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Abstract—A unified approach to a broad class of finite number
representation systems is proposed. This class contains all positive and
negative radix systems and other well-known number systems. In ad-
dition, it can be extended to include imaginary radix number systems.
The proposed approach enables us to develop a single set of algorithms
for arithmetic operations.

Index Terms— Arithmetic operations, finite number representation
systems, imaginary radix, negative radix, positive radix, radix-com-
plement.

Manuscript received July 23, 1979; revised May 21, 1980,

1. Koren was with the Department of Electrical Engineering-Systems,
University of Southern California, Los Angeles, CA. He is now with the De-
partments of Electrical Engineering and Computer Science, Technien, Haifa,
Israel.

Y. Maliniak is with the Department of Electrical Enginecring, University
of California, Santa Barbara, CA 93106.

0018-9340/81/0500-0312800.75

- 1. INTRODUCTION

HE positive-radix and radix-complement number systems

are the most commonly used finite number representation
systems and numerous algorithms for arithmetic operations
in these systems have been developed and implemented in
digital computers. Other fixed-radix systems have received a
great amount of attention in recent years [1]-[61, [11], [12].
Various algorithms for arithmetic operations in these systems
have been developed and new applications facilitated by their
use have been presented, e.g., digital filters [7].

A unified approach to these finite number systems is clearly
in order [1]-{3]. Such an approach is proposed here and it is
shown that the above mentioned systems are members of a
broad class of finite number representation systems. We first
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define this class and state its basic properties. Next, unified
algorithms for arithmetic operations are presented. Finally,
a new imaginary radix system based on the 2’s complement
system is analyzed.

II. DEFINITIONS AND BASIC PROPERTIES

Consider a class of #-digit, fixed radix number systems in
which every number system is characterized by a radix 3,
which is a positive integer and by a vector A of length n, A =
(Ar—1, An=2, " "+, Ao), where \;e {1, —1}. Such a number sys-
tem with the standard digit set {0, 1,- - -, 8 — 1) is characterized
by the triple {n, 8, A}. The algebraic value X of an n-tuple
(Xn=1, Xn—2, """, Xo) in the system (n, B, A} is defined by

n—1
X=% Nxif

i=0

(1)

For a given radix 8 we have in this class 27 distinct number
systems. Among them is the positive radix number system, i.c.,
A; = +1 for every i, the negative radix number system, i.e., A,
= (—1)' for every i, and the radix-complement number system
with x,— as a sign digit (i.e., x,— {0, 1]) and the charac-
terizing vector A = (=1, 1,1, -, 1).

All the number systems in this class are clearly nonre-
dundant and complete [8], i.e., in a given number system A
defined by {n, 8, A) we have a unique representation for any
number X within the range of 4. The largest representable
integer in A is the positive number P whose representation
15

_|8-1 ifA=+1 o
U otherwise 0.1 rum=1.(2)
Its value is given by
I n=l
P=2T v+ 1)B- DB
=0
1 [n—1 | .
=2 | MB- 18 +T B~ 1)p
=0 =0
1
nmtm+:w=|£ (3)

where R is the algebraic value of the number (3 — 1,8~ 1,
“=+, 8 — 1} in A. Similarly, the smallest integer is the negative
number /V whose representation is

=Bl A= !
' 0 otherwise; PR
and the corresponding value is
1n=t co ]
Zum Mo (A = 1)(B - 1) umtal (B"-1]. (4)
=

The number of integers in the range N = X = PisP— N +
1 = 3", and the range of the system .4 is, in general, asym-
metric. A measure of the asymmetry can be the difference P
— |N| which equals P+ N = R.

Example: The negative radix system {(n, 8, A= (-, —1,
+1, —1, +1)} is asymmetric and for # even there are {3 times
as many negative numbers as positive ones. If we prefer to have
more positive numbers, we can use instead the system {n, 3,
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A=(+1,—-1,---, +1,—1)). Two binary systems are nearly
symmetric. One is the 2’s complement system {n, 3 =2, A =
(—1,1,+--, 1)) for which we have P — |N| = R = —1. The
other is the system {n, 3 =2, A = (+1, =1,---, —=1)) for
which we have P — |N| = R = +1.

The complement of a number in a system -4 can be defined
as follows. Let X; £ (# — 1) — x;; the comptement X of a
number X is

2S5 =R - X (5)
=0

Hence,

-X=X-R=X+(—R) (6)

i.c., the additive inverse of X may be formed by adding the
additive inverse of R to the complement of X. (Note that no
carry propagation is involved while generating X.) For ex-
ample, in the 2’s complement system R = —land —X = X +
1. In the negabinary system —R = (---, 0, 1, 0, 1) and the
following algorithm for sign-flipping (or polarization [4], [5])
results in (-- X3x3x1Xp) + (-- -0 1 0 1), e.g., the additive in-
verse of @ = 110011001011 1] is

(001100110100) + (010101010101) = (010001011001).

In the negative radix system with 8 > 2 the additive inverse
of Ris—R=1(--,2,2,2,2,1), c.g., the additive inverse of &
= 08019 in the nega-decimal system [4] is 91980 + 22221 =
12001,

The additive inverse may be employed in subtraction either
by using the equation

Y=X=Y+X+(—R) (7
or by using the following easily verified equation
Y —X=(+X). (8)

Here, only one addition with carry propagation is needed.
However, a more efficient algorithm for subtraction is pre-
sented in the next section.

III. ADDITION AND SUBTRACTION

Different algorithms for addition and subtraction in positive
radix and negative radix systems have been developed [4]-[6].
We show that a unified treatment of ail number systems in the
previously defined class is possible and a single addition—
subtraction algorithm can be developed.

Let X and ¥ be two numbers to be added or subtracted.
Since a mixture of positive and negative digit weights is used
in our system, we have to use borrows in addition and carries
in subtraction. Hence, there is no need to distinguish between
addition and subtraction and a single set of rules is developed
for § = X & Y. These rules specify the values of the sum digit
8, the carry ¢y, and the borrow b;4 | from the values of x;,
¥i, the carry in ¢;, and the borrow in b;. The basic equation that
should be satisfied is

Ailx; £ yi) Yo — by = Aisi + SBeinr — Bbisrns
i=0,1,-,n—1 (9)
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the multiplier (quotient) is recoded into a minimai signed-digit
form {10] in order to minimize the number of add/subtract
operations. The canonical recoding procedure introduced by
Reitwiesner [10] is restricted to binary numbers in the positive
radix system. In the following we extend this procedure to
numbers in any (n, 3 = 2, A) number system. We first show
the existing relationship between the nonredundant system {#,
=2, A) and the redundant signed-digit system. A number

(xp=y, -+ -, xg) in the {n, 8 = 2, A) system can be readily
converted to a signed-digit (S-D) number (y,—), " -+, Yo} using
the equation ‘
.F.".K_..y_.“ H."O._‘....:l_. :Wv
The digit set for x; is {0, 1}, while the digit set for y; is {1, 0, 1}
(1 represents —1). An S-D binary number (y,_1, " - -, yo) may
be converted into a number (x,—;, - -, xp)ina {n, 3=2, A)
system using the equations
x; = |yil
A= -1ty =l i=0,1,---,n—1.  (19)

1 otherwise’
Let {x,—;, - -+, xp) be the representation of a given binary
number X in the {n, 3 = 2, A) system. Let {y,—,--, yo) be
its equivalent 5-D representation defined by (18), and let
n—1
(dy—1,- -+, do) be a minimal §-D representation of X {i.e., X
i=0
|d;| is minimal). The canonical recoding procedure generates
the digits d; serially, beginning with the least significant digit
dy. At the ith step we inspect the digits y; and y;4+, and a carry
digit ¢;, and we generate the digit d; and a carry digit ¢4 . The
rules of this procedure are given in Table 1. Note that the digit
set for the carry is {T, 0, 1}, while in the restricted algorithm
[10]itis {O, 1.

Clearly, this algorithm can also be used to generate the
canonical form of any 5-D binary number, e.g., the number
(1, 1,T,1,1,1, 1) is converted using Table I to (1,0,0,0, !, 0,
1), which is a minimal S-D representation of 67.

The minimal recoding algorithm can be generalized to radix
3 number systems. The extension is straightforward and is
therefore omitted.

We conclude this section with an example of employing the
S.R.T. method to divide binary fractions in the number system
with A = (1,1, =1, =1, 1, 1, =1, —=1). The dividend X =
30/256 is represented by 0.01100010 and the divisor D = 6/16
is represented by 0.1010. The division steps are

Ro=X = (.01100010
R, =2Rg = 0.01011100 normalize g, =0
0.10011000 remain-
der,
-=0.1010
xuﬂwm_lb“ 0.01111000 g>=1
R3y=2Ry = 0.01010000 normalize qg:=10
0.10100000 remain-
der,
—0.1010
R4 =2Ry—D = 0.00000000 ga=1.

The resulting quotient in S-D notation is 0.0101 which rep-
resents = 5/16. To obtain the representation 0.1011 of Q
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TABLE |
CANONICAL RECODING OF S-D NUMBERS
Yol 71 S| S| [P Yr S|4 Sia
6 o o|0o o h v 111 0
1 0 oo 0 1 o 1|1 1
i o oo 0 i o 1|1 1
)] 1 1o 0 0 1 o1 [
1 1 1lao 0 i i 0|1 1
1 1 il 0 i 1 ol 1
] i 1]o o o o 11 0
1 I 1}ao 0 1 o 11 i
i I 1]o0 0 i ¢ 111 i
0 1 1|0 1 [} 1 o]l 0
1 1 1|0 1 1 i ofn i
i 1 1|0 1 i i ot i
i} I 1fo i
1 i 1f|e 1
1 i ilta i choose Civl such that
d =0 will result

11

%Ta doesn't matter for

these cases

in the above number system a conversion algorithm is needed.
Fortunately, the known conversion methods between positive
and negative radix systems can easily be extended to any two
number systems with the same radix 3, but different charac-
terizing vectors. Such an extension of the method introduced
by Yuen [6] is presented in [1].

V. IMAGINARY-RADIX NUMBER SYSTEMS

An imaginary-radix number system for representing com-
plex numbers has been introduced by Knuth [i1] and recently
modified by Slekys and Avizienis [12]. This imaginary number
system is closely related to the negative-radix system and the
algorithms for arithmetic operations in complex numbers are
based on similar algorithms in the negative-radix system. In
this section we show that a broad class of imaginary-radix
systems may be defined and each of the previously considered
systems can serve as a basis for an imaginary system. In par-
ticular, we are interested in the imaginary binary system based
upon the 2’s complement system since the latter is still the most
frequently used one with numerous arithmetic aigorithms and
hardware implementations available.

Let A be a 2n-digit system with an imaginary radix iv/f
(where/ = /=1 and B is a positive integer) and A = {};}. The
algebraic value of a 2n-tuple (x2,—|, X242, - -, Xo) is

2n—1 i
X= 3 x;NivEY. (20)
j=0
The weight w; of the jth digit x; is
NBi if j = 0 mod 4
. . iA/ BRU- N2 if j =1 mod 4
wi=NGEVBY =4 T N
—N; B2 if j=2mod 4
—iAV/BBU=DIZ ifj =3 mod 4.
(21)
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Consequently, the weights of the odd-positioned {even-posi-
tioned) digits are imaginary (real) and we may partition the
complex number X into imaginary and real parts

X = M M.\.V;..Al—vg.\uﬁx.\u

J even

+ivB T g\ (-1)0=28U=2 (22)
J odd

Replacing j by 2k for the real part, and by 2k + | for the

tmaginary part yields

=1

n—1
X= ».Mo Xahau (—1)*B% + i/ B __ﬁMo Xok1 A2k 41 (= 1)K Bk

2 Re [X] +iIm[X). (23)

Hence, the real part is a number in the system (n, §, Mg, =
e = (—1)% A5} and similarly, the imaginary part when
divided by 4/8 is a number in the system {n, 8, M| = {ps =
(—1)*Aze1}). If A = |A; = 1} both real and imaginary parts
are represented in the negative-radix system [11], [12]. A
different choice for A results in representation of the real (and
imaginary) part in one of the systems considered in the pre-
vious sections.

The representations of the real part and imaginary part are
interleaved in the 2n-tuple and consequently, each part can be
handled separately. Thus, all the properties and the arithmetic
algorithms presented in previous sections apply here. For ex-
ample, to generate the complex conjugate of a given number
X, the additive inverse of the imaginary part has to be formed
using any of the methods introduced in Sections I and I11.

In the following we consider the bi-imaginary system {2n,
iv/2, A) based upon the 2’s complement system, i.e., the real
and imaginary parts are represented in the (n, 2, M ={-1,1,
1, -+, 1}) system. This complex number system has the fol-
lowing advantages over the system considered in [11] and [12].
The real and imaginary parts have a nearly symmetric range
and the detection of their signs is simple; only the most sig-
nificant bits (the sign bits) have to be checked.

To obtain 2’s complement representations for the real and
imaginary parts the characterizing vector A is selected as
follows. The weights wa,_ and w3,_> must be negative; hence,
(21} yields

: +1 if n is even
Ane1 = An—2 = o 24
2l AR P if n is odd: (24)
Ali other weights have to be positive; thus
if j =0, 1 mod
\ = +1 _3 0,1 m h“ J=01, .23,
—1 ifj=2,3, mod4
(25}
The resulting weights are
3i#2 if jiseven | .
= ; j=0,1,--,2n -3,
"7 /BB ifjisodd ! g

(26)

Example: The 10-bit complex number system based on the
2’s complement system has the characterizing vector A = (~1,
-1, =1, =1,1, 1, =1, —1, 1, 1). The representation of the
number Z; = 2 + i3+/2 is obtained by interleaving the 5-bit
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2’s complement representations of 2 and 3, i.e., 00010 and
00011, respectively. Hence, Z is represented by 0000001110,
The number 6 — i24/2 is similarly represented by
1000110100.

Note that due to the factor /8 in (23) the quantity Im
[Z] \J\M has to be determined when representing the number
Z in our complex system. Since +/2 is irrational, a rational
imaginary part is represented in a nonterminating way, pro-
ducing truncation and rounding errors [11], [12], We can
overcome this problem by using the modification suggested
in [12], i.e., a number Z is represented by Z* = Re [Z] +
i(v/2Im [Z]).

When adding (subtracting) complex numbers we add
(subtract) the real and imaginary parts separately and there
is no advantage in representing the numbers in an imagi-
nary-radix system. The possible usefulness of imaginary-radix
systems is their facility of multiplication [11]. When multi-
plying two complex numbers we can multiply 2»-bit complex
numbers instead of performing four multiplications of n-bit
real numbers and two add /subtract operations. If a shift and
add type multiplication algorithm is employed, an ordinary
shift can be used for even-indexed multiplier bits. For an
odd-indexed multiplier bit a multiplication by i+/2 is needed.
We may use a unit similar to the one presented in Section TV
or the following simpler method. When a 2n-tuple is shifted
to the left the even-positioned bits (the real part) are shifted
to odd positions having the same X, while odd-positioned bits
{the imaginary part) are shifted to even positions having the
opposite value of A, i.e., these bits are multiplied by —i+/2
instead of i+/2 . This can be corrected by forming the 2's
complement of the imaginary part before shifting. Similarly,
when dividing by i4/2 the 2’s complement of the real part is
formed before shifting to the right.

Example: The productof Z, =2+ i3+4/2and Z, = 3 +
i24/2 is given by

001110
X 001101
001110
001110
100110
0101100110.

The algebraic value of the result is Z; X Z2 = —6 +
i13+/2.

In addition, the generation of the conjugate of a given
complex number is greatly simplified, only the 2's complement
of the imaginary part has to be formed.

In summary, existing hardware for 2’s complement arith-
metic can be used for complex number manipulations. Such
hardware includes high-speed adders, multioperand adders,
and fast multipliers.

V1. CONCLUSIONS

A unified approach to a class of number systems that con-
tains the well-known and widely-used number systems has been
presenied. Such an approach allows a unified treatment of
arithmetic operations in various number systems and thus
enables the design of a single arithmetic unit capable of per-
forming operations in several number systems. It has been
shown by Zohar [7] that the use of negabinary arithmetic
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where
co=bo=0.
Let z; 2 M{x; £ ;) + ¢; — b;, then the rule for s; is
s; = (A;z;) mod S.

For ¢;41 and b4, we have two cases as follows.

Case 1: Zj = V_.MT then ®h.+_ =0and Cit+1 &= AN_. - ?__.h..v\m.

Case 2:z; < A§i, then ¢y = Oand by = (usi — 2;)/6.

Clearly, the carry and borrow outputs of stage n — 1 indicate
overflow and underflow, respectively.

For binary systems (n, 3 = 2, A) a truth table can be con-
structed and logical expressions derived [1]. For convenience,
we replace the vector A by a binary vector whose elements
satisfy y; =3(1 + A;); i =0,1,- -+, n — 1. We define another
binary variable e, which satisfies & = 0 for addition and a =
1 for subtraction. Using this notation, the resulting logical
eXpressions are

(10}

S =x @y (c; + &), (1)
Civ1 = 6;(u; + yilei + M‘.ﬂmﬂﬂnm + P.:.....F.MT (12)
biv1 = & (u; + yi)bi + STib; + Byt (13)

whereu; = x; @ cand 6; = v, & .

These general equations can be reduced to any given binary
system {n, 3 =2, A). For example, in the case of the conven-
tional binary system, the appropriate substitutions-yield the
well-known equations for a full adder/subtractor [1].

Equations (12} and (13) have the same functional form and
we may write

h.q.+_ "\ﬂ%: t__.u \—\.h.u ﬁ.n.e mu..v ".\»A\w\__ e Qw H‘_h.w ._n__,u ﬁ._.u @—.vw ﬁwhv
bist = fGiy thiy Yir bis ) = [V ® o, u, ¥, biv ). (15)

Thus, in a stage of the parallel adder the interna! carry logic
is identical to the internal borrow logic. Moreover, if a positive
stage (i.e., ¥; = A; = 1) has been implemented using

S =x 8@ AD. + m._v
Air § civ1 = floe wg, yi, i By)
_W__.-T_ “.\.ﬁﬁxu uj, .wu_"._ Wﬁ.-,ﬁ.m

(16)

the same circuit can be used for a negative stage (i.e.,y; =0
or A; = —1) if the carry and borrow lines are connected
crosswise. For example, a negabinary adder is shown in Fig.
1. .

IV. MULTIPLICATION AND DIVISION

Multiplication and division in fixed-radix systems are usu-
ally done as a series of additions (or subtractions) and simple
multiplications or divisions by the radix 8 (or some integral
power of 3). In a positive-radix system such a multiplication
or division is performed by a proper shift of the intermediate
result. In a mixed-radix system not all shift operations corre-
spond to some multiply or divide operations. In the following
we investigate the conditions under which a logical shift op-
eration has some arithmetic meaning.
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X, Y X ¥,
ohl qdd .
LA A > A
F
$

b b
wmﬁm 2

Fig. 1. A ncgabinary parallel adder.

When a number is shifted & positions to the left, the weight
of the digit shifted from position / to position j = i + k is either
multiplied by 8% if \; = A; or by =% if A; ¢ A;. The complete
shift left operation is equivalent to some multiply operation
if and only if all shifted digits are multiplied by the same factor,
which is either % or —f8%. Hence, a k-position shift left op-
eration has an equivalent multiply operation in the following
two cases:

1) A= A i=0,1,-,n—k—-1;
29N # Nites i=0,1,-,n—k—1.

In case 1) there is in A a cycle of length k, e.g., in a nega-
tive-radix system there is a cycle of length two and as a result
double shift left operations multipty the number by 82. Simi-
larly, in case 2} there is a cycle of length 2k since the retation
A = Ajpp implies Ay = Npygpr i =0, 1,--- . n — 2k — 1.
Identical observations can be done regarding shift right op-
erations. We conclude that unless there is in A a cycle of length
two or less multiplication (or division) by 8 cannot be done by
shifting. However, we may design a shifting unit with some
maodifications that are necessary to obtain the multiply /divide
by 3 operation.

Let (x,—;, -+, x1, xp) represent a number X in a given
system 4 and let (5,1, -, 51, 50) be the representation in -4
of § = B9X, where a is 1 (—=1) for a multiply (divide) by 8
operation. The digit s; is obtained from the shifted digit x;—,
(i.e., left shift for multiply and right shift for divide), a carry
digit ¢;, and a borrow b;. The last two are needed to correct the
result of the shift operation whenever A; = Aj—,.

The equation for the multiply/divide by 8 operation is de--
rived from (9) by replacing the A;(x; £ y;) term with A x/_,,
yielding

ANi—aXi—a ¢ — b = Ns; + Beier — Bbiay;

i=0,1,-,n—1 an

where

ﬁ.cﬂ.voﬂkl_ ﬂka.ﬂo.
Thus, the adder-subtractor (with some added connections)
can be used for multiplication-division by /3 or a separate
simpler circuit may be used.

It is known that most shift and add type algorithms for
multiplication and division in a positive-radix system can easily
be extended to negative-radix systems [4]-[6] and to signed
digit systems [9]. Similarly, the extension of these algorithms
to the general number system (n, 3, A) is straightforward if
the shift operations are replaced, when necessary, by multi-
plications or divisions by 8. Consequently, we do not present
here the details of these extensions since no new insight is
gained. In some fast binary muitiplication (division) algorithms
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provides a simpler and more attractive solution to the hardware
design problem for a special application. Other number sys-
tems considered in this paper may prove to be useful for other
applications.

In the last section imaginary-radix number systems are
considered. A novel complex number system, which might be
more attractive than previously introduced number systems,
is presented.
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