
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-26, NO. 11, NOVEMBER 1977

registers used to hold results ofCORDIC computation will ulti-
mately overflow for sufficiently large n.

It should be noted that the CORDIC scheme was not designed
for sinusoid generation over an unlimited range, but rather for
evaluation of trigonometric functions with bounded arguments.
The complete CORDIC algorithm includes a prenormalization
scheme which, however, requires prefixing of the upper limit for
n in (4).

PROPOSED ALTERNATE Two-MULTIPLY SCHEME

The algorithm proposed in this correspondence involves a
modification of (4), such that each c-value is computed from the
previous c-value and the current s-value

Sn+1 = MCn + Sn

Cn+1 = cn - Msn+1, n = 0,1,2, - -. (7)

For purposes of comparison, we substitute the expression for Sn+ I
from the first line of (7) into the second line of (7) to obtain

Sn+l = Mcn + Sn

Cn+-1 (1 - M2)cn - Msn, n = 0,1,2,

Trig. Unnormalized Proposed
Identities CORDIC Scheme

Multiplies/cycle 4 2 2

Stable? Yes No Yes

Phase deviation from
orthogonality 0 0 P/2

Increment angle 0 = sin M 0 = tan M p = 2sin (M/2)

Amplitude

22 n 2
(A = + c) A A/(cos 0) !A + 2s c sin(p/2)

cos (p/2)

Initial phase B S tan (tanG /cos(P/2)

(G tan (s/c)) + tan(p/2))

REFERENCES

[1] L. Levine, Methods for Solving Engineering Problems Using Analog Com-
puters. New York: McGraw-Hill, 1964, pp. 114-115.

[21 J. E. Volder, "The CORDIC trigonometric computing technique," IRE Trans.
Electron. Comput., vol. EC-8, pp. 330-334, Sept. 1959.

(8)

Expressions (8) are similar to the CORDIC algorithm (4), except
for the additional term (-M2) in the coefficient of c0 in the sec-
ond line.

If we define p by

M = 2 sin (p/2) > 0 (9)

the system (8) yields, analogously to (3) and (6)

Sn = C sin (p0 - p/2 + np)

Cn= C cos (po + np), n = 0,1,2, (10)

for

C = 5s + 2s0c0 sin (p/2) + c0/cos (p/2)

p0 = tan-1 (s0/(c0 cos (p/2)) + tan (p/2)).

The expressions sn and cn in (10) have constant amplitude,
dependent only on initial values (s0,c0) and on the factor M. Thus
the algorithm is stable.
The phase separation of the s - and c-components differs from

orthogonality by an offset p/2. This is essentially the price paid
for having both stability and arithmetic economy. However, the
generation of sinusoids in real time requires the value of only one
of the components s or c; the other is only a computing aid and
is seldom needed explicitly. Thus, for this application, the phase
shift inherent in the algorithm causes no problem. For applica-
tions that require both components and still demand orthogon-
ality, such as generation of tangent values, the algorithm could
perhaps still be used, in conjunction with additional hardware,
since the amount of phase shift is a known constant. However,
this would seem to negate the feature of economy which made
the algorithm attractive originally.
Note that the amplitude C yielded by this method, while

constant, is always greater than A = V`17. Thus initial values
so and c0 must always be adjusted to avoid overflow. Once this
is done, however, there will be no overflow except that due to
accumulated numerical roundoff errors.

SUMMARY

A comparison of the three schemes discussed here follows:

Diagnosis of Intermittent Faults in Combinational
Networks

ISRAEL KOREN AND ZVI KOHAVI

Abstract-Detection of intermittent faults was considered in a
number of publications [1], [2]. Recently, Kamal [3] presented an
approach to the diagnosis of intermittent faults in combinational
networks. The methods developed so far, however, do not yield a
minimal diagnosis experiment. Moreover, complete diagnosis is not
obtained even in cases where it is possible.

In this correspondence we present a method for locating inter-
mittent faults in combinational networks. This method does yield
a minimal diagnosis experiment and, in addition, the maximal di-
agnostic resolution possible is obtained.
We also present a simpler alternative procedure that yields only

nearly minimal experiments, but for which the required compu-
tation time is considerably shorter.

Index Terms-Combinational networks, dynamic programming,
fault diagnosis, intermittent faults, sequential decision tree,
weighting function.

I. INTRODUCTION AND BASIC ASSUMPTIONS

The problem considered in this correspondence is diagnosis
of intermittent faults, and a method for locating faults of this type
is presented. This method employs a simple statistical model for
intermittent faults which is based upon the following assump-
tions.

1) At most, one out of several intermittent faults exists in the
network (the single-fault assumption).

2) The faults are well behaved [1], i.e., during the application
of a test the network behaves as if it is fault-free or as if a per-
manent fault exists.

3) The faults are signal independent, i.e., the occurrence of

Manuscript received December 23, 1975; revised December 1, 1976.
L. Koren is with the Department of Electrical Engineering and Computer Science,

University of California, Santa Barbara, CA 93106.
Z. Kohavi is with the Department of Computer Science, University of Utah, Salt

Lake City, UT 84112, on leave from the Department of Electrical Engineering,
Technion-Israel Institute of Technology, Haifa, Israel.

1154

CORRESPONDENCE

a fault is independent of the signal values present in the net-
work.
Two statistical models for describing the behavior of inter-

mittent faults were proposed in the literature. The first one is a
Markov model introduced by Breuer [1]. According to this model,
a network containing an intermittent fault is modeled by a two-
state first-order Markov process. In the first state FP the fault
is present and in the second state FN the fault is not present. The
second model introduced by Kamal and Page [2] is a special case
of the first one. In this case, the transition probabilities between
the two states are assumed to be equal; thus the first-order
Markov process turns out to be a zero-order process. Because of
the complexity of the diagnosis problem discussed in this corre-
spondence, we shall use the latter simpler model.
The network under consideration may have one out of n in-

termittent faults denoted fl/2, ,f-n. To these faults we add fo
to denote the fault-free network. Each fault has an a priori
probability of existing in the network:

p= PrJf/, i-0,1,***,n
where,

n

L Pi = 1
i=0

(see in [5] a possible assignment of a priori probabilities).
Suppose a fault fi exists. We apply a test covering (i.e., de-

tecting) this fault. The fault may be present during the test,
causing the failure of the test; or the fault may not be present,
causing the success of the test. Given that the intermittent fault
fi exists in the network, the conditional probability that fault fi
will be present when a test covering it is applied, is denoted

ei Pr fA test covering f, fails/fi existsf, i = 1,2, * * ,n.

For fo we define eo = 1. Clearly, ei = 1 if f, is a permanent
fault.
We assume that for the n + 1 possible faults a fault matrix R

can be constructed. This fault matrix consists of n + 1 rows cor-
responding to the different faults and m columns corresponding
to m possible tests.
The fault matrix is defined in the following way:

J= 1, if fi is covered by tj
IJl otherwise.

II. SEQUENTIAL DECISION TREE
The tests for detecting and locating a fault in a network can

be arranged either as a sequential decision tree or as a fixed
(preset) set of distinguishing tests [4], [5]. We prefer sequential
diagnosis, because the average number of tests required to locate
a fault is usually smaller than the number of tests required using
the method of fixed diagnosis. This average number of tests
serves as a cost function for the decision tree, i.e.,

n

c = Elip
i=o

where li is the number of tests required to locate the fault fi with
a priori probability pi.
The sequential decision tree contains n + 1 terminal edges

corresponding to the n + 1 possible faults, and n vertices corre-
sponding to the n tests that are required in order to distinguish
between the n + 1 faults [6]. (An example of a decision tree is
given in Fig. 1.) We assign the numbers 1 through n to the n
vertices in the following way: the first vertex is labeled 1, the rest
of the vertices are labeled in such a way that along each path in
the tree starting at vertex 1 and ending at a terminal edge the
labels are in an increasing order. The n tests corresponding to
these n vertices are denoted t1,t2,- --,tn. The decision tree is
described by a matrix A containing n + 1 rows corresponding to
the n + 1 faults and n columns corresponding to the n tests. This
matrix is defined in the following way:

aij , if the path for fi includes tj
0, otherwise.

The n tests are selected out of the m possible tests in the fault
matrix R. Some of these n tests (corresponding to different paths
in the decision tree) may be identical. In order to simplify nota-
tion and without loss of generality, we will assume that the tests
tl2,---,tn are distinct and that the first n tests in the fault
matrix R are the tests t1,t2, - -.

If the possible faults in the network are permanent, then the
application of a test tj at the jth vertex distinguishes the faults
covered by tj from the faults not covered by tj. If the faults are
intermittent, it may occur that a fault covered by tj exists in the
network but is not present when tj is applied. Hence, a wrong
conclusion might be drawn regarding the existence of the fault.
In order to minimize such wrong conclusions, each test is applied
repeatedly so that the probability of a wrong conclusion is smaller
than some prespecified E. For a given e we shall next determine
the required number Mj of repetitions of the test tj. Clearly, if
in any application of tj a failure is observed, the repeated appli-
cation of tj can be terminated and a definite conclusion can be
drawn. The number of times that tj is actually repeated will be
designated mj. This number is a random variable satisfying

1 < mj <Mj.
The maximal required number Mj of repetitions will be deter-
mined from the following inequality:

p fa fault covered by tj at vertex] existsl <
P
but tj succeeds Mj times |

Applying the principle of total probability we obtain

E Pr ftj succeeds Mj times/fk exists at vertex jI
fk is covered by tj

(1)

Pr f/k exists at vertex jf < E
or
n

Z akjrkj Pr ftj succeeds Mj times/fk exists at vertex jl
k=1

- Pr {fk exists at vertex if < e. (2)
A solution of inequality (2) will yield the value of Mj as a

function of e. The probabilities in (2) are evaluated in the fol-
lowing lemmas of which the first one, Lemma 1, appears in [3] and
is repeated here for the sake of completeness.
Lemma 1: Pr ltj succeeds Mj times/fk existsl = (1 - e,)Mi.

Proof: Since the outcomes of Mj applications of tj are in-
dependent of each other and the probability of a success in each
such application of tj is 1 - ek (fk is covered by tj) the lemma
follows.
Lemma 2: lim,_o Pr f/k exists at vertex if = (pkI/Pj), where Pj

= ; =Oaijpi is the sum of probabilities of the faults at vertex j.
Proof: See the Appendix.

Lemma 2 enables us to derive in an efficient manner algorithms
for generating minimal decision trees for diagnosis of intermittent
faults. The major contribution of Lemma 2 is that it enables us
to compute the a posteriori probabilities of the faults at each
vertex regardless of the previously applied tests and their out-
c6me. In [2] it is shown that different applications of a test may
result in different a posteriori probabilities; and the minimal
decision tree (minimal expected value of the cost function) could
be generated only by exhaustive comparison of all possible de-
cision trees. Lemma 2 overcomes this problem.

Substituting the results of the previous lemmas in equation
(2) yields the following inequality for determining Mj:

kEl akjrkj(l -,ek)Mj P
k=l pi.-

(3)

Matrix A and inequality (3) define the structure of the se-
quential decision tree. The value of the cost function C for this

1155

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-26, NO. 11, NOVEMBER 1977

decision tree depends upon li, which is the number of tests re-
quired to locate the fault fi. To evaluate li consider the path for
fi in the decision tree. This path contains tests covering fi and
tests which do not cover fi. The number li is the sum of the
number of applications of those tests in the path covering fi and
the number of applications of those tests in the path not covering
fi. Since each test tj covering fi is applied mj times and each test
tj not covering fi is applied Mj times, we obtain

n

li = E aij(mjrij + Mjrij)
1=1

(4) f0

where

r,=1--rij.

The fact that mj is a random variable implies that 1i and the cost
function C are also random variables. And since C is a random
variable it cannot be minimized directly, and therefore we shall
minimize its expected value. This expected value equals

n n
EICI = X piEIlil = L piEll/fil

i=O. i=0

n n

-E Pi EZ aij(rijElmjlfiI + rijMj). (5)
i=0 j=1

Lemma 3: EImj/fiI = 1/el [1 - (1 - ei)Mj].
Proof:

M
ElmjlfiX= t, k(1 - ei)k-lei + M (1 - ei)Mj

k=1

- 1 - (Mj + 1)(1 -ei)Mj +Mj(1 -ei)Mj+l
1- (1-ei)

= - [1 - (1 - ei)Mj].
e-

Fig. 1. A minimal decision tree for intermittent faults.

by test ti. Then the objective function is

min IC(F',F') C(F') C(F')).
ti

(7)

The first term in this equation is the contribution of the test
t, to the cost function (to simplify notation the subscript aj is
omitted)

AC(FO,FL) = M Pj + E Elm/fj1pj

=M ,Pj + -[(1-ej)m]pj. (8)
fiEPO fjpl ej

The maximal number of repetitions of ti is determined by sub-
stituting appropriate values into inequality (3)

-MJ(1 - ei)Mi

Q.E.D.

Substituting the result of Lemma 3 in (5) yields

ElC} = L E a -pi (rij [1 - (1 ei)Mi] + rij * Mj) (6)
i=Oj=I1i

III. MINIMAL DECISION TREES

A minimal decision tree is defined as a tree that minimizes the
expected value of the cost function given by (6). The problem of
generating minimal decision trees has been considered in several
papers; e.g., Garey [9] considered the problem of identifying
permanent faults, Matula [7] and Black [8] considered the
problem of searching a target that may not be detected in a single
search. The latter problem is similar to our problem; however,
only a restricted case, where R = I (identity matrix), was con-
sidered in [7], [8]. In this case, the decision tree turns out to be
a single path so that no wrong conclusion might be drawn.

In this correspondence we generate the minimal decision tree
by employing the dynamic programming method whose com-

putational efficiency is greater than the direct enumeration
method. In the following we define an objective function that will
be computed recursively.

Consider a decision tree of the type shown in Fig. 1. Suppose
that a number of tests have already been applied; consequently,
a number of possible faults have been distinguished. Let F be any
subset of faults out of the n + 1 possible faults which remained
to be distinguished at a vertex a. Let 1,, be the number of tests
required to locate fault f, out of the faults in F. We define the
following objective function:

C(F) = min E IajPaj.
favjEF

The minimization is made over all m tests given in the fault
matrix. This objective function is computed recursively in the
following way. IfF contains a single fault, then C(F) = 0. For F
containing more than one fault, suppose that test ti is applied.
Denote by FP (Fn) the subset of all faults covered (not covered)

E (1-ee)Mpj < e
fftEp1

i
(9)

where

P= pj.
fjEF

Such a computation is performed for every possible subset F; and
when F contains all n + 1 possible faults, C(F) equals the ex-

pected value of the cost function defined in (6).

IV. NEARLY MINIMAL DECISION TREES

The computation time required for generating a minimal de-
cision tree using the dynamic programming method increases
rapidly. Hence, a procedure requiring a smaller computation time
is desired, even if the generated decision tree will not necessarily
be minimal. In this section we develop such a procedure for se-
lecting distinguishing tests according to a weighting function [41,
[5]. Using this procedure the decision tree will be constructed
starting at the first vertex, contrary to the dynamic programming
method in which the decision tree is constructed starting at the
terminal vertices. At each vertex a local optimization is per-
formed, minimizing a weighting function. As a weighting function
we select the contribution AC(F',F1) of this vertex to the cost
function.
We define a binary vector B of length n + 1 indicating which

of the n + 1 possible faults is contained in F, i.e.,

bj= L if /jEF

I, otherwise.

Substituting this vector yields the following expression for
AC:

n ~~
A\C = M X,brjipj + , bj jt pj[1 - (1 - ej)m]. (10)S=0 w=0 ej

Similarly, we obtain the following inequality for determining

n

L bjrji (1 -ej)lpj<-,5 P
J =o

(11)

where
n

P= E bjpj.

pass
M = 17

M = 27

fail

f3
f4

= 13

fail

fi

1156

Tr

CORRESPONDENCE

SinceM is determined from inequality (11) which requires many
numerical iterations, the computation of AC is complicated.
Hence, employing AC as a weighting function requires a large
amount of computations, and a simpler weighting function is
desired. Experience in generating decision trees for diagnosis of
intermittent faults using APL programs leads to a conclusion that
an upper bound of AC can serve as a weighting function yielding
satisfactory results. The selection of such a weighting function
is justified because a test minimizing the upper bound will usually
minimize AC as well.

Equation (10) for AC consists of two terms. Let us denote them
A1 and A2, respectively. Hence

AC = A1 + A2-

In order to derive an upper bound for AC, two different bounds
are derived for the two terms A1 and A2. First we denote

emin = minej = min ej. (12)
fjEP bjrji=1

Let P1(Po) designate the sum of probabilities of the faults from
F that are covered (not covered) by the test ti. Hence
nn

P, = E bjrjipj, Po P-P1= E bj1jjpj. (13)
1=0 1=0

The second term A2 in (10) satisfies

A2 = E br (- pj1[- (1 - ej)M]
n

< L bjrjipj [1 - (1-ej)M]
emin j=O
1 n n-_ [z bjrjipj - E bjrjipj(1 - ej)M.

The first term inside the brackets equals P1, while the second
term appears in inequality (11) for determining M. The minimal
value for M is achieved when the equality in (11) is satisfied.
Consequently,

A2< [P -EP].
emin

(14)

In order to derive a bound for the first term A1, we rewrite
equality (11) and derive, using emin, an upper bound for it.

n n
EP E bjrji(l-ej)Mpj < (1 -emin)M E bjrjipj.

j=0 j=0

Substituting P1 yields

tP < (1 - emin)MP1
or

M< ln (eP/P1) (15)
In (1 -emin)'

Consequently, the upper bound for A1 is

A1 = MPo=M(P-P1) < (P- Pl) ln(EPIP1)
In (1 emin)

Using the two bounds stated in (14) and (16), we obtain the fol-
lowing upper bound for AC:

AC < (P-P1) ln (eP/P1) +1 (P- EP). (17)
ln (1 - emin) emin

This upper bound will serve as a weighting function for selecting
the distinguishing tests. At each vertex of the decision tree, the
value of the upper bound for each possible test will be evaluated.
The test minimizing this bound will be selected as a distin-
guishing test at this vertex.
The decision tree generated by using the upper bound as a

weighting function is not necessarily a minimal decision tree.
However, it is nearly minimal when the contribution AC of each
vertex to the cost function is significant. The contribution AC

M = 1

pass

M = 1 M = 1

If4
M =1 td
pass/fail

fo f3
Fig. 2. A minimal decision tree for permanent faults.

is proportional toM and hence proportional to the values of the
various conditional probabilities ei and to the values of the
probabilities pi relative to the value of E. In the case where ei <<
1 and (pi/e) >> 1, the term AC in the objective function to be
minimized (7) is more sensitive to the selected test than the sum
of the next two terms C(FO) + C(F1). Hence, the decision tree
generated by using the upper bound for AC as a weighting
function is nearly minimal in this case as shown in the following
example.
Example: A network may have one out of five intermittent

faults o fl,f2, f3, f4 with a priori probabilities: po = 0.4, Pi = P2
= 0.2, p3 = p4 = 0.1, and conditional probabilities: e0 = 1, el =
0.6, e2 = 0.1, e3 = 0.3, e4 = 0.5. The fault matrix for this network
is

-O 0 0 0 0- fo
O 1 1 0 0 fi

R=- 1 0 1 0 1 f2-
0 0 0 1 0 A3

R- 0 0 0_ A
ta tb tc td te

Using the dynamic programming method stated in Section III,
a minimal decision tree was generated for e = 10-5. This decision
tree is shown in Fig. 1. The expected value of the cost function
for this decision tree is EICI = 72.2. The same decision tree was
generated using the upper bound as a weighting function. How-
ever, using the latter method, the computation time was con-
siderably smaller (by a factor of 10). The results of these two
methods remain identical for other values of the conditional
probabilities; e.g., eo = 1, e1 = e4 = 0.9, e2 = 0.1, e3 = 0.3.

Different decision trees were generated by the two methods
for the following values of the conditional probabilities: eo = 1,
el = e2 = e3 = e4 = 0.999999; that is, when the faults are ap-
proximately permanent. The minimal decision tree generated
by the dynamic programming method is shown in Wig. 2. The
value of the cost function for this decision tree is C = 2.5. The
decision tree generated by the weighting function method is not
minimal and the value of the cost function is C = 3.1.

It is worthwhile to note that the minimal decision tree for di-
agnosis of intermittent faults, shown in Fig. 1, is different from
the minimal decision tree for diagnosis of permanent faults,
shown in Fig. 2. The value of the cost function of the decision tree
shown in Fig. 1 for permanent faults is C = 2.6, while the minimal
value as shown before is Cmin = 2.5.

V. CONCLUSIONS
A procedure for sequential diagnosis of intermittent faults in

combinational networks has been developed in this correspon-
dence. Using this procedure we apply each distinguishing test
repeatedly a number of times so that the probability of not de-
tecting an existing intermittent fault is smaller than some
prespecified e. Lemmas 1 and 2 establish the relationship between

1157

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-26, NO. 11, NOVEMBER 1977

the maximal numberM of applications of each test and the value Denote byD the complement of D; i.e., the event "t1 was applied
e. M1 times and no failure was observed." Thus
The cost function used equals the average number of distin-

guishing tests required to locate a fault. We present a procedure
employing dynamic programming for generating a sequential
decision tree which minimizes the previously mentioned cost
function. Although this method yields minimal decision trees,
its limitation lies in the great amount of required computation.
To overcome this limitation we next present a second procedure
yielding only "reasonably minimal" decision trees, but at a con-
siderable savings in the amount of required computation.

APPENDIX

[1 - Pr ID/fkl]Pk

E [1 - Pr ID/fiflpi
fi EFl

Substitution of Lemma 1 to this expression yields

[1 - (1 - ek)M']Pk
E, [1 - (1 - ei)Ml]p

fiEF1

And since

Proof ofLemma 2

Since for j = 1 we have P1 = 1, the lemma is true in this case.
We consider now the case j = 2. The first distinguishing test t 1

separates the set of n + 1 faults into two subsets, F1 consisting
of all faults covered by t1 and Fo consisting of all faults not cov-

ered by t1. The maximal number M1 of applications of t1 is de-
termined by the following inequality:

E (1- ei)M pi S e. (A.1)
fi'EFl

The subset of faults in the second vertex can be either Fo or Fl.
Consider first the case of Fo. In this case, each fault fk E Fo
satisfies

Pr {Jk at vertex 21 = Pr 1fk/tI succeeds M1 times).
Applying Bayes' formula we obtain

Pr It1 succeeds M1 times/fk I Pr Ifk at vertex 11
n

E Pr It1 succeeds M1 times/fil * Pr1/i at vertex 11
i=l

_ ~~~~~~~~Pk A '4X

E Pi + E Pr It, succeeds Ml times/filI pi
fiEFO [iFl

From (A.1) the second term in the denominator satisfies

E Pr It1 succeeds Ml times/fI pi = E (1 - ei)Mlpi < e.

fiSsEF1uI fiiFr

Substituting in (A.2) results

lim Pr Ifk at vertex 2j = Pk = pk

P0FP P2
(A-3)

This completes the proof for Fo.
Consider now the case of F1. IfF1 is the subset of faults in the

second vertex, each fault fk eF1 satisfies

lim Pr Ik at vertex 21 = lim Pr I/k at vertex 1/D} (A.4)

where D is the event "the test t, was applied at most M1 times
and a failure was observed in the last application." Equation (A.4)
is justified by the following argument. From (A.1) we find that
M, - oo when e- 0. Hence, applying t1 repeatedly M1 times

ensures that a fault fk covered by t1 will cause a failure of t .

By employing Bayes' formula in (A.4), we obtain

Pr tfk/D} Pr ID/fk I Pr I/k at vertex 11
PEkD Pr D/fI Pr fIA at vertex

fi,EF1

(1 - ek)Mlpk ' E (1 - ei)Mlpi <
fiEFl

we obtain

lim Pr 1/k at vertex 2)= Pk

E-O P2
(A.5)

This completes the proof for j = 2. The extension to the case

where j > 2 is now obvious.

REFERENCES

[1] M. A. Breuer, "Testing for intermittent faults in digital circuits," IEEE Trans.
Comput., vol. C-22, pp. 340-351, Mar. 1973.

[2] S. Kamal and C. V. Page, "Intermittent faults: A model and a detection pro-

cedure," IEEE Trans. Comput., vol. C-23, pp. 770-725, July 1974.
[31 S. Kamal, "An approach to the diagnosis of intermittent faults," IEEE Trans.

Comput., vol. C-24, pp. 502-505, May 1975.
[4] H. Y. Chang, E. G. Manning, and G. Metze, Fault Diagnosis of Digital Systems.

New York: Wiley, 1970.
[5] 1. Koren and Z. Kohavi, "Sequential fault diagnosis in combinational networks,"

IEEE Trans. Comput., vol. C-26, pp. 334-342, Apr. 1977.
[6] D. E. Knuth, Fundamental Algorithms. Reading, MA: Addison-Wesley,

1968.
[7] D. Matula, "A periodic optimal search," Amer. Math. Monthly, vol. 71, pp.

15-21, Jan. 1964.
[8] W. L. Black, "Discrete sequential search," Informat. Contr., vol. 8, pp. 159-162,

Apr. 1965.
[9] M. R. Garey, "Optimal binary identification procedures," SIAM J. Appl. Math.,

vol. 23, pp. 173-186, Sept. 1972.

An Algorithm for Grey-Level Transformations in
Digitized Images

ASHOK T. AMIN

Abstract-Grey-level transformations on digitized images are

variously used to minimize storage requirements or to enhance
low-level contrast information. A graph-theoretic approach is
proposed to implement these transformations. In particular, an

efficient algorithm is given for transformation leading to almost
uniform grey-level distribution.

Index Terms-Data compression, digitized images, grey-level
transformations, image enhancement, uniform distribution.

I. INTRODUCTION

An image S is characterized by a grey-level function g that
assigns each point (x,y) E S a grey-level g(x,y). Computer pro-

Manuscript received September 3, 1976; revised March 8, 1977.
The author was with the University of Illinois at Chicago, Chicago, IL. He is now

at 227 Custer Avenue, Evanston, IL 60202.

Pk - (1 - ek)M1pk
E Pi - Z (1 - ei)Mpi

f,EF1 ftiF1

11$8

