cross section.

Figure 2.2 shows the location of switches within the
full lattice. We can distinguish between the corner
switches {located on bus intersections), and side switches
which control the access of PEs {o the communication
busses. [t can be seen that when the latter are eliminated,
all the logic capabilities of the lattice are still met, as long
as all the PEs are fault-free.

From these figures we conclude that the bus should be
only slightly widened, lines separation is now 3.5A. For an
m line bus, the minimal width is therefore,

by p(m)=(85"m +3) A (2.1)

Nexi, we include the effect of driver implementation.
The active stages need additional area for the pull-up
transistors. The size of these depend on the required speed
and the parasitic capacitors on the metal lines, and is
estimated to be 15A. The active transistors need also
power and ground lines. The output "low” vollage places a
limit on the diffusicn resistance, Le., the length of the con-
nection to ground. Therefore, power and ground lines are
added between every group of 16 data lines. The overall
bus width for m lines including pull-ups, Vec and GND
lines is given by:

b (m)=(85*m + 18+ 12*[m/16]) A (2-2)
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A typical value for a 16-bit bus is 134 A

2.2. CHIP B-1 LATTICE.

The logic structure of Lhis laltice which is used in [1]
for embedding hexagonal structures, is based on the B-1
switch. 1t consists of B pass switches (one for every
incident bus), conlrolling the access Lo the inlernal link
area.

The schemaltic layout of the B-1 switch consists of four
bus-overlapping zones, each idenlical in area to the 4-1
gwitch, Iis cross-section is therefore, approximately dou-
ble that of a 4-1 switch. Hence, for CHIP 6-1 we have

be-n(m}=(13*m +18+12*[m/181) A (23}

23 CHIP B4-1 LATTICE

This lattice is an extension to the original CHIP lat-
tices. 1t differs from them in making a distinction between
the degree of switches and that of processors. The degree
of the corner switch has a major effect on the area needed
for the communication network. The degree of processors
on the other hand determines the ease of mapping various
structures onto the CHIP lattice.

In the proposed CHIP B8-4-1 lattice, the corner
switches used are the same as in the 4-1 iattics, while Lthe
degree of the PE is 8, i.e., each PE has 8 ports, 2 on each
gide. This way an 8-4-1 lattice has linking capabilities that
are equivalent to those of CHIP 8-1. Figure 2.3 shows a
possible way of implementing this grid. On the bus along
the PE side there are additional pass-transistars which can
cut the bus into two separate independent links. As the
switches are integrated into the metal lines of the data
bus, the area needed for the communication in CHIP 4-1
and in CHIP B-4-1 are essentially the same. However, the
fact that each processor has B ports instead of 4 might
cause spme increase in the area of the processor.

2.4. OTHER SWITCHES AND LATTICES

In the same manner, we may derive expressions for
b in other CHIP lattices. Consider for example, CHIP 4-2
in which the switch characteristics are d = 4 (incident
busses) and g = 2 (concurrent links). This switch has nine
bus-overlapping zones and the bus width is therefore,
three times that of a 4-1 grid. Thus,

g (m)=(185*m +18+12*[m/18 N A (2z-4)
Similar equations for B-2 and B-4 attices can be derived .

2.5. SWITCH CONTROL

The switches in the CHIP lattice as presented in [1]
are controlled by an external host. In it, the mapping algo-
rithms are run and the setting of the switches is deter-
mined. A different scheme is distributed control of the
switches. Here, the mapping aigorithms are execuied in
the PEs and they determine the setting of the switches.

However, for the evaluation of the area of CHIP lat-
tices only the exact location of the switch control circuitry
is important. There are two possibilities for this:

(1) The switch control is internal to the switch. Setting
instructions are received directly by the switch which
decodes them and activates the the pass transistor
control lines. We call this control scheme Direct
Switch Control (DSC).

Switches are activated indirectly through PEs. The
setting instructions are received by the PEs which
decode them to control the adjacent switches, We call
this seheme Indirect Switch Control (1SC).

The first was suggested in [1] and the second is a novel
idea introduced here.

(2)



2.5.1. DIRECT SWITCH CONTROL

The principal parts of the switch control are the com-
munication sub-section and the switch settings memory.
DSC switches receive their setting instructions through a
dedicated global bus which is assumed to be a serial one in
order to minirize the area requirements. Bach switch has
a shift register and some control logic for implementing
the communication protocol. A detailed design was car-
ried out [7] and as a resuit the area for this logic was
estimated at 76 x 60 A*. The memory for the switch set-
tings has ¢ addresses [1] and its estimated overail size
with ¢ =2 and d = 4 {four busses), is 50x24 A%

Different layout schemes for the switch control have
been checked and 76 A is the minimal addition to the width
of the busses {to account for the inclusion of the centrol
section in the switches) that was obtained. For a 16-bit
bus and 1000 A processors, the addition of this to the 134 A
required for the data lines in CHIP 4-1 lattice, increases
the bus width by 57%. The total increase in area due to the
communicakion grid is in this case 46.47%.

2.5.2. INDIRECT CONTROL VIA PEs

Including the control logic in the switches requires
substantial addition to the bus area. Letting the PEs to
control the switches eliminates this area penalty wilhout
adding much to the PEs' area which have communication
capabilities anyway. Moreover, the data busses can be
used for the configuration control, eliminating the addi-
tional global bus. There are however, some guestions con-
cerning the organization of such a control since instrue-
tions have to be transmitted through the lines controlied
by them. A mechanism assuring the transfer of control
data {switch settings), must be provided. Also, the
reconfiguration should be possible even in the event of
faulty PEs.

It iz insufficient to assign a unique PE to every switch,
and pass the switch setling messages throughit, as a fault
in this PE would mean inability to control the switch in
order to bypass the fauity processor. A simple way is to OR
the four control lines from the PEs surrounding the switch,

In the configuration phase, the data lines are operated
as contiguous vertical {or horizontal) busses. All the PEs
listen to the configuration messages transmitted on the
nearby bus by the host computer . Switch setting for this
phase is initiated directly by the host computer, using a
mechanism for cascading the switches along straight lines,
{which is realized in the switch's hardware), without the
intervention of the PEs. This way. the access to each PE is
assured as long as the switches and data busses are fault-
free, since alternative paths to each PE exist.

A detailed design of these switches is presented in [7].
As an example, we outline here the principles of I3C imple-
mentation in a CHIP B-4-1 lattice. The aliowed forms of
links, can be divided into two types: Links between adja-
cent PEs, and links in which a cascede of switches is
formed. The formation of the latter is initiated by the pro-
cessor at one end of the bus segment while the PE at the
other side "cuts” the segment and stops the cascading pro-
cess. The switches that are not on either edge of this link,
are not controlled by PEs, but rather by control lines com-
ing from the preceding switches in the bus segment.

A large area is available beneath the metal lines of the
busses and therefore, almost all the amount of random
logic needed here can be implemented in the diffusion and
polysilicon layers under these lines. Based on a detailed
logical design of the switch, we have concluded that the
addition to the bus width is that of a single inverter, Le., 12
A For the same example as before, i.e., a 16-bit bus and
1000 A processors, the width of the bus with 13C switches is
increased by less than 10% compared to the 57% for D3C
switches. The total increase in ceil area is here 31.3% com-
pared to 48.4% if DSC switches are used.
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8. MAPPING LOGICAL STRUCTURES ONTO CHIP AKRAYS

In this section we discuss the mapping of various logi-
cal structures onto CHIP arrays. These include linear
array, loop, square mesh, hexagonal array, and binary
tree. The efficiency of the mappings is evaluated by calcu-
lating the size of the physical array required for a given
size of a logical array. Goals of such mappings may be:

(1) Regularity - uniform mapping strategy for each of the
mapped celis.

{2) Locality - short links, preferably to nearest neighbors.

(3) Simplicity - of the algorithms.

{4) Modularity - expansion capabilities to any size of the

logical structure.

9.1. MAPPING NON-TREFE. TOPOLOGIES ON CHIP ARRAYS

Linear arrays, loops and square arrays do not reguire
more than four connections per PE. Hence, they can be
mapped on a switchless and CHIP arrays in a straightfor-
ward manner. When mapping hexagonal arrays, each PE
needs 8 ports. Since PEs in CHIP 4-1 have only 4 porls, Lthe
CHIP 81 lattice has been suggested for this purpese. In
this case, all the PEs and switches are utilized. However,
in the B-1 lattice, the area for communication is almost
double than that of 4-1 lattice.

To map the hexagonal array on CHIP 4-1 lattice or
mesh arrays without switches we may adopt the idea pro-
posed in [1] to increase the degree of a PE by combining
adjacent processors inte pairs. This way, the number of
ports of a pair of processors is 2*4-2=6 as needed for a PE
in the hexagonal array. The major drawback in both cases
is the low PE utilization; half of the processors are
operated as communication elements (CEs).

Hexagonat arrays may be mapped more efliciently on
a CHIP 8-4-1 lattice by using the corner switches for the
diagonal links. This shows a signiflcant advantage of the B-
4-1 lattice for hexagonal array mappings. It retaina 100%
PE utilization as B-1 lattices do, while requiring only half
the area for communication. Comparing it to the 4-1 lat-
tice, it needs the same area for communication as a 4-1
lattice, which achieves only 50% PE utilization.

3.2. MAPPING TREES ON ARRAYS WITHOUT SWITCHES

Algorithms for mapping trees en square and hexago-
nal switchless grids appear in [4] and [8), respectively.
The mapping is systematic, modular and simple but it uses
many PEs for communications purposes. PE utilization
varies with tree level and appreaches 50% in square grids.
The mapping on an hexageonal grid is more efficient, but
requires a more complex algorithm. Improvements in PE
utilization and in the mean length of a path at a factor of
1.4 as compared to the square array, can be achieved [8].
The mean length of a path also decreases al a similar fae-
tor.

3.3, MAFPPING TREES ON CHIP ARRAYS

In [I] a mapping scheme for binary trees that
achieves 100% PE utilization, is suggested. The basic idea
is Lo use two kinds of building blocks, one with its "spare”
PE located at its corner, and the other at the center of its
side. The root in each block is located in its center. The
process of building higher level trees from these blocks is
by assigning the new root to one of the spare Piis. Using
transformations on the basic building blocks, we can posi-
tion the new "spare” either at the center of the new side or
at the new corner, enabling the process to proceed.

This recursive algorithm will function provided that
some basic cell, satisfying our assumption on rool and
spare positioning is found, end that we can assure the
creation of links between the new root and the previcus
ones. Closely checking the example given in WL {mapping
an eight level iree on a 16x16 CHIP 4-1 lattice), we find that
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the basic cell consists of 16 PEs which host a level 4 sub-
tree. However, 12 different configurations of the basic cell
are needed. The reason for this is the inability to lecate
the spare exactly at the center of the cell side (as reguired
by the algorithm). The 12 conflgurations can be grouped
into 3 types denoted here 4, B, and C types. Figure 3.1
shows the internal structure of Lthe basic cell C after it was
slightly modified to introduce fault-tolerance capabilities
(Sectior 5). These types of cells appear in all possible mir-
ror Lransformalions, and we denole Lthem according Lo Lhe
axis of symmetry: Ay, A, Ag, and similarly for £ and C
cells.

The schematic diagram in Figure 3.2 shows how a ten
level tree can be formed using the same approach as the B
level one in Snyder's example. The basic rules governing
this mapping are:

{1) A-type cells host tree nodes of level 5.
(2) B-type cells host tree nodes of level 6.
{3) C-type cells host all the higher level nodes.

Due to limitations of the CHIP 4-1 lattice, not all the
details in Figure 3.2 were derived from the above men-
tioned mapping algorithm. For example, the position of
the level 9 node has moved a level 5 node from its
"natural” place [7]. In general, there is a difficulty in sys-
tematically extending this mapping algorithm to higher
level trees. When forming the links to the root of a new
{higher level} tree, replacement of several cells in the
already existing sub-trees is required.

The modified scheme in the next paragraph, achieves
a systernatic mapping at the expense of PE utilization.

3.4. SYSTEMATIC TREE MAFPING ON CHIP 8-4-1 ARRAYS

The next algorithm is conceptually based on the H-
spanning scheme ({e.g., [B]) with some necessary
modifications for CHIP architecture. The idea is to leave
the four cerners of some basic structure as spares to be
used for mapping higher level nodes. This will ensure that
in all possible transformations, the corner required by the
mapping algorithm is available.

Choosing the size of the basic structure affects the
efficiency of the mapping. The one presented here (Fig
3.3) consists of four basic cells of size 3x3. Each cell has
nine PEs, out of which seven are utilized for a sub-tree of
ievel 3, one is used as a node at level 4 or higher, and one
as a "spare”. Thus, a PE utilization of 8/9 is achieved. A
structure of Bx6 PEs, formed by four of these basic cell,
has spares available at its four corners. Our algorithm
maps tree nodes of level 7 and higher onto these spares.
Thus, 32 out of every 36 PEs are utilized. Figure 3.3 is the
output of a PASCAL program which implements this algo-
rithm for any tree level

The following equations give the number of rows and
columns required for mapping a k£ level tree :

TNyow = 3 - NZWI&\M_ AW ﬁu

Thol. AWNV

For example, for k=8 and k=9, arrays of 24x12 and 24x24
are needed, respectively. The maximum iree level that

can be mapped on & Tpow * Te array is given by
_._._..:uﬁnic_t. Q.nerv +1 if _E_.,n._._ - Dﬂqr_ >1

=3¢ plix-ayel

k= (Orpw + Gpat )/ 2 otherwise (3.3)
Brow =12 * 1ogz{nme 7 3)] + 3 (3.9)
g =2 * logg (reg. /3}1 + 3 (3.5)

The algorithrn calculates at each step (level) the
length of the next link denoted by ¢ which is halved at
even numbered steps. 1is initial value is caleulated from,

8(k) = 3= gli-07] {3.8)
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4. EFFICIENCY OF TREE EMBEDDINGS

In this section we use the results of Lthe previous para-
graphs to evaluale the embedding cfliciency when Llree
structures are embedded in CHIF lattices, compared to
that in arrays without switches,

The common appreach quoting the number of PEs
required for a logical structure does not consider the extra
area needed for the busses and swilches in CHIP latlices,
and is therefore not adequale, We use insteud Lhe maximal
size of the logical structure that can be mapped onto a
given physical chip area. This criterion is affected by the
PE's size; the bigger the PE, the more worthwhile it is to
invest in the communication sub-system to get better FE
utilization. The size of the PE is dictated by the computa-
tional capacity needed, and therefore is left as a parame-
ter in the evaluation. The other parameters are those of
the communication sub-system: the width of data busses,
and the switch structure.

In the comparison we assume that the 8 ports per PE
in the B-1 and B-4-1 lattices (compared to 4 in the 4-1 lat-
tice) do not add a significant amount af area to the PE. We
alsc ignore in the comparison the common elements which
appear in any array such as power and clock lines.

The number of tree levels that can be embedded in a
switchiess square array is given in [4]. Using those formu-
las, the chip area needed for a given tree has been calcu-
lated, with the PE size as a parameter. For example, the
area required for an 8 level tree is 529 M A® for a=1000 A.

Based on the results of the preceding paragraphs, the
size of the CHIP array required for trees of any level can
be calculated. It is a function of the specific algorithm,
and the two mapping schemes which are considered here
are Snyder's suggestion for CHIP 4-1 arrays with 4x4 cells
and full PE utilization, and the algorithm presented above
for CHIP B-4-1 arrays with 3x3 cells and B/9 utilization.

Figure 4.1 gives a "rule-of-preference” in the plane of
(2, m), i.e., the combination of PE size and bus width. The
lower line shows the break-even in embedding efficiency
between switchless mesh and CHIP 4-1 arrays, and the
upper one shows the border line between switchless mesh
and CHIP 8-4-1. For 1000 A PEs and 16-bit busses, CHIP lat-
tices offer a higher efficiency of tree ernbeddings while for
smaller PEs switchless arrays are preferable.

5. FAULT-TOLERANCE IN PROCESSOR ARRAYS

5.1. MAPPING OF LINEAR ARRAYS

An algorithm for mapping a linear structure onto a
square array of m * n processors without switches is
presented in {4]. For a single faulty PE, an average
number of {n—1) processors are turned into Cka,

As can be seen from Figure 5.1, the existence of
switched busses in CHIP lattices enables routing around
any faulty PE, thus achieving full utilization of all the
fault-free PEs. 1t can be shown that this is true for any
combination of faulty PEs in the array.

Faults in communication links, need a more careful
attention. Single or double link faults in CHIF 4-1, even
when all occur in links adjacent to a single PE, can be
bypassed without the need for CEs, while a triple fault may
biock the access lo a good PE. In CHIP B-4-1 there are two
possible links between any two adjacent PEs, providing
redundancy for any non-operative link.

5.2 MAPPING OF SQUARE AND HEXAGONAL ARRAYS

In [4] a straightforward algerithrn is presented for the
mapping of rectangular structures on an array of proces-
sors without switches. The use of a faulty PE is avoided by
turning a row end a column of processors into CEs. In the
case of faults in the communication links, turning a row or
a column of PEs into CEs is sufficient.



Following the same approach, il is possible to over-
come PE fauits in CHIP 4-1 array at half the "price”, i.e.,
not utilizing s single row or a column of operational pro-
cessors in the event of a PE fault. Switch and link faults
can be handled in the same way, resulling in a row or a
column of CEs. Only in the case of faults in all the four
switches surrounding a PE, both the row and the column of
PEs are turned into CEs.

Figure 5.2 shows that the additional flexibility of CHIP
8-4-1 grids can be used for the recovery from a faulty FE
at the "price” of only one side of the appropriate row or
column of PEs. Thus, the average number of unutilized
fault-free PEs per a single fault is half a row or column.
There are however, some combinations of faultts for which
this strategy is not applicable. For example, successive
faults along a diagonal cannol be treated in this manner.

The same approach applies for the reconfiguration in
the event of faults in hexagonal arrays.

6.3. EMBEDDINGS OF BINARY TREES

Two different approaches for embedding binary trees
in CHIP arrays have been presented. Snyder’s suggestion
which achieves full PEs utilization in CHIP 4-1 array, and
the algorithm presented in this paper which achieves 8/9
utilization of the PEs in a CHIP B-4-1 lattice. In both cases,
fault-tolerance can only be achieved by having some
redundant components in the array.

There are two possible ways te distribute Lhe spare
PEs in the array:

(1) The global approach - spare rows and columns are
added to the initial array. An appropriate fault-
tolerance strategy was presented above for square
arrays, and can also be applied to mapping binary
trees in the presence of faults.

(2) The local approarh - spare Pls are spread over the
entire array, one per each basic cell, offering local
redundancy, and enabling fault-tolerance by
reconfiguring only the cell in which a fault in a proces-
sor oceurs. Other parts of the array remain
unchanged. A similar idea was presented in 9] for
waler-scale integration of CHIP lattices.

5.3.1. FAULT-TOLERANCE IN TREE MAPPING ON CHIP 4-1

As was shown earlier, the mapping of binary trees onto
CHIP 4-1 as suggested in [1] is based on three types of
basic cells. The following algorithin is suggested Lo over-
come any fault in the PEs;

{1} All the PEs in the same row of the faulty processor,
are not utilized.

(2) All the switches between processors in this row, are
set to form a vertical link.
{3) The tree is re-mapped on the modified array, accord-

ing to the original algorithm, with the nuinber of rows
reduced by one.

Here the PEs cannot be turned into CEs, as it is cer-
tain that at least one of them is faulty. Note that in step
{1) we give up the use of PEs in a roew and not in a column,
since there are more active horizontal links than vertical
ones.

It is sufficient to check the reconfiguration of a single
transformation of every type of the basic cells, for all the
possible locations of a fault within that cell. Some exam-
ples are illustrated in Figure 5.3. The number of switches
available for bypassing faulty PEs (step (2} above) within
each cell is three. This is insufficient for PE faults in the
origital structure of type C cell {as suggested by Snyder),
and we present here therefore, a slightly modified struc-
ture as shown in Figure 3.1 (c). In the case of faulty links,
for various locations of these faults either a row or a
column of PEs is not utilized, and the use of some of the
PEs as CEs is also required in some cases [7].
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5.3.2. FAULT-TOLERANCE IN TREE MAPPING ON CHIF B-4-1

Here, processor faults within a basic cell are handled
differently from those in tree nodes of level six or higher,
As can be seen in Figure 3.3, there are spare processors
adjacent to every node of level 6 or higher. Therefore,

faults oceurring in these nodes are overcome by replacing
the faulty PE by a nearby operational processor. A single
PE fault within the basic cell can be handled by
reconfiguring the cell without affecting the routing any-
where eise in the array. Figure 5.4 depicts an example of
reconfigurations of the basic celis. Although a general pro-
cedure cannot be stated for these structures, the use of a
table seems practical due to the limited number of possi-
bilities.

5.4, QUANTITATIVE EVALUATION OF FAULT-TOLERANCE

The following is based on the work in [5]. The behavior
of the processor array is represented by a Markov medel,
in which at state (i.j) the array is operational in the pres-
ence of i faulty PEs, and j faulty communication links. £
is the system failure state, i.€., any combination of faults
that prohibits successful recovery.

iwnmbowmdwﬁ..Qv_...w_mvncvwvz.wgwwgmqumw.._
be at state {i,7} at hram t. Also, P_.w. nﬂ.c. and Rmﬂ
denote the transition rates from state (i,7) to state F,
state (i+1.,7) and state (i,§ +1). respectively.

The general solution of this Markov model is given in
[56]. Based cn this sclution we may cdlculate several per-
formance measures like, Keliability R(t) (probability that
the system operates correctly in [0.t}}, normalized Comnpru-
totional Avgilapility A (t) {the number of processing ele-
ments that are operational at time %, divided by the initiai
pumber of processors in the array), and Area Utilization
Ut} (A ?W\ Total area of the chip).

5.4.1. SQUARE ARRAYS EMBEDDED 1IN CHIP LATTICES

let = *n be the size of the square array to be
mapped onto a CHIP 4-1 lattice. The following equations
were derived for the transition rates for the corresponding
Markov model

i3 = (n - ,..|Pm L A, (5-1)
atd P =(enr(n—1)- P (n -+ A+ oA, (5R)

and,
ey = {1 - ww.WPwu (5-3)

where A, and A, are the failure rates of a PE and a link,
respectively and c;y is the number of operational proces-
sors in state {i,j) Wm“_

The first equation reflects the symmetry in rows and
columns when PE faults are considered. Each fault causes
a loss of a row or a column of PEs. In the second one, the
number of operaticnal links is calculated by subtracting
n —1 links from the initial number of links {which is
2n * {n — 1) ) for each of the j faulty links, and adding i
links which bypass faulty PEs.

In order to compare the results with those obtained
for the switchless array, the same example from [5] was
used. In this example, the initial array is of size 10x10 and
faults are tolerated as long as the size of the array after
reconfiguration is at least 7x7.

A CHIP 4-1 array requires, in comparison to the
switchless array, an additional area. The area increase is
for example, 31.3% for PE size of 1000 A and 16-bit wide
communication links. Censequently, in the area of a 10x10
switchless array. a smaller CHIP 4-1 array of size 9x8
approximately can be implemented. For simplicity how-
ever, the calculations were carried out on the symmetrical
array of 9x9 PEs. In this case, the maximal number of



faults that ecan be tolerated is 4, either PE faults or link
faults.

An alternative approach was also examined. Accord-
ing to it the initial CHIP 4-1 array is 10x10 and Lhe total
area is enlarged by 31.8%, thus affecting the initial value of
the area utilization. In this case, six faults of either type
can be tolerated, resulting in a higher reliability.

For CHIP 8-4-1 lattice we derive the [ollowing:

ali = (n ~(Fe i) s (5-4)
aift =i (5-5)
ey =(L=(+7)/ 2n )2 (58)

The area-enlargement factor for this grid, under the
same assurmptions is 41.6%. Keeping the same physical
area as the 10x10 switchless array, allows the formation of
a BxB array in which any mix of 4 faults can be tolerated.
If Lhe initial array is of size 10x10, we achieve a higher reli-
ability at the price of larger chips {41.6%) since any mix of
12 faults may be tolerated now.

Figure 5.8 summarizes the numerical results
obtained. From the graphs, the trade-offs between the
performance measures become clear. Higher reliability is
obtained when a larger part of the array is devoted to
redundancy, which causes lower utilization. An important
observation is that even though the rate at which the area
utilization decreases over time is considerably lower for
CHIF lattices, they do not reach {within the time interval of
practical importance} the utilization offered by the switch-
less array, due to the initial difference. Thus, we conclude
that under the assumptions made in this example, switch-
less arrays are preferable.

6.4.2. BINARY TREES EMBEDDED IN CHIP LATTICES

The example we consider here is the mapping of a
seven level tree. In the switchless grid, & 15x15 array is
required, and if two faults are to be tolerated, the initial

array has to be 17x17. This is a 2B% increase in the area
requirement.

The minimal physical array needed for embedding the
same tree in CHIP 4-1 lattice is 8x18. To tolerate two
faulty PEs, we need to add two rows, Le., an initial 10x18
array which has a smaller physical size compared to the
17x17 switchless array, yet yields comparable reliability.
Using the area enlargement factor of 1.318, an array con-
taining 19x1i PEs is still physically smaller than the
switchless array, yet offers the possibility of Lolerating
three faults, and hence higher reliability.

The results given in Figure 5.7 are for the case when
A; =0, ie., communications links are assumed to be
fault-free. This simplifies the calculations considerably,
and is believed to suite the purpose of the comparison
being done here. In this case,

P...+_ = Tggr, * de-e l:- Ao

Using basic cells of 3x3 PEs, the physical array
needed for the seven level tree contains 12x12 processors,
According to the fault-tolerance strategy for this lattice,
s presented earlier, a seven level binary tree can be
embedded in this array, in the presence of up to sixteen
PE faults, as long as a double fault does not occur in any of
the basic cells. For this case we have, when A, = 0,

I (Mo * Mg, —Bi) * A

[+ #4 =
al =Bi*a,

(5-7)

(5-8)

(5-9)
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The area required for this array is approximately 307
less than that of the 17x17 swilchless array, and yet it
achieves better relisbility as can be seen from Figure 5.7,
Thus we conclude, that under Lhe assumplions made in
this example, the local approach [or distributing redun-
dancy when employed on a highly flexible reconfigurable
lattice, such as the CHIP B-4-1 lattice, yields better perfor-
mance than that of the global approach.

8. SUMMARY

In this paper we have estimated the area reguire-
ments of different CHIP lattices. Area was estimated based
on a detailed design of the switching element with proces-
sor size and communication bus width as parameters. For
a typical case, when the PE size is 1000x1000 A% and 16-bit
busses, the increase in area is estimated to be 31.3%.

For the purpose of evaluating the cost-eflectiveness of
switches in the architecture, a comparison was made
between CHIP lattices and a switchless array of processors.
The size of the physical array required to embed a given
binary tree in the various processor arrays served as basis
for this comparison.

The fault-Lolerance capabilities of these arrays were
analyzed both qualitatively and quantitatively. It was
shown that CHIP lattiees offer lower area utilization when
mapping linear and square structures, but achieve higher
reliability and area utilization when mapping binary trees.

Although only CHIP architectures have been con-
sidered in this paper, it is believed that the method of
analysis presented here is applicable to other similar
architectures.
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