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A New Approach to the Evaluation of the
Reliability of Digital Systems

ISRAEL KOREN anD EITAN SADEH

Abstracr—Signal reliability, as a measure of digital systems’
reliability, has not been used until recently due to lack of efficient
evaluation methods. A new approach to the evaluation of signal
reliability is presented in this work. A reliability transfer function of
digital systems is defined and a method for its evaluation is pre-
sented. This approach provides a new insight info the problem of
digital system reliability. Furthermore, it simplifies signal reliabilicy
calculations and can easily be mechanized.

Index Terms—Functional reliability, multiple faults, reliability
transfer matrix, star product, signal reliability.

[. INTRODUCTION

Two reliability measures can be employed when the reliability
of a digital system is evaluated, namely, functional reliability and
signal reliability [1]-{6]. The first one is undoubtedly simpler to
apply and requires a smaller amount of computation however, it
is known to be exceedingly pessimistic [1]-{6]. The more accurate
signal reliability measure has not been used until recently, due to
lack of efficient evaluation methods. Algorithms for the evaluation
of signal reliabilities have been introduced lately by Ogus [2] and
Koren [4], [6]. However, both metheds require complex symbolic
manipulations resulting from the existence of statistical depen-
dence among the various signals in a digital system [2]-[4], [6].

In this work we present a new approach to the evaluation of
signal reliabilities in which statistical dependence between signals
is handled in a natural way and symbol manipulations are
avoided. We introduce the concept of reliability transfer function,
enabling us o intorporate any fault model into our analysis and
to consider large subsystems (e.g., IC modules) rather than single
gates as basic elements. Consequently, for a large class of digital
systems this new approach reduces considerably the amount of
computation involved in evaluating signal reliabilities.

[I. PRELIMINARIES

To evaluate the reliability of a digital system we need to have
some knowledge on the nature of the possible faults and their
probabilities of cccurrence. We assume that the possible faults are
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multiple lead failures {not necessarily permanent stuck-at faults)
and we denote by s the probability of a single lead failure. Since
the faults on different lines in the system are not necessarily equi-
probable we denote by s, the probability of a fauit on line X. The
probability s is in general time-dependent and the most
commonly used fault probability function is s(t) = 1 — ¢ % where
A is the failure rate. Consequently, the signal reliability of the
system, denoted by SR(t), is time-dependent and is defined as
follows:

SR(t) = Prithe output signal is correct at time t}.

In some applications of reliability analysis {e.g., prediction of mis-
sion time) the accumulative signal reliability in the time interval
[0, £] rather than at instant t. is needed. This accumulative signal
reliability, denoted by R (t), is defined as follows:

R.(t)
= Prithe output signals are correct in the lime interval [0, (]},

These two signal reliabilities have been analyzed and compared to
the corresponding functional reliabilities [6]. Here we restrict our-
selves to evaluation of the non-accumtulative signal reliability and,
for convenience, we call it signat reliability. Several applications of
the signal reliability were mentioned in [2]-[4], [6].[7]. One of the
important applications of signal reliability is comparison between
different realizations of a logical system. Employing the functionai
reliability measure results in a less accurate reliability comparison
of different designs. When the functional reliability is evaluated,
the reliability of the basic element is raised to the number of these
elements in the system, e.g., [5]. [8]- Although reliability is a func-
tion of the complexity of the system, the complexity may not be
treated as a simple function of the number of basic elements [8].
Contrary to the functiona!l reliability measure, the signal reliabi-
lity depends upon the exact structure of the system, the nature of
the possible failures and their probabilities, thus yielding a more
accurate reliability comparison of different designs.

In the next section we present a procedure for the evaluation of
the signal reliability of combinational systems. For convenience,
we omit ¢ as an argument of the reliability and failure probability
functions and these functions are understood to be
time-dependent.

111. THE RELIABILITY TRANSFER MATRIX

The presence of faults in a system may cause incorrect logic
signals on some lines. Consequently, the signal on cach line X
may assume one of four values, namely, correct 0, correct 1, incor-
rect 0 and incorrect i. These values will be designated by G, 1, 2
and 3, respectively. Thus, the signal X is a random four-valued
variable and the probabilities of its four possible values are

Pr{X =0} = Pr{X is correctly a 0} £ Ry(X)
Pr{X = 1} = Pr{X is correctly a 1} £ R,(X)
PriX = 2} = Pr{X is incorrectly a 0} £ R,(X)
Pr{X = 3} = Pr| X is incorrectly a 1} £ Ry(X).

Clearly, Ro(X) + R, (X) + R2(X) + Ry(X) = L.
The signal reliability of line X, denoted SR(X), is the probabi-
lity that the signal on line X is correct, hence,

SR(X) = Re(X) + R,(X).

0018-9340/80/0300-0261800.75 © 1980 IEEE



262

The signal reliability of a system, whose output is Y, is SR(Y). This
reliability is calculated from the input lines’ reliabilities Ry, Ry,
Rz, and R; using the reliability model devised in [4). In this
model, the occurrence of faults is introduced through special ele-
ments called fault occurrénce networks (FON's). Such an element
is inserted into each line of the system. Faults may occur in these
elements only, and the rest of the system is considered fault-free.
Thus, an FON element can be viewed as a set of conditional
probabilities Pt{Y = j | X = i};i,j € {0, 1, 2, 3} which is the prob-
ability that, given the input X to the FON is i, the output Y is j.
For a given system M we calculate a reliability transfer function
in a form of a matrix relating the output signal reliability to the
input signal reliabilities. Let X,, X,, - X - and Y be the n
indcpendent input variables and the output line of system M,
respectively. We define the reliability vector R(X) of line X as
R(X) = (Ro(X), Ri(X), Rz(X), Ry(X)). The reliability transfer
function of the system M thus relates the output reliability vector
R(Y) to the input reliability vectors R(X ), ---, R{X,). This func-
tion is derived in the following way. Let X denote the input vector
Xy Xz, -, Xy and i= (i), iy, -+, i,) denote a specific four-
valued vector assumed by X. Each element of R(¥) can be ex-
pressed as follows:
R(Y)=Pr{Y=j} = )

all four-valued
vectors i

Pr{¥=j|X =i -PrfX =i,

j=01,23
The sum is over all 4* four-valued vectors of length n; i = (i,
iz, 6 k=10, 1, 2, 3. To simplify notation, i will be used to

denote a four-valued vector and its decimal value interchange-
ably. Hence,

R(Y) = § Pefy—j|X=i

PriX =i, Xy =14y, - s K= In} (3.1)
Since the input variabies are independent,
mum.mk__" muu NN = M.Nu T, ka" hxw
= II PrfXi=i}= _.:_ Ri(X.)- (3.2}
k=1 =

To simplify notation, let this product term be denoted by V{X),
and let t; denote the conditional probability Pr{¥ = j| X = 3.

Using this notation, we obtain from (3.1) and (3.2)

n—1 _ ;

RiY)= z t VX)L (3.3)

The probabilities ¢,;; i=0, 1,---,4" —1; j=0, 1, 2, 3 form a
stochastic matrix T = {¢;} of order 4" x 4. The product terms
ViX);i=10,1,--, 4" — | form a vector V(X) of length 4" Thus,
(3.3) takes on the following matrix form

(34)

T is called the reliability transfer matrix, abbreviated RTM. The
size 4"* ! of the RTM increases rapidly with n. In Section V we
show that only a reduced matrix of size . /4" L is actually needed.

An RTM can also be defined for multiple-output systems. Let
Y=Y, ¥, -, ¥, be the output vector of a system. Let W(F)
denote the probability that ¥ equals j, ie.,

W(Y)=Pri¥=j; j=01-,4"—1.
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These elements form a vector W(¥), and are calculated as follows
dn—1
WiF)= Y Pif=j|8=i Pr{X =14,
=0

The conditional probability Pr{¥ = j| X = } is the element Ly
of the RTM of the multiple-output system, ie., T = {t:}; i=0,
L4 —1;j=01,--,4" -1, Therefore,

an—1

WiT)= % P =i 1= 5 V(X)-4,.

Hence,
W) =¥vX) T (3.5)

To reduce the complexity of the evaluation of the RTM, the
given system is decomposed into subsystems and an appropriate
RTM is calculated for each subsystem. The RTM of the overall
system is then calculated using the RTM's of the subsystems. The
smallest subsystems considered are the basic elements of
the model, In the following we derive the RTM’s of these basic
elements.

FON: Let X, Y be the input and output lines of an FON,
respectively. The elements of the RTM Troy depend upon the
types of faults assumed to occur at line X. If the possible fauits are
stuck-at-zero (s-a-0} and stuck-at-one (s-a-1) with probabilities
qo, and g, respectively, satisfying s, = go_ + g, then the ele-
ments of the RTM are

too=Pe{Y =0|X =0}
= Pr{Y is correctly a 0/X is correctly a 0}
= Pr{No s-a-1 fault occurred} = 1 — g,
tog =Pr{Y=1|X =0}
= Pr{Y is correctly a 1/X is correctly a 0} = 0.
In a similar manner, ¢y, = 0.
tos =Pr{Y=3|X =0}
= Pr{Y is incorrectly a 1/X is correctly a 0}
= Pr{A s-a-1 fault occurred} = q,,.

Similarly, all other elements of Tiqy are calculated, yielding

1—gq,, 0 0 a1,
0 P—qo, 4o, 0
Tron = 0 a. 1l q,. 0 (3.6
qo, 0 0 1~ o,

If the possible fault is an “inverted signal” fault (ie., ¥ = X’) with
probability s, , the resulting RTM is

1 —s, S, 1] 0
Sy l—s, 0 0
Teon=} ¢ 0 l1-s. s,

0 0 Sx 1 —s,
In both cases the lead failures are not necessarily permanent. If the
fault at line X is permanent then s.(t) = 1 — exp(—A,t). If it is
intermittent then s,(t) is the probability that the intermittent fault
is inthe active state at time ¢. The exact expression for s,(r) depends
upon the model selected for the intermittent fault, e.g., [9], [10].
For the various leads in the system different faults may be
assumed. Some of the leads may be fault-free (i, s, = 0) yielding
Teon= 1.
NOT Gate: Let X, Y be the input lines of a fault-free NoT gate.
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Then
too = Pr{Y = 0] X = 0}
= Pr{Y is correctly a 0/X is correctly a 0} =0
Pr{Y =1[X = 0}

]

to1

Pr{Y is correctly a 1/X is correctly a 0} = 1
top =Pr{Y=2|X =0}

= Pr{Y is incorrectly a 0/X is correctly a 0} = 0
PriY=3|X =10}

Los

]

Pr{Y is incorrectly a 1/X is correctly a 0} = 0.

Besides ¢g,, the other nonzero elements of Tygr are fyp = £33 =
t3; = 1. Thus

Thor =

oo - O
fe= o=l ==
_——_— o D
o= oo

Basic Gates: Let X = X,, X,, -+, X, be the independent input
lines of a gate whose output line is Y. Each of the commonly used
gates (AND, OR, NAND, NOR) can be uniquely described by a binary
vector (¢, o2, **", &,, §), where &, az, -+, a, is the only input
combination for which the output ¥ equals g, e.g., a three-input
NAND gate is described by the vector (1, 1, 1, 0). Using this describ-
ing vector the equations relating the output reliability vector to
the input reliability vectors are [4] as follows:

RAY) = [] RalX) (3.)

Rpsa(1) =TT [Roes(X0) + Ru(Xa)] - R(Y)  (38)

Rs-f¥) = [1 [Ra-alXa) + RulXi)] - RAY)  (39)

Ry p(Y) =1~ [Ry(Y) + RpsaY) + Rs_Y)]. (3.10}

By comparing these equations to (3.3} the elements of the
matrix T are derived. From (3.7) and (3.3) we have

4a— |

Ry¥)= [T RofX) = Voo naX)= T VAR ¢

Consequently,
1 mmm"ﬁﬂ—uﬁmu-..uﬂav
= . A1
Lig 0 otherwise (3.11)
From (3.8) and (3.3} we have
1 if i = {iy, iz, ", i,) and i € (e, o + 2);
troge2 = k=12, nand Im{i, = a, + 2) (3.12)
0 otherwise.
In a similar way
1 ifi= (i, iy, ", i) and i € {x, 3 — x);
n-..ulm" M"Hu Mu...uﬂ_m.m.—a w:Au.’H.w!Qa.u Am.ﬁwv
0 otherwise.
Finally,
——_..hl.w" 1 |ﬁhm.u+hm.h+w+r.u\uu. Awuhv
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Fig. . A system constructed of three subsystems.

IV. CALCULATIONS OF RELIABILITY TRANSFER MATRICES

The RTM of a given system is calculated from the RTM’s of its
components which are either basic elements or subsystems whose
RTM’s are known. The operation used in the construction of the
system’s RTM is called the star product and is defined below.

Let A", 4'Y be the RTM’s of the two subsystems M, M, in
Fig. 1, respectively. Let X = (0, Uz, Ua) be the input vector to
the system M, where {7, U, are the subsets of input lines feeding
solely M|, M, respectively, and {7 ; is the subset of input lines in
common to M, and M, . Let n; be the cardinality of the subset [,
ie., m; = |U;], then

n=|X|=n; +n;+n;.
Consequently, the dimensions of the matrices 47 A®' are
(4™ x 4), (47" x 4), respectively.

Definition 4.1: The star product of the matrices 4'*' = {a{}"} and
AP = {aP) is a matrix = AN A of dimensions 4" x 42
whose elements are

o= an)yafll (4.1)
where
i
iy = |——| + i mod (4");

A:nar:u .\_ = —”.s.\..h“—
([X] is the integer part of X.)
i»=imod (42"}  j; = mod (4)

In the special case where n;y = 0, i.e., the subsets of input lines to
M, and M, are disjoint, we have

n=mn, +n,
iy = [if4"]; iy = i mod {4*); j, and j, remain unchanged.

The star product, in this case, reduces to the Kronecker product
[11], yielding

aiA® AP A g AR g
(1 12) -
dyg A
AVE A2 = :W.
(1) 23 - (1} 2)
la— 1,04 Aoy - 1.3 A

The definition of the star product can be generalized to
multiple-output RTM’s in the following manner. Let W = Y,,,
Y2, Yim; V= Y5y, Yaa, o=, Ya, be the output vectors of M,
and M, respectively. The input vectors to these subsystems are
(U1, Us}and ({7, O3). The dimensions of the matrices A" and
A are now (47177 x 4™} and (47177 x 47), respectively.
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The star product C = A"} & A is a matrix of dimensions
4" x 4™*r whose elements are

= i1} (2}
Cii = 8y i1y, s

where i; and i, are the same as in Eq. (4.1) and
Jr=[i4); j2 = j mod (#). (42)
The star product is used next to calculate T, the RTM of the
system M in Fig. 1. Let B®) = {6{¥} denote the RTM of the two-
output system consisting of M, and M, and A denote the RTM

of M. The matrices B and T are derived in the following
lemma,

Lemma 4.1:
B® = 41 ® A
T= B2 . 40~ Tﬁ: ® hﬁJ.&ou.

Proof: B = P{¥ =j| X =i} =Pr{Y, =, , =/, | X =i}
where j, = [j/4] and j, = j mod (4). This conditional probability
can be written as follows:

P =PV, =), |Va=j, X =10} PriY =4, [ X =i
Since the value of ¥, is determined by the value of X , the condi-
tion ¥; = j; in the first term is redundant. Therefore,

WP =Pr{Y,=jy[X=i} Pe(Y,=j, | X =1i}.

Y, depends on the values of the input lines (U, U3)to M, and ¥,
depends on the values of the input lines (U,, U,) to M. Hence,
b =PriY, = ) |[(0,,  O3)=i}- P{Y: = o|(Us, Uy)=1ip}
where iy and i, are computed in the following way. The decimal
value of the four-valued vector X = (U,, U,, ;) is i, thus the
decimal value of (U, U;) is given by

iy = [i/4*™] + i mod (4™).

Similarly, {; is the decimal value of (U,, U,), ie,

i; = i mod {4™*"). Consequently,

2y __ 1 12}
vmm- - nm......_ D..u.._ﬁu.

Therefore, by Definition 4.1, B*' = 4 @ A, To prove the
second part of the lemma, note that,

41-1

Mo PlZ=j|V =k X=i}-P{T=k[X =14

The value of Z depends on the values of the Y inputs only, there-
fore, the condition X = i in the first term is redundant:

15
k=D

15
S b,
k=0

Hence, T = BY - 4'®, QED.
To generalize the results of Lemma 4.1 for the case where |
subsystems M, M;, ---, M, feed the subsystem M, consider the
system depicted in Fig. 2. Let 4@, 41 ... 4 denote the RTM’s
of the subsystems My, M, .-, M,, respectively. Let B® denote
the RTM of the k-output system consisting of My, M., ---, M, as
shown in Fig. 3. This RTM is derived recursively using the follow-
ing lemma.
Lemma 42: BY =BV ® 4%- k=23 - L
Proof: The lemma holds for k = 2 as proved in Lemma 4.1.
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Fig. 2. A system constructed of [ + | subsystems.

[=]}

=i
[=1]

f=]]

Fig. 3. A multiple ouiput system constructed of k subsystems.

Assuming that it is true for k — 1, we show that it is true for &
b = Pr{(y, Y3, -, i) =j|X =1}
=Pr{(Y), Yo, -, Yoy} =j, =ja [ X =4}
where j, = [j/4] and j; = j mod (4).
Following the steps in the proof of Lemma 4.1, we obtain

b = b ot

where i} and i; are the same as in {4.1). Hence,
B® = B*1 @) AW,

The RTM of the entire system in Fig. 2 is calculated in the

following theorem.
Theorem 4.1: T = B - 4

Q.ED.

Proof:
L= .m_.wN";___M”L
4—1 _ _ _ _
=Y PlZ=jl¥=m X=i-Pri¥=m|X =14
m=0
-1 o _
= Mo PriZ=j|F=m -Pri¥f=m|X =1
H-1 41~
= ¥ A b= T 4R
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Fig. 5. Steps in the evaluation of the RTM.

Therefore,
T = BYAY, Q.ED.

Corollary 4.1: BY = (- (AN & A @ 4 @ ) @ AW

Corollary 4.2 The star product is associative.

Proof: The proof is omitted for the sake of brevity.

Corollary 4.3: T={A" @ AP (© - & AMAD,

The system in Fig. 2 for which Corollary 4.3 applies, has an
internal fan-out-free (IFF) structure, i.e., only the input lines may
fanout; the internal tines do net. In order to apply Corollary 4.3 to
an arbitrary system, it must be partitioned into subsystems so that
the resultant structure is an IFF one. This partitioning is applied
recursively until a level is reached where the RTM’s of the sub-
systems are known. In this process, each internal fan-out line even-
tually becomes an input line to some subsystem. This partitioning
process, illustrated in the following example, can easily be
mechanized.

Example: The RTM of the system in Fig. 4 is calculated as
follows.

Step 1: The system is partitioned into two identical subsystems
having the same RTM as shown in Fig. 5(a).

Step 2: To calculate the RTM of the XOR, it is further parti-
tioned into subsystems M, and M, as shown in Fig. 5(b) so that
fan-out line 3 becomes an input line to M;.

Step 3: M, consists of two FON’s and an NAND gate, as shown

in Fig. 5(c). According to Corollary 4.3, the RTM of M, is given
by

T, = :,_noz_ @ ﬂazwuﬂz>zu.

In a similar manner, T; the RTM of M, , can be derived.
Step 4: To calculate the RTM of the xor subsystem, consider
Fig. 5(d). Thus,

q‘KDz“Ah @ \Hnﬁ @ MW.HW.

Step 3: Finally, the RTM T of the original system in Fig. 5(a) is
given by

Hw = : @ ﬂxcnvﬁ.on.

The method of calculating the RTM of a system using the
RTM’s of its subsystems is especially attractive in the following
cases:

@) The system consists of standard LSI modules. Here, the
RTM of a standard module used more than once throughout the
system, has to be calculated just once.

b) The system consists of several identical subsystems, e.g.,
cellular arrays and NMR systems.

The second case is illustrated in the following example.

Example: Consider the TMR configuration of a full-adder
shown in Fig. 6. The RTM of the TMR system Ty is calculated
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Fig. 6. A TMR configuration of a full adder.

using the RTM of a full-adder Ty, and the RTM of the Majority
Voter T, as follows

Tome = (Tpa @ Tra @ Tra) Ty (4.3)

The extension of this equation to NMR ‘systems is straightfor-
ward. For the TMR system (4.3) was used to calculate the im-
provement in the output signal reliability due to the TMR
configuration. In this example we assume that the possible faults
in the FA modules and the Voter are permanent stuck-at faults
and that they are equally likely, ie., go = g, = dsg, Tor all lines in
the FA and g, = ¢, = 4sy for all lines in the Voter. We also
assume that the input signals are either correct 0 or correct 1 with
the samec probability, ie, Ry(X,)= Ri{X)=1% RuX)=
Ry(X;)=0;i=1,2, 3. The signal reliability of the sum output,
SR(suM), was computed using an APL program and compared to
the reliability SR(4). The improvement in the reliability depends
upon the probability of a fauit in the Voter. Hence, SR(SUM) was
calculated first for sy = 5, and then for sy, = 0. The results are
plotted in Fig. 7 as a function of the lead fault probability in the
FA, sg,. The curve for 5y = 0 indicates the upper limit on the
output signal reliability. To clarify the results, the percentage of
improvement in reliability due to the TMR configuration is
plotted in Fig. 8. The curve for sy = s¢, implies that the TMR
configuration increases the reliability only for sy, < 0.093 {or
equivalently, for ¢t < (1/1) 0.0976 where 1/4 is the mean lifetime)
and the maximal improvement in reliability is 4.4 percent. If
sy =0 the TMR configuration always improves the reliability
with maximal improvement of 12.1 percent.

V. REDUCING THE SIZE OF THE RTM

The amount of computation and the size of computer memory
needed when employing the previous method depend mainly
upon the size of the RTM's of the standard moduies. In the foliow-
ing we show that the size of the RTM can be considerably reduced
and instead of 4"*! entries only , /4" 7T = 2"+ ¢niries are needed,
Specificaily, the number of columns can be reduced from 4 to 2
and the number of rows from 4" to 2". Let 7% denote the reduced
maltrix corresponding to an RTM T. In 7 we include only the
first two columns of T and only the binary-indexed rows of T
where the ith row of T is a binary-indexed row if the four-valued
vector i = (iy, f5, -*-, iy) s a binary vector, ie., f, € {0, 1} fork = 1,
2, -, n

We first justify the reduction of columns. In any row i of T'

exactly one out of the first two entries ¢; ; and ¢; ; equals 0 and
exactly one out of the last two entries ¢, , and ¢, 5 equals 0. The
reason is that the output of a module for a given input combina-
tion can be either 0 or 1 but not both. It is 0, then the actual
output is either a correct 0 or an incorrect 1. Consequently, ¢; ,
and t; 3 are the only nonzero entries. Similarly, if the correct
output is one then ¢; ;. and t; ; are the only nonzero entries. Since
the sum of all four entries must equal one we have the following
relations
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Fig. 7. The sigoal reliabilities of the TMR configuration in Fig. 6.
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Fig. 4. The percemage of improvement in the output signal reliability.

_p ift, , =0

= it =t otherwise (5.1)
O 1. m,.. n= O

fis= 1 -t otherwise (5.2)

To justify the row reduction note that the binary-indexed rows
in T correspond to correct input combinations. Hence, in order
te derive the missing rows in T we have to establish the relation
between the output for an incorrect input combination and the
output for a correct input combination. For a given input combin-
ation i = (i, {5, ", ix,**, i,) the output Y is either sensitive to the
input X, or not. The output is said to be sensitive to the input X;
if a change in X, alone {from 0 to 1 or vice versa) causes a change
in Y. Clearly, this sensitivity depends upon *he values of the other
input signals. If ¥ is insensitive to X, then the correctness of X,
does not influence the correctness of ¥. Hence, in this case, replac-
ing a correct signal i € {0, 1} by an incorrect signal i, + 2 will
result in an identical row in 7. On the other hand, if Y is sensitive
to X then an incorrect input signal will cause an incorrect output
signal. To see the relation between row £ = (iy, iy, ", b + 2, -,
i,) and row i in T consider a case in which i, = 0 and the correct
output is ¥=0. The entry ¢, , =Pr{Y =0|X = (i}, -, ix =0,
*++, is)} depends upon the internal faults in the system. When the
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correct signal i = 0 is replaced by an incorrect signal iy = 2 no
change occurs in the internal faults and the resulting output will
be an incorrect zero with the same probability, ie,
t=PY=2X=i, ", ix=2 ", ip,} =Pr{Y=0{X =i,
=+, iy =0, -+, i,)}. Similarly, it can be shown that 1 4=1, ,,
t;3=1,and t; | = t; 3. In general, if Y is sensitive to X; then
row i is a (2, 3, 0, 1) permutation of row i. Consequently, every
missing row in T is either identical to some binary-indexed row in
T"orisa (2, 3,0, 1) permutation of such a row depending on the
sensitivity of the output to the input signals. The testing of the
sensitivity is simplified by the following procedure. It generates
the missing rows recursively so that a check of the sensitivity to
just one input signal at a time is needed.

Procedure 5.1: (row expansion).

Step 1: Setd=1.

Step 2: Generate row i = (i}, iy, -, i + 2, -, i,) where i, € {D,
1} and i contains exactly 4 nonbinary elemeats, from row i = {is,
-+, &, ', i) with d — 1 nonbinary elements. Row [ is identical to
row i if Y is insensitive to X, and is a (2, 3, 0, 1} permutation of
row i if Y is sensitive to X, .

Step 3: Set d =d + 1| and repeat Step 2 until d = n.

In Step 2 we check the sensitivity of the output to the input X
only. The output Y is sensitive to X, for a given input combina-
tion if a change from 0 to 1 in X, causes a change in Y. This check
is done by comparing the row with the index (i;,--+, 5, =0,---, i,)
to the row with the index (iy, -+, i = 1, -+, i,). If the zero entries
in these two rows are in the same positions then Y is insensitive to
X and vice versa. Clearly, these two rows are already known and
may be compared since their indices contain just 4 — 1 nonbinary
elements.

In summary, the reduced matrix 7% can be expanded to the
original matrix T by first applying (5.1) and (5.2) for column
expansion and then Procedure 5.1 for row expansion. Carrying
out the column expansion is straightforward while Procedure 5.1
is slightly more complicated. However, this row expansion is not
needed when performing the star operation since, by Definition
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4.1, in order to form a binary-indexed row in the star product
A @ B only binary-indexed rows in 4 and B are needed. Using
reduced RTM’s for the standard modules decreases considerably
the computational complexity of the proposed method.

VI. CONCLUSIONS

A new approach to the evaluation of the reliability of digital
systems has been presented. A reliability transfer matrix of a digi-
tal system has been defined and a procedure for its evaluation was
developed. This procedure is especially efficient for systems con-
sisting of several identical subsystems, e.g., cellular arrays and
NMR systems. The extension of this approach to sequential digi-
tal systems will be presented in a subsequent paper.
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