Proc. of the 1983 Conference on Parallel Processing.

A DIRECT MAPFING OF ALGORITHMS ONTU VLSI PROCESSING ARRAYS
BASED ON THE DATA FLOW APPROACH

Israel Koren

Computer Science Division
University of California
Berkeley, CA 54720
on leave from the
Dept. of Electrical Engineering
Technion - Haifa 32000, Israel

AUSTRACT

A new appreach to the utilization of YLSI processing
arreys by means of the slgorithms running on them is
presented. The idea is to represent algorithms as data
flow graphs, and then map these graphs onto the array.
This approach obviates the need to develop new con-
current algorithms to utilize the parallelism inherent in
the array, while offering a generat environment lor the
realizalion of algorithms on semi-custom VLSI.

1. INTRODUCTICN

The approach taken in this research to achieve paral-
lelis;n within a special purpose VLS chip, without develop-
ing new concurrent algorithms, is the data flow approach
[3-5]. In it, concurrency of activities is achieved at the
lowest possible level by treating each machine instruction
as an independent activity. This enables "fine grain paral-
telism” [3), not achievable when scheduling and synchron-
ization of concurrent activities are controlled by software.

However, we do not propose to use one of the known
general-purpose architectures of dala flow machines [3-
5]. Tnstead, we suggest to map the data flow graph which
describes the problem in hand, on a regular array imple-
mented in VLS. These regular arrays of identical cells
take considerably less time te design and manufacture
[1.2]. Also, the mapping should not be fixed bul change-
able, enabling the user tov map various data flow graphs
(algorithms} on the same chip. Regularity and Bexibility
are thus obtained, increasing the number of potential
applications for the chip and thereby malkding it more
appealing to the semiconductor industry.

In the following we consider the hexagonal array as a
basis for tllustrating our approach. This array has a flexi-
ble structure [1,8), simplifying the task of mepping. In
addition, fault-telerance may be introduced into it m.i
allowing it to recover from errors by reconfiguration. We
then propose an architecture for the processing element
(PE) which constitutes the basic cell in the array. Also
presented is an outline of the general graph-to-array
mapping process. .

2. PRELIMINARIES
In contrast to control flow computers, data flow com-

pulers have no program counter. In the latter, an instrue--

tion is ready for execution when all its operands have
arrived. Consequently, all such instructions may be exe-
cuted in parallel. Il the processing capabilities of the data
flow compuler are sufficient, the highest degree of paral-
lelism may be achieved.

The program is represented by a data Aow graph. The
vertices correspond to operators, and data tokens move
along the arcs. Parts of the graph may have to be exe-
cuted iteratively. This might cause tokens to accumulate
on cerlain arcs and result in the presence of tokens
belonging to diflerent iteration steps at the input arcs of
an operator. This problem may be solved by either label-
ing (coloring) the tokens [4]} or by preventing the accu-
mulation altogether [3]. The latter is achieved by prevent-
ing an operalor from preducing a new output token until
the previous one has been consumed [3,B]. This approach
atill enables pipelining through the data flow graph.

0190-3918/83/0000/0335%01.00 © 1983 IEEE

Gabriel M. Silberman

Dept. of Computer Science
Technion
Jarael Institute of Technology
Haifa 32000, Israel

Maximum pipelining is not however, always possible.
Bottlenecks may appear in paraltel segments of the graph
[8] (e.g.. paths of a conditional expression), thus severly
limiting the emount of concurrency. To eliminate these
bottlenecks an optimizalion technique has been sug-
gested in [B], inserting buffers (delay operators) in some
of the paraliel paths. However, these buffers may result in
either an increase in the overall delay through the pipe-
line or a reducticn in the throughput [8].

In the architecture suggested here dynamic length
FIFQ queues are employed. In this way, the level of con-
currency is increased without the penalty of an increase
in the overall delay. The labeling scheme as presented in
[4] might be inappropriate for our purposes due to the
addilional hardware complexity.

9. PE ARCHITECTURE AND PRINCIPLES OF OPERATION

The basic PE, shown in Figure 1, is connected to its
8ix immediate neighbors by dedicated busses, in an hex-
sgonal processor array. The PE contains six registers

Iy 2y, . 5 which are connected to the six cormmun-
ication busses. Bach of these registers can either receive
or transmit tokens and will accordingly be defined either
as a primary input register or a primary output register.

Each basic PE contains in addition, an arithmetic and
logic unit {ALU) and a Pseuds Associative Memory unit
{PAM}. Each location within the PAM contains a key and a
data elernent, The PAM has therefore, two inpul registers
k; {key-in) and d; (data-in}, and two output registers k,
and d, (Figure 1).

The ALU is capable of performing the besic arith-
metic and logic operations, Its inputs may be connected
to any primary input register, or to the PAM date-out
register d,. The ALU result is routed to either a primary
output register or the PAM data-in register d;.

The overall function of the PE is specified by the
designation of each of the z, registers as primary input or
output register, by the internal connections of these
registers to the ALU and the PAM unit registers, and by
the operation performed by the ALU. Thus, the operation
of a PE may be defined by a set of statements like

;1= x, +x, zi=dy
Zgi= X, Ty:= Tg

The PAM unit has two medes of operation, Firsi-in
First-out (FIFO) mode and Associafive mode. In the FIFO
mode the PAM unit serves as an input or output bufler for
token accumulation. In the associative mode the PAM
serves as a queue in which a key is attached to each data
element. This mode of operation is useful when imple-
menting recursion and in it data elements are accessed
by using keys instead of addresses. However, a fully asso-
ciative memory is not necessary. Instead, a sequential
access memory unit with added logic can be employed,
using shift registers, CCD's, or magnetic bubbles.

In the FIFO mode of operation the PAM unit may
gerve as a gqueue for accumulating either incoming or out-
going tokens. The purpose of this FIFD queue is to dynami-
cally equalize the length of parallel paths in the graph in
order to achieve maximum pipelining. The fixed capacity

PE :

of the PAM might limit the maximum length of the FIFO
queue. However, the PAM units in two or more neighboring
PEs may be chained and used for accumulating tokens
from a single source.

For the sake of brevity, the exact principles of opera-
tion of the proposed PAM unit are not deteiled here.

4. TMPLEMENTING BASIC DATA-FLOW STRUCTURES

This section shows how to use an array of PEs in the
implementation of data-flow structures. We begin by exa-
mining the basic data-flow elements, which can be
directly mapped onto a single PE. These are the Arith-
matic and Logical Operators (like addition, negation, And,
complement, etc), and the Conditional Operalors {like
arithmetic comparisons, test for zero, etc). Also reguir-
ing only a single PE are the Flow Control Operators. They
do not affect the contents of the token, but rather its pro-
gress and/or destination.

The simplest such operator is Copy (denoted by). It
makes two identical copies of its input token.

Merge (M) operator is used when a data token may come
from two different sources {paths), and it is to be merged
into a single path for further processing. This operator is
also capable of producing a Boolean token whose value
depends on the input path which supplied the token for
the cutput.

The Router (R} operator receives two inputs, e data token
and a logical value, The data token is copied into exactly
one of two output registers, depending on the value of the
logical input. This is analogous to "distribute” in [9].

The Gate (G} operalor transfers the incoming token to an
output register if a second token is present at another
input register. The G and M operators may be used to
implemnent the "Select” operation [s}

Self-fterating Operator L) is used in those caszes where
the result produced by the PE is immediately used as
argument to the next operation. This saves the need to
create “external” loop structures (e.g., [10]).

Figure 2 depicts a data flow graph which calculates
the factorial function, using C, M, R and L operators.
Notice Lhe labeling of the outputs of the R operator by T
and F. This is used to specify which cutput path
corresponds to each logical value. The [operator
receives Lwo inputs, one being the initial value for the
iteration (in this case n), and the other a Boolean value
which determines, for each iteration, whether to load &
new initial value, or use the one from the latest iteration.

Having defined the basic date-flow elements, we now
show how these may be combined to yield the basic data-
flow strucfures,

4.1, Conditional (if-then-else) - This construct, has the
general format:

if <condition>
engdif

and is evaluated es <expressionl> o7 <expressiong>,
depending on the logical value of <condition>. The above
staternent may be implemented in general as shown in
Figure 3.

Notice that when a certain branch of the conditional
is teken, the tokens corresponding to the other branch
are not produced at all. This is achieved by using an R
operator with only one output; this way tokens
corresponding to different computations are not mixed.

We also deal here with the problem of keeping in
correct sequence the resuits being produced by a condi-
tional construct. The ordering is achieved by using an
extra R and two Gs as shown in Figure 3. The initial token
present at the R input is routed to the G in the appropri-
ate branch of the conditional, thus allowing only its result
to fiow through. When a result arrives at the M, a token

thepn <expressionl>
else <expression2>,

336

(its value is immaterial) is recirculated te the R to enable

further output tokens.

Note that conditional constructs may result in token
aceurnulation, because of different path lengths between
{he two branches. Here we can benefit from the PE's
capability of dynamically adjusting to token traffic, by
using the FIFO mode of the PAM,

4.2 Iterative (DoWhile, Repeat-Until) - lterative data-
flow constructs make use of conditionals much in the
same way traditional programming languages do. In gen-
eral, we have the two iterative constructs, do-while and
repeaf-until, depending on whether the test for loop
repetition is ptaced before or after the loop body, respec-
tively. Figure 4 shows how 2 repeat-until loop is used to
epproximeate the square root of a {positive) value c, using
Newton's iterative method.

4.8. Recurgion - This construct is by far the most
involved in the data-flow context. Actually, most current
date-fiow architectures do not handle recursion al ail.
However, recursion is generally recognized as a good pro-
gramming technigue. When used, it leads in many cases to
simpler end shorter algorithms which are easier to under-
stand and to prove correct.

For the sake of brevity we do not present here the
way recursion is implemented, we would like however to
indicate that any possible implementation of the recur-
sion construct will be substantially more complex than all
previous ones. The benefits of its use should therefore, be
carefully examined before incorporating it.

5. DATA FLOW GRAPH MAPPING ALGORITHM

In the following, we show a simple (by no means
optimal} scheme for mapping complete data flow graphs
onto an hexagonalily connected PE array. The mapping
algorithm presented is executed externally by some host,
and the results are then fed into the array for distribu-
tion. The graph mapping process is clearly dependent on
the array topology. Therefore, different such topologies
result in different mapping algorithms. Nevertheless, they
all must tackle the same problem, namely, the non-
planarity of the graph, arising from both ordering of
operands and iterative constructs (loops).

¥We begin by assignin levels to the vertices {opera-
tors). where an operator mapped on & PE) is at level © if
all its operands come [rom operators at level i—1 or
above. Clearly, our objective is Lo find minimal levels for
all operators. In the case of loops, we do not consider the
target of the loop to be a descendant of the source.

A second pass is now made to insure that no two
operators which are either a loop source or target, are ab
the same level. If this is the case, the level is split until
the condition no longer exists. The reason for this is to
enable the use of the horizontal busses between PEs for
connhecting the source to the target.

In the next step of the mapping we connect the
operefors in the various levels, The putputs of levet 1 have
to be ordered so as to fit the inputs to level i+1.

After ordering the operands, {possibly by introdueing
extra levels which exchange operands), we connect the
loop source with its target by using the horizontal connec-
tions between PEs. We first route the operand from the
source to the boundary of the current graph. Then, we
route it to the level of the loop target. Finally, we use
egain the horizontal connections to reenter the graph up
to the target operator.

An example of the mapping of the factorial function
from Figure 3 is shown in Figure E(a). After the mapping
process, has been completed, reduction techniques may
be applied to reduce the size of the final mapping. For
example, two levels mey be collapsed into one, Laking
advantage of unused horizontal connections. Such a

reduction procedure, when applied to the example in Fig-
ure 5(a), results in the mapping shown in Figure 5(b).

The mapping algorithm described above is by no
means optimal and the only purpose it serves is to show
the feasibility of mapping arbitrary data flow graphs onto
hexagonal arrays. More efficient mapping algorithms for
hexagonal arrays as well as for other array topologies are
clearly needed.

Onee the mapping algorithm is completed, we have to
convey its results toward every relevant PE in the array.
A simple way of doing this is to input a "configuration
string”’, each component of which is addressed to a
specific PE, and contains the setup information for it
Another possibility that is being investigated, is to exe-
cute the mapping algorithm within the array itself in a
distributive fashion.. This may enable a dynamic mapping.
aliowing PEs which have completed their current process-
ing task, go into a configuring phase, change their func-
tion end execute another part of the data flow graph.
Such m dynamic mechanism may allow the mapping of
larger data flow graphs on a given VLEI chip. It will also
tacilitate the handling of faulty PEs and/or connections.

8. CONCLUSIONS

The idea of directly mepping an arbitrary slgorithm
en 8 VLSI array has been shown {o be feasible. However,
furlher research has to be carried out before the
eflectiveness and practicality of this approach are esta-
blished.

Clearly, not all aigorithms thal can be mapped on a
array will use it effectively. Some algorithms may require
a too large chip area, other may not execute fast enough.
Consequently, methods have to be developed for estimat-
ing the chip area that will be used by a given algorithm,
and its execution time.

<cond»

REFERENCES
[1] C.Mead and L.Conway, fntroduction to VLSI Systems,
Addison-Wesley, Reading, MA, 1980.

[2] M.J.Foster and H.T.Kung, "Design of Special-Purpose
VLS! Chips: Examples and Opinions,” Proc. of the 7th
Symp. on Comp. Arch., April 1980, pp.300-307.

[3] 1.B.Dennis,"Data Flow Supercomputers,”" Computer
Vol.13, Nov.1880, pp.48-58.

[4] 1Watson and I.R.Gurd,"A Practical Data Flow Com-
puter,”" Computer, Vol.15, Feb.1962, pp.51-57.

[5] A.lDavis,"The Architecture and Systern Methodology
of DDM1," Proc. 5th Symp, Comp. Arch., April 1878,
pp.210-215.

[8] D.Gordon, l.Koren, and G.M.Silberman,"Embedding
Tree Structures in Fault-Tolerant VLS] Hexagonal
Arrays,” submitted for publication.

[7] 1.Koren''A Reconfigurable and Fault-tolerant VLSI
Multiprocessor Array,” froc. of the 8h Symp. on
Cornp. Arch., May 1981, pp-300-307.

{8} J.D.Brock and 1.B.Montz,"Translation and Optimiza-
tion of Data Flow Programs,” Proc. of the 1878 i1
Conf. on Parallel Processing, Aug.1979, pp-46-54,

[8] Al.Davis and R.M Keller,"Data Flow Frogram Graphs”
Computer, Yol. 15, Feb.1982, pp.26-41.

[10] Arvind and K.P.Gostelow,"The U-lnterpreter” Cbm-
puler, Yol.15, Feb.1982, pp.42-49.

K exp >

Fig. 1: The basic processing element.

Fig. 2: The dala fiow graph for the
factorial function. tion.

Fig. 3: Conditional construct.

Fig. 5: Initial and reduced mappings of the factorial fune-

1
repeal I, = M_._ X, + £
n
M
until |&n 4y = Zn} < 6

Fig. 4 The Newton method.

