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Reliability Analysis of N-Modular Redundancy
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Abstract—It is well known that static redundancy technigques are
very efficient against intermittent (transient) faults which constitute
a large portion of logic faults in digital systems. However, very little
theoretical work has been done in evaluating the reliabilicy of
modular redundancy systems which are subject to intermittent
malfunction occurrences. In this paper we present a statistical model
for intermittent faults and uvse it to analyze the relisbility of NMR
systems in mixed intermittent and permanent fault environments.

Index Terms—Digital system, intermittent fault, modular redun-
dancy, permanent fault, reliability.

I. INTRODUCTION

LTHOUGH our current knowledge on the conditions

causing intermittent faults and their behavior is limited,
it is believed that intermittent faults constitute a large
portion of the logic faunlts that occur in digital systems
[1]}-[5]. Because of the complexity involved in the diagnosis
of intermittent faults, these faults are a major cause of digital
system downtime. In order to increase the reliability and
availability of a system which is subject to intermittent
malfunctions we can use static or dynamic redundancy
techniques to incorporate fault tolerance into the system
[6)-18].

Recently the problem of intermittent fault recovery in
dynamic redundancy systems was studied by Merryman and
Avizienis [1] and by Ng and Avizienis [2]. In this paper we
study N-modular static redundancy in mixed intermittent
and permanent fault environments. We first introduce a
Markov model for intermittent faults and use it to analyze
the reliability of a nonredundant module. We next define the
reliability of an N-modular redundant system which is
subject to occurrences of intermittent faults, and we show
how to calculate this reliability. Finally, this reliability is
compared to the classical expression for the reliability of
NMR systems and it is shown that the predicted mission
time (i.e., the time the system will operate at or above a given
reliability) is considerably larger than the time predicted
using the classical results as can be expected.
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II. MODELING INTERMITTENT FAULTS

An intermittent fault is a physical event {a defect in a
component} that manifests itself intermittently in an un-
predictable manner [2], {6]-[8]. Thus, an intermittent fault
when existing in the system may be active at one instant of
time causing a malfunction of the system or may be inactive
at another instant allowing the system to operate correctly.
Hence, unlike permanent faults, for intermittent faults we
distinguish between the existence of a defective component
and the activity of the logical fault caused by it.

Defects causing intermittent faults come from a variety of
sources, .g., environmental causes, design deficiencies and
partially defective components. Each of these sources gener-
ates faults in a different stochastic process. Unfortunately,
there is no published information on the statistics of these
processes and consequently, accurate modeling of intermit-
tent faults is not possible. We adopt here the viewpoint
[1]-[5] that most intermittent faults can be characterized by
a first-order Markov model which has the advantage of
being mathematically tractable and which appears to be
consistent with observations on the behavior of intermittent
faults [2], [3], [8]. A discrete-parameter two-state Markov
model was introduced by Breuer [4] and a continuous-

- parameter two-state Markov model was presented by Su et

al. [5]. A similar continuous model was used in [1], [2], and
[11]. This model can be described by the state diagram in
Fig. 1 where FA is the Fault Active state in which the
intermittent fault is active and FN is the Fault Not Active
state in which the existing intermittent fault is inactive. The
arcs in the state diagram are marked with the transition rates
A and g which are assumed to be time independent.

Such a two-state Markov model is adequate for devising
testing procedures where the testing time is very short
compared to the lifetime of the system. However, when
evaluating the reliability, we have to distinguish between
defects introduced in the manufacturing process and defects
introduced only after a period of use in the field. Thus, a
slightly more general Markov model that contains three
states will be used, as depicted in Fig. 2. In this state diagram
the additional state NE is the fault Not Existing state in
which the corresponding component is defect-free and no
logical fault can be caused by it. The rate of fault occurrences
(transitions from the initial state (NE) to the FN state) is
denoted by v.

The Markov model shown in Fig. 2 can easily be reduced
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Fig. 1.

D

A two-state Markov model.

to the previous model in Fig. 1 by letting v approach oo.
Clearly, a permanent fault is also a special case of our model
for which u — 0 and 1 — oo {or v — o). Consequently, the
reliability expressions for these two special cases can be
derived from our final results.

II. RELIABILITY OF A MODULE WITH
INTERMITYENT FAULTS

A module is a digital system composed of several non-
redundant components (e.g., integrated circuit packages) C;
with reliability Ri(t); i = 1,2, - -, n where n is the number of
components in the module. Let f; be the fault that may occur
in component C; and let v, 4, and u, be the parameters
associated with f. The reliability of the component C,,
denoted by R,(t), is defined as the probability that this
component operates correctly during the time interval [0, ¢],
ie,

(.1)

The reliability of the module, denoted by R (t), is defined as
the probability that it operates correctly in [0, ¢]. It is usually
assumed that all » components must operate correctly in
order for the module to operate correctly and it is further
assumed that the occurrences of faults in different compon-
ents are statistically independent. Hence,

R(t) = Pr {the fault f; is inactive in [0, ¢]}.

Ru(t) = Pr {no fault is active in [0, t]} = _u_ Ri{t).
i=1 AwNv

The component reliability is given in the following lemma.
Lemma 3.1:

(3.3)

Proaf: Ri(t) = 1 — Pr { f; is active at least once in [0, ]}.
Let x denote the time instant at which the fault f;occurs (i.e.,
the transition from the NE state in Fig. 2 to the FN state
takes place), we have

Pr {f; is active at least once in [0, ]}

t
= .ﬁ Pr { f; is active at least once in
0

[x, t]/f; occurred at time x} - Pr {f; occurred at time x}

t
= ._. (1 — e M0y, g™ dx
0

A A T
- leie)

The lemma now follows. - Q.ED.
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Fig. 2. A three-state Markov model.

Substituting the result of Lemma 3.1 into (3.2) yields

If the fault f; is a permanent fault for which g; = 0 and
A; — oo we have R,(t} = e™**. Similarly, if all the faults are
permanent the reliability of the module is

Ru(t) = _H m_

Ruft) = [ Rit) = &1 (35)

According to this well-known expression the failure rate ofa
nonredundant module which is subject to permanent mal-
functions, is given by the sum of the permanent faults’ failure
rates. Such a simplification is not possible in the case of
intermittent faults and we still have to consider each inter-
mittent fault separately.

IV. RELIABILITY OF AN N-MODULAR
REDUNDANCY SYSTEM

The well-known triple modular redundant (TMR )system
with permanent faults has been thoroughly analyzed. The
classical equation for the reliability of a TMR system,
denoted by Ryyglt), is

Rymz(t) = Pr {no two modules are fauity in [0, ¢]}

= 3R%(r) — 2R{t) 4.1)
where a module is called faulty if at least one permanent fault
is present in it. A more general and less pessimistic reliability
expression for a TMR system has been developed by
Bouricius et al. [9] but still only permanent faults were
considered. To incorporate intermittent faults in the TMR
reliability model we have first to change the definition in
(4.1) because of the following reason. For permanent faults
in static redundancy systems where no repair or replacement
are taking place, a module that becomes faulty at time
instant ¢ will remain faulty thereafter. However, if the

.possible faults are intermittent, it may happen that a fault is

active at time instant ¢, causing the module to be faulty, and
inactive at a later time instant ¢, (t, > t,) allowing the
module to become fault-free. This is clearly true if the
module is combinational. In the case of a sequential module,
unless it is in the output logic, the intermittent fault may
place the sequential machine in an erroneous state [10].
Hence, the intermittent fault may have a permanent effect. It
has been shown by Wakerly [10] that the correct state of a
sequential module can be restored after an intermittent fault
occurrence if and only if the machine has a synchronizing
sequence. Thus, if the machine has no synchronizing
sequence, all the intermittent faults having a permanent
effect will be considered as permanent faults (i.., u; = 0). If
the machine possesses synchronizing sequences and these
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sequences occur frequently during the normal operation of
the module, the faults can still be considered as intermittent.

We define therefore the reliability of a TMR system with
intermittent faults in the following way:

Ryuz(t) = Pr {no two modules are faulty at the

same time in [0, ¢]} 4.2)
where a module is called faulty if at least one fault is active in
it. Note that we have to exclude intermittent faults with high
correlation among parallel modules (e.g., intermittent faults
caused by a design deficiency and which occur under rare
data conditions). For such fauits NMR configurations are
inefficient.

The conventional approach to derive an expression for
the reliability in {4.2) is to draw the complete state diagram
of the Markov model for the TMR system and then calculate
the system’s reliability from this multistate model. The
computaticnal complexity of this approach depends mainly
upon the number of states in the system’s diagram. Hence,
reliability analysis of systems with intermittent faults that do
not have the same parameters or faults with a more com-
plicated model is limited due to the vast increase in the
number of states in the system’s diagram. To overcome this
limitation we derive an expression for the reliability in a
different way which can be used for other models of intermit-
tent faults as well. First we define the following two probabi-
lities to be used later when calculating the reliability in (4.2),

(43)
(44)

Q,(t) = Pr {the fault f; is inactive at time ¢}
Qu(t) = Pr {the module is not faulty at time t}.

Since the faults are assumed to be independent we have the
relation

0ult)= IT 00 “5)

The probability Q(t) is given in the following lemma.
Lemma 4.1

Hi A —vit Vi
At) = |, S
o) m..+tm+u...+t_.|<..ﬁm At

e {4+ .._:.xv .
(4.6)

Proof: Let x be the time instant at which the fault f;
occurs (i.e., goes from NE to FN state), thus

t
Q1) H._. Pr {f, is inactive at time #/f; occurred at time x}
]

- Pr {f; occurred at time x}
+ Pr {f; is inactive at time t/f;

did not occur in [0, 7]}
- Pr {£; did not occur in [0, t]}
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= ._... — Hi + 4 ml.ﬁ..+=..xhlu_
o\r+3\r_+h.

e "y dx e

_ K + A o v Vi
T A+ Atm—v A+ p;

Nlt.?u%y.

Q.E.D.
Clearly, if the fault f; is a permanent fault we should obtain
- Q.Anu = w.Ahu = N.I.:u Ah..ﬂv

as can be verified from (4.6) when p;— 0 and 4;— oo. If al}
the possible faults in the module are permanent we have

Qult) = Rylt) = e Zi-1*2. (4.8)

The probabilities Q,(t) and @y (t)are useful when deriving
equations for the reliability of a TMR system. We first derive
an equation for the simple case where ali the intermittent
faults have the same parameters. Next, this equation is
extended to NMR systems and finally, we extend the result
to the general case where the faults have different
parameters. .

If all the faults have equal parameters, i€, vi=v; =
=V Ry y=d==040 and py=py ==
4, 2 pu, we obtain

Oult) = [QO)T"

A — v
Atu—v A+u

(49)

where

7
»+_=+

00 - eroen),
(4.10)

The reliability of the TMR system in this case is given in the
following theorem.

Theorem 4.1:
1 — Qult ty—e™
In Rrwg(t) = —6na b - NM,%NV. « _QS dt.
(4.11)
Proof: We define
Rrvg(t) = 1 — Roe(t)
= Pr {at least two modules are faulty
at the same time in [0, t]}. (4.12)

Let x denote the time instant at which two modules are
faulty simultaneously for the first time in [0, t], ie., one
module is already faulty at time x and another module
becomes faulty in [x, x + dx]. Let these two modules be
designated M, and M,, respectively, and since there are
(3) = 6 ways to select them we obtain

Rrwa(t) =6 | "Pr{AnBnC) (4.13)

where 4, B, and C are events defined as follows:
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A = M, is faulty at time x; " 1 L R
B = M, becomes faulty in [x, x + dx]; Pr{B/d n C} = kmuo Ak dx Qulx) \k ey
C = No two modules are faulty at the same time in [0, x].

Q) — e - (4.19)

To calculate the integral in (4.13) we use the relation .
After some combinatorial manipulations we obtain

Pr{d ~n Bn C}=Pr{B/A~ C}- Pr{d4/C}- Pr{C).

4.14 —e v
(4.14) Pr{BAncy=2 " (4.20)
The third term in (4.14) is simply Pr {C} = Ryyg(x) by the o(x) .
definition in (4.2). Since the underlying Markov process is N,y substitute (4.15) and (4.20) into (4.13) using relation
memoryless we may write for the second term in (4.14) (4.14) :
Pr {A4/C} = Pr {M, is faulty at time x/no two modules _ : 1— Oulx
. Rrue(t)=6 ._‘ Rrm(x} - 1= Oul)
are faulty at time x} 0 3 = 2Qu(x)
- Pr {only M, is faulty at time L Qx)—e™ ni dx. @4.21)
Pr {no two modules are faulty at time x] ‘ Q(x)
- [1 — Qulx)1Q3(x) : After differentiating Aa..m; dividing by Ryyg(t) and integrat-
Qic(x) + 3[1 — Qu(x)]Q%(x) ing again the theorem follows. QED.
1 — Qulx) ‘Corollary 4.1 - If all n faults are permanent, i.e., A — o and
=35 wlat (4.15) #—0, then (4.1} reduces to the known equation in (4.1).
= 20u(x) Proof: To calculate the limit of Ryyg(r) we use (4.7),
Similarly, the first term in {4.14) is (4.8) and the following equation
Pr {B/A n C} = Pr {M, becomes faulty in [x, x + dx]/M, lim  A(Q(t)—e )= ve ™. (4.22)

A0 =0
is not faulty at time x}.
Substituting in (4.11) yields
Applying the principle of total probability we obtain

Pr{B/d n C}= Y Pr{A fault in M, becomes active in [x, x + dx]/k inactive faults exist in M, at time x}
k=0

- Pr {k inactive faults exist in M, at time x{M is not faulty at time x}

Y Ak dx

k=0

* Pr {k inactive faults exist in M, at time x/M, is not faulty at time x}. (4.16)

To calculate the conditional probability in (4.16) we employ Bayes’ formula
Pr {k inactive faults exist in M, at time x/M, is not faulty at time x}

_ Pr {M, is not faulty at time x/k inactive faults exist in M 2 at time x}
B Pr {M, is not faulty at time x}

- Pr {k inactive faults exist in M, at time x}

px . AMV C_I e (e

= 4.17
where P-= Pr {the fault fis inactive at time x/the fault fexists im  In Ryyg(t) = —6n fl—et™ v dt
at time x}. Following the steps in the proof of Lemma 4.1 we Ao grd TMRES ™= 03— 2e ™
obtain | | = —2nvt + In (3 — 2¢7™),
_Qx)—e™ Hence,
pP= | N ! A#._.mv __ o 2nvt 3 _ - vt
Rrve(t)=e (3-2¢™)
Substituting (4.18) into (4.17) and then into (4.16) yields = 3R}(t) — 2R (1) QED.
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Equation (4.11) is extended now to NMR systems where
N =2m + 1, ie¢, the reliability Ryyg(t) is the probability
that at most m modules are faulty at the same time in [0, t].

Theorem 4.2:

N-1
In xzzﬂﬁnu" .IZ.A m v:m.

. b.. [l — Qul)]"
° ¥ (7)1 - outorigior

Q) —e™
0 dt.

Proof: The proof is similar to that of Theorem 4.1 and is
therefore omitted.

In the next theorem we generalize (4.23) to the case where
the n faults have different parameters. To specify the faults
present in a module at a given time instant t we define a
binary vector B(t) = [b,{t), b,(t}, ---, b,(t)] as follows:

(423)

bit) = “_ if the fault f; exists at timé ¢
7710 otherwise.

For convenience we will omit ¢ as an argument of the binary
vector B.

(4.24)

Theorem 4.3:
In Rpvr(t)= —N HZ__‘M !
) ﬁ [1- Qu()]"
0 - N}, -k
1 [} ) - outeriout
- P(t) dt (4.25)

where

"0 0 & |5

i=1

h.u.hwm : HQ._.AHV _ Nl:..-”_b..ﬁﬁle..num_.
i=1
{4.26)
and b;=1—b,.
Proof: Following the steps in the proof of Theorem 4.1
we obtain
N-1

- v | "Pr {B/A ~ C) Pr {4/C){Pr C}

(4.27)

Rt} = ¥

where A, B, and C are the events

A=M, M, -, M, are fauity at time x.
B =M, ., becomes faulty in [x, x + dx).
C = No (m + 1) modules are faulty at the same time

in [0, x].
The three terms in the integral (4.27) are Pr {C} = Rpyw(x),
Pr {4/C} = (1~ Qulx)]

5 (V)0 - euttioueor-
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and the first term Pr {B/4 ~ C} which can easily be shown
to be equal to P(x) dx where P(x) is defined in (4.26).
QED. .
Corollary 4.3: If all n faults are permanent, i.e., i, = oo
and y; — 0, then (4.25) reduces to the known equation for
NMR systems
Ruwglt) = X N

o \k [1— Radt)[Rult)]" %

{4.28)
Proaf: The proof is similar to that of Corollary 4.1 and
is therefore omitted.

V. EXAMPLES

In this section we calculate the reliability of an NMR
system in the following two examples:

1) A TMR system for which all ten possible faults in a
module are intermittent faults with the same parameters:
v=001,4i=1,and u=100.

2) A TMR system and a 5MR system for which six out of
the ten possible faults in a module are intermittent faults
with the same parameters as in (1); the other four are
permanent faults with v = 001, 1 = 100, and p = 0.

In these two examples we compare numerically the
reliability expression (4.25) for N-modular redundancy
systems with intermittent faults to the classical expression
(4.28) for the reliability of NMR systems with permanent
faults. To carry out such a comparison we associate with
every intermittent fault (with parameters v, 4;, and y;) an
“equivalent” permanent fault (with a failure rate «;) where
“equivalence” means that it takes the same average time for
both faults to become active for the first time and cause a
malfunction of the module. For a permanent fault this
average lifetime is 1/x;; for an intermittent fault f; the average
lifetime of the component ¢;, whose reliability is given in
(33), is

‘— R{t)dt = E

0 Vidi

(5.1)

Consequently,

= Vi A

In the examples we also compare the reliability of a module
with intermittent faults [given in (3.4)] to the reliability of a
module with permanent faults, i.e.,

Ry(t) = e Ti-1%, (5.3)

The results of examples 1) and 2) are plotted in Figs. 3and 4,
respectively. In these graphs the time has been normalized
and one time unit is equal to the average lifetime of a module
whose reliability is given in (5.3),

(54)

%s Rytyde =

[1=

&;

i=1
The results in Figs. 3 and 4 can be used to calculate the
mission time improvement factor MTIF [6], [9]. For exam-
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Fig. 4. The reliability of the NMR systems in example 2).

ple, in Fig. 3 the predicted mission time for R = 0.9, when
(4.28) is used, is 0.81 while the predicted mission time when
using the classical expression (4.25) is 0.22. Hence, for
R = 0.9 we obtain MTIF = 3.68. The improvement in mis-
sion time (which is clearly expected} depends upon the
parameters ¢ and A of the intermittent faults. The larger
the ratio y/i, the more intermittent are the faults and the
greater is the improvement’ in mission time. A similar
analysis of the results in Fig. 4 reveals that the presence of
four permanent faults reduces the improvement in mission
time. For the TMR system we obtain MTIF = 1.18 (for
R =09 as before) and for the SMR system we obtain
MTIF = 1.28. These improvements in mission time are
intuitively obvious since intermittent faults are active for
shorter periods of time compared to their “equivalent”
permanent faults. However, this is true only for static NMR
systems while for hybrid NMR systems the latency of the
intermittent faults can cause a smaller mission time [11].
Even for static redundancy the reliability curve of an NMR
system with intermittent faults may go below the reliability
curve of an NMR system with the “equivalent” permanent
faults as can be seen in Fig. 4. The crossover between the two

curves of Ryyg(t) occurs when R = 0.75. Similar crossovers
occur for Ryug(t)in Fig. 4 and Ryyg(r)in Fig. 3 but for lower
reliabilities and hence, are not shown. The reason for these
crossovers is believed to lie in the fact that the reliability R (t)
of a component with an intermittent fault [given by (3.3)]
gets, for very large t, lower than the reliability of the same
component with a permanent fault that has the same life
time.

V1. CoNncLUSIONS

N-modular redundancy systems with intermittent faults
have been studied in this paper. A new definition of the
reliability of such systems is presented and expressions for its
evaluation are developed. The method used to calculate the
system’s reliability is computationally simple and can be
employed for various models of intermittent faults. In this
study a continuous-parameter three-state Markov model is
used to characterize intermittent faults. Special cases of this
model are permanent faults and intermittent faults which
can be characterized by a two-state model.

Finally, the new reliability expression is compared to the
classical expression and it is shown that for static NMR
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systems there is an improvement in the predicted mission
time.
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