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Abstract - Multiprocessing systems consisting of many 
processors, memory modules and interconnection links are being 
designed and implemented. Improvements in technology have 
reduced the failure rates of all system components. However, the 
large increase in the number of components per system has more 
than offset the increase in reliability of a single component. 
Therefore, some of the hundreds (or even thousands) of system 
components are anticipated to fail while the system is operating. 
Important questions regarding these systems are: Should each 
component be repaired upon failure, or should maintenance be 
scheduled at regular intervals allowing a graceful degradation of 
the system between repairs? If the latter is chosen, how fast will 
the dependability and performance of the multiprocessing system 
degrade before a repair takes place? This paper studies the 
behavior of a multiprocessing system with a multistage intercon- 
nection network in the presence of faulty components. Measures 
for the connectivity and performance of these systems are proposed, 
including: The average number of operational paths, the average 
number of accessible processors and memories, the average 
number of fault-free processors (memories) that are connected to 
an accessible memory (processor), the bandwidth, and the pro- 
cessing power of the system. Based on these measures, a tight up- 
per bound for the maximal fully connected system is suggested. 
The gracefully degrading system is then compared, through some 
numerical examples, to a system whose faulty components are 
repaired upon failure. Based on these comparisons, the anticipated 
reduction in system performance can be estimated and consequent- 
ly, appropriate maintenance policies can be determined. 

1. INTRODUCTION 

Advances in VLSI technology enable the design and 
implementation of multiprocessing systems consisting of 
very many components. One important class of these 
multiprocessing systems includes the shared-memory 
multiprocessors where all processors can access a set of 

memory modules through a multistage interconnection net- 
work. When implementing a complex multiprocessor, some 
of its components (like processors, memory modules or inter- 
connection links) will fail. One then has the choice between 
replacing the faulty components upon failure, or waiting until 
a scheduled maintenance is performed and using the system at 
a degraded rate of performance in the meantime. 

If graceful degradation of the multiprocessor is allowed, 
the computational capabilities of the degrading system must 
be estimated. To measure these capabilities it is insufficient to 
count the number of fault-free processors, memories, and in- 
terconnection links, since a fault-free processor for example, 
is useless if it is disconnected from the rest of the system. The 
measures should indicate: 

The number of operational communication paths 
The size of the maximal fault-free fully connected 
system existing (where a set of processors and a set of 
memories form a fully connected system if each pro- 
cessor in the set can communicate with every memory in 
the corresponding set) 
Similar connectivity issues. 

The problem of calculating the average maximal fully 
connected system (or, equivalently, of finding the pro- 
bability of a fully connected system of given dimensions) 
is, in general, of exponential complexity. One approach to 
the problem is constructing a detailed Markov chain where 
at each state the exact location of faulty components is 
known. This approach was adopted [l] for the analysis of 
a 16 x 16 network. The prohibitively large number of 
states (on the order of 216+'6+32 = 2@) was reduced there to 
25 after making several simplifying assumptions. Some of 
these assumptions lead to a pessimistic view of the system, 
and the generalization of the state reduction process to 
other system sizes is not straightforward. In a second ap- 
proach to the problem [2], a spatial Poisson distribution 
for the faults is assumed. This assumption is accurate only 
for very large systems and very small fault probabilities. 

The approach adopted here is different. Measures for 
the connectivity of a multiprocessor system with a 
multistage interconnection network in the presence of faul- 
ty components are defined. These connectivity measures 
indicate how many fault-free processors are still connected 
to fault-free memories and vice versa. The connectivity 
measures are simple to calculate, do not require pessimistic 
assumptions, are not restricted to a given size of the 
system, and can be extended to other architectures of the 
interconnection network. Exact expressions for these 
measures are derived, and then a tight upper bound for the 
average fully-connected system is obtained. 
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These novel measures for system connectivity are in- 
troduced in section 2 along with several basic assumptions 
and notation. Section 3 derives expressions for the connec- 
tivity measures. Based on these measures the processing 
power of the degrading system is calculated in section 4. 
Section 5 compares, through some numerical examples and 
using the above measures, a gracefully degrading system to 
a system where each component is repaired upon failure. 

2. CONNECTIVITY MEASURES 

Consider a multistage interconnection network which 
connects N processors (N = 29 to N memories. The N x 
N interconnection network is constructed of 2 x 2 swit- 
ches arranged in k = log N stages, each containing N/2 
switches as illustrated in figure 1. Our analysis can be 
generalized to the case where the number of processors is 
not necessarily a power of 2, the number of memories is 
different from the number of processors, and the network 
is built of a x b switches. For the sake of clarity however, 
the discussion here is restricted to the simpler case. 

Notation 

t some given time instant 
qr(t), pr(t) probability that a processor is faulty, fault- 

free at time tp,(t) + q,(t) = 1. 
qm(t), p,(t) probability of a faulty, fault-free memory 

at time t .  
qxt), pxt) probability of a faulty, fault-free link at time 

t. 
a t )  mean number, at time t ,  of operational processor- 

to-memory paths. 
r* number of processors for the maximal, fully con- 

nected system. 
m* number of memories for the maximal, fully con- 

nected system. 

Processors and memories are considered to be non- 
decomposable components and therefore, any fault in a 
processor for example, results in the removal of this pro- 
cessor from the system. However, in contrast to the 
pessimistic assumption in [ 11, interconnection switches are 
decomposed into links and if one link is faulty, the other 
links can still operate properly. 

The functional form of p,(t), pm(t), pxt) depends upon 
the statistical model for the faults in the system. Our 
analysis applies to any statistical fault process, as long as 
p,(t), p,(t), pxt) can be calculated. The model need not in- 
clude repair of faulty components, and each component 
(namely, processor, link, and memory) may have a dif- 
ferent distribution law. Thus our approach is less restric- 
tive than the Markov chain approach [ 11. 

In the numerical examples we employ the widely used 
statistical model according to which the failure rates for 
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Fig. 1. An 8 x 8 multi-stage interconnection network 

each component are constants, viz A,, A,, A, for processors, 
memories and interconnection links, respectively. For the 
degrading system, the probability of a fault-free processor 
at time tis ,  

Similar expressions are obtained for p,(t) and pkt). 
For the numerical analysis of the system with repair-upon- 
failure we use the similarly well-known model, according 
to which the repair (hazard) rates are constant with 
parameters pr ,  p,, p, for the three types of components. For 
this model, the probability of a fault-free processor at time 
tis, 

pr(t) = A + - exp(-(Ar + pr)t) (2.2) 
Ar + pr Ar + pr 

and similarly for the memories and interconnection links. 
To analyze the connectivity of multistage networks in 

this environment where processors, memories and inter- 
connection links can fail, the connectivity measures should 
capture the capabilities of the gracefully degrading 
multiprocessor system, eg, the number of connected fault- 
free processors and memories, the number of operational 
paths within the interconnection network, and the number 
of memory requests (from the processors) that can be 
transmitted through the interconnection network 
simultaneously. 

Let the average maximal fault-free fully connected 
system, at time t ,  be the tuple (Fr(t), F,(t)). This tuple is the 
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mean value of the tuple (r*, m*). Since a 2-dimensional 
maximum is not well-defined, we choose among all local 
maxima the one for which r* and m* are the closest, ie, the 
one for which min {r*,  m*}  is maximal. The problem of 
calculating (F,(t), F,(t)) is exponential. We suggest 
therefore, the following approximate measures. 

A reasonable measure for connectivity is the mean 
number, at time t, of operational processor-to-memory 
paths. Define a path as a processor, a memory, and the 
links connecting them: for a path to be operational, all its 
components (processor, memory, links) must be fault-free. 
The use of Q ( t )  as a connectivity measure was first sug- 
gested in [2]. A shortcoming of this measure is that the 
number of paths by itself provides no indication as to how 
many distinct processors and memories are still accessible. 

Define a processor as accessible (at time instant t )  iff it 
is fault-free and is connected to at least one fault-free 
memory. Similarly, define a memory as accessible iff it is 
fault-free and is connected to at least one fault-free pro- 
cessor. We propose an additional measure for connectivi- 
ty, namely, the tuple (A,(t), A,&)) where A,(t) and A,(t) 
denote the mean number of accessible processors, and ac- 
cessible memories (at time t), respectively. This tuple does 
not necessarily imply that a fully connected fault-free A,(t) 
x A,&) interconnection network exists, nor does it in- 
dicate how many fault-free memories are connected, on 
the average, to an accessible processor. However, by com- 
bining Q(t)  and (A,( t ) ,  A , ( t ) ) ,  a more complete 
characterization of system connectivity is obtained, as 
shown in theorem 1. 

Theorem I: Given a multiprocessor system with a 
multistage interconnection network, let N,(t) (N,(t)) 
denote the mean number of fault-free memories (pro- 
cessors) to which an accessible processor (memory) is con- 
nected, then: 

Proof: (a) Let p(t) be the random variable denoting 
the number of memories to which an arbitrary processor 
(not necessarily an accessible one) is connected at time t. E 
{&)} is the mean number of operational processor-to- 
memory paths emanating from one processor. Then, if all 
processors are equivalent- 

i .  Q(t) = N - E{p(t)}. 

Pr{p(t) > l}, is the probability that a processor is ac- 
cessible. Hence, the mean number of accessible processors, 
A,(t), can be written as- 

ii .  A,(t) = N * Pr{p(t) > I}. 

Finally, N,(t) is according to its definition- 

iii. N,&) = E{p(t) I &) > l}. 

Evaluating the conditional s-expectation in iii using i and ii 
yields, 

N 

C i - Pr{v(t) = i }  

Pr{ v(t) > l }  Pr{v(t) > 1)  

Equation b for Nr(t) can be proved in the same way. 0 
Example: This simple example clarifies theorem 1. 

Let p,(t) = 4/5, p,(t) = 9/10 and ppXt) = 1 (indicating 
fault-free interconnections). It is easy to see that for this 
simple case, 

N&), on the other hand, is defined as the mean number of 
fault-free memories to which an accessible processor in 
connected. Thus, it is defined as a conditional 
s-expectation (conditional on the event that the processor 
is accessible) and should be calculated as such. In this 
specific case for which ppXt) = 1, the event “The processor 
is accessible” is equivalent to the event “The processor is 
fault-free and at least one memory is fault-free,’. Hence, 
N,(t) is the mean number of fault-free memories, given 
that at least one memory is fault-free. This conditional 
s-expected value is: 

and consequently, 

Similarly, 

N,(t) = + N / [l - (+>“I 

The measures N,(t) and N,(t) satisfy N,(t) d A,(t) and N,(t) 
< A,(t) but still (N,(t), N,(t)) is only an upper bound for 
the average maximal fully connected system (F,(t), F,(t)). 
However, due to the high correlation among the paths in 
the interconnecting network (resulting from the fact that 
each fault affects Npaths), a reasonable assumption is that 
these two tuples are very close to each other (especially for 
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large values of N and small fault probabilities). Simulation 
runs of which the results are reported in section 5 ,  verified 
this assumption, suggesting that the proposed measures can 
adequately characterize the connectivity of a multistage 
multiprocessor in the presence of faulty components. 

System connectivity can be the basis for measuring the 
performance of the system. One possible measure for perfor- 
mance is the processing power. The processing power of a 
multiprocessor system (at time t)  is denoted by c(t) and is the 
mean number of accessible processors that are computing, ie, 
not communicating with the memory. Only accessible pro- 
cessors are considered since non-faulty processors which are 
disconnected from all memory modules can not perform any 
useful computation. The processing power is calculated based 
on the connectivity and the bandwidth BW of the 
multiprocessor system. The latter is usually defined as the 
mean number of requests for the shared memory which are 
accepted per cycle given that each processor generates, with 
probabilityp,,, a request during every cycle [4]. Since all the 
measures introduced before are timedependent, a slightly 
different definition for the bandwidth is used here. BW ( ) is 
the mean number of processors, at time t, which are com- 
municating with some memory. Theorem 2 provides the rela- 
tionship between the connectivity, the bandwidth and the 
processing power. 

Theorem 2: 

Given a multiprocessor system with a multistage inter- 
connection network, let A,@) and c(t) be defined as before, 
and let BW (t) denote the bandwidth at time t, then: 

c(t) = A,.(t) - BW(t). 

Proof: 

Let dt), p(t), r(t) be the r.v.'s denoting the number (at 
time t) of accessible processors, processors communicating 
with some memory, and computing processors, respectively. 
Clearly, for each time instant t, cy(t) = p(t) + y(t). Since A#) 
= E{ a(t)}, BW (0 = E{P(O}, and c(0 = E{y(t)}, the 
theorem follows. U 

Expressions for the bandwidth of a multistage network 
have been derived before [4]. Here, the bandwidth is defined 
as a time-dependent measure and an expression for 
calculating it is presented in section 4. 

3. THE CONNECTIVITY OF A MULTISTAGE SYSTEM 

This and the next sections analyze the degradation over 
time of a multistage system in the presence of faulty com- 
ponents, using the different connectivity measures and the 
processing power as defined in the previous section. We use 
the very realistic assumption that the mean time between 
component failures is much larger than the average length of 
the communication period between a processor and a 
memory. This implies that the status of the system com- 
ponents (faulty or fault-free) is constant for a large enough 

period of time-thus allowing us to study the system behavior 
under a statistical steady-state. 

In what follows the system is observed at some arbitrary 
time instant t which is fmed throughout the analysis and is 
omitted from the notation for the sake of simplicity. 
However, all resulting measures are still functions of t due to 
the dependence on t of p,.(t), p,(t) and p,(t). These prob- 
abilities are now denoted by p,, p,, and p,. 

We start with the analysis of the system connectivity, as 
measured by Q, by A, and A,, and by the tuple (N,, N,,,). In a 
non-redundant interconnection network there is exactly one 
path between a processor and a memory and consequently, 
the calculation of Q is straightforward. Q is obtained by 
multiplying the number of processor-memory pairs by the 
probability of a fault-free path. The latter probability is, 

where (k + 1) is the number of links along the path. 
Therefore, 

Let +, be the probability that a given processor (say pro- 
cessor 0) is accessible; it is Pr{ v(t) 2 1 } in the proof of 
theorem 1. A, is obtained by multiplying N by a,. Due to the 
overlapping of the paths leading to the same processor, the 
inclusion/exclusion principle has to be used to calculate a,. 
Define &. as the event in which memoryj is connected to pro- 
cessor 0. +, can now be expressed in terms of the &. as the 
probability that at least one of the events Ej occurs, 

+, = Pr{E, U E2 U ... U EN} (3.3) 

(3.4) 

where W(i) is the sum over all (9 subsets { j l  , j , ,  . . . , j ; }  of size 
i, of the probability that all i paths in the subset are opera- 
tional, namely, 

(3.5) 

For a subset of i paths to be operational, all links in the 
subset must be fault-free. Hence, Pr{E,, n E,* n ... n Ejj} 
depends not only on i but also on the number of links that the 
paths in the given subset have in common, since each link 
must be taken into account exactly once. Let d denote the 
number of distinct links in the subset, then- 

h{qI n E,, n ... n E ~ J  = piprpf' (3.6) 

2 k + l - l  

w(i) = & P r  ,z++, & , d d  (3.7) 
where s;,d is the number of subsets of size i which contain ex- 
actly d distinct links. 

To find S;,d,  consider each subset of paths emanating 



~ 

86 

from one processor as a binary tree of height k, with the in- 
terconnection links as vertices of the tree. The link connec- 
ting processor 0 is the root of the tree and the links con- 
nected to the i memories are the leaves. The combinatorial 
problem that has to be solved is: How many binary trees of 
height k with i leaves have exactly d vertices? To solve this 
problem, the levels of the tree are numbered, beginning 
from 0 for the leaves up to k for the root. d can then be ex- 
pressed as the sum do + dl + ... + dk where d. is the 
number of vertices at level n,  with dk = 1 and do = i. We 
solve the above combinatorial problem recursively. Given 
that level n has d,, vertices, the number of vertices at level 
(n - 1) satisfies d,, d d,,-l < 2dn and the number of ways in 
which level (n - 1 )  can have d,,-l vertices is: 

dn 2 2 4 - d n - l  (n = k, ..., 1) .  
(dn-l - 

Multiplying (3.8) from k to 1 yields, 

As an example, for the 8 x 8 interconnection network in 
figure 1 we obtain, 

Substituting W(1), ..., W(N) into (3.4) and then multiply- 
ing by N yields A,. Due to the symmetry between pro- 
cessors and memories, A,,, is obtained similarly by inter- 
changing pr and p,,,. Finally, Nr and N, are calculated by 
dividing Q by A, and A,, respectively. 

4. THE PROCESSING POWER OF A 
MULTISTAGE SYSTEM 

This section derives an expression for the processing 
power of a multistage system in the presence of faults 
which requires an expression for the bandwidth of such 
systems. An analysis of the bandwidth for a fault-free in- 
terconnection network appears in [4] .  The analysis has 
been generalized [3] to an environment in which faults can 
occur and is briefly summarized here for completeness. We 
adopt the simplifying assumption that the destinations of 
the memory requests are s independent and uniformly 
distributed among the N memories. Therefore, the net- 
work bandwidth can be obtained by multiplying the 
number of memories N by the probability that a given 
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memory module is non-faulty and has a request at its in- 
put. This last probability is calculated iteratively, follow- 
ing a path leading to this memory, ie, the probability of a 
request on an output link of a switch is calculated from the 
probability that such a request has been accepted at the in- 
put links to the same switch. 

To simplify the discussion, a link is in state 1 (0) if it 
has (has not) a request for the memory. A faulty link is in 
state 0. The probability of a request on a link is thus the 
probability that this link is in state 1. We assign numbers to 
the k = ZogN stages in a descending order so that stage 0 is 
the last stage and its output links are connected to the 
memories, stage (k - 1) is the first one and its inputs are 
connected to the processors (see Figure 1 ) .  Consider a 
switch in stage i and denote its outputs x’”, PI. Its input 
links are the outputs of (two different) switches in stage (i 
+ 1 )  and are denoted by and Y(’+l). Based on our 
assumption that memory requests are uniformly 
distributed among the memories, the probability that an 
incoming request is routed to any output link is the same. 
Hence, it is sufficient to consider only a single output link 
and derive an expression for the probability that it is at 
state 1,  ie, Pr{X” = 1). 

Since a request for a memory module can reach the 
output link of a switch through any of the two input links, 
the state probability Pr{X’” = 1 )  of the given output link 
has to be calculated from the joint probabilities of these in- 
put links: 

Pr{(S+’),  P+’)) = (u,v)); u,v = O , 1 .  

This calculation is performed using transition probabilities 
which take into account the status (faulty or fault-free) of 
the (physical) input links and the destinations of the in- 
coming requests. Since memory modules are assumed to be 
equivalent, the incoming requests are routed to any of the 
two output links with probability 0.5. Consequently, the 
transition probabilities between the two inputs and the out- 
put of a switch are, 

Only input link faults are taken into account. Faults at the 
output links are considered as input link faults at the next 
stage. 

The state probability Pr{X(I) = 1 )  of the output link is: 

For a non-redundant network the inputs into each switch are 
s-independent. Hence, 
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Pr{ P+')= v}; U,V = 0,l  (4.3) 

Using (4.3) and the equation: 

we obtain from (4.2) after some algebraic manipulations, 

Pr{X'" = I} = p, x Pr{X('+') = 1) 

This expression is identical to the one in [4] if fault-free (p, = 
1) 2 x 2 switches are assumed. This simple recursion for- 
mula enables the calculation of the successive state prob- 
abilities, starting from the processors outputs up to the 
memory inputs. For the processors output links we have: 

where p, is the probability of a processor requesting a 
memory connection. 

Recursively, Pr{X0) = 1) is calculated. To compute 
the bandwidth note that the memory and its input link can 
be faulty as well, hence, 

BW = N Pr{Xo) = l }  p,p, (4.6) 

On the basis of the bandwidth BW and the number of ac- 
cessible processors A, the processing power is calculated us- 
ing: 

C = A , - B W  (4.7) 

5 .  NUMERICAL RESULTS 

This section numerically compares a gracefully 
degrading system and a system whose faulty components 
are repaired upon failure. The connectivity measures 
A,(t), A,(t), N,(t) and N,(t) of the two systems, both of 
size 16 x 16, have been calculated as a function of time 
and are depicted in figures 2 and 3; time is measured in 
l/X, units. The values for the other two failure rates are 
X,/X, = 0.7 and X,/X, = 0.2 while the same repair rate was 
assumed for all three types of system components: p, = p, 

An important conclusion from this comparison is 
that N,(t) and N,(t) degrade faster than A#) and A,@), 
respectively. To find the average size of the maximal fully 
connected system we have simulated the gracefully 
degrading system for different time instances. The results 
of these simulation runs are shown in figures 2 and 3. The 
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Fig. 2. (a) The average number of accessible processors, A,, for 
a 16 x 16 gracefully degrading system and a 16 x 16 repaired 
system (p, = p, = p, = 20X,). (b) The average number of pro- 
cessors connected to an accesible memory, N,, for the same two 
systems. (c) The average number of fully connected processors 
for the gracefully degrading system-results of simulation. The 
failure rates are X,/X, = 0.7 and X,/X, = 0.2. 

average size of the fully connected system is very close to 
N, x N, thus demonstrating the usefulness of the pro- 
posed connectivity measures. 

Figure 4 depicts the processing power of the 
degrading system and the system which is repaired upon 
failure as a function of time. Since the processing power 
depends on the probability that a processor requests a 
memory access we have calculated the procesing power of 
the two systems (with the same parameters as in figures 2 
and 3) for two values of p,,; p,, = 0.25 andp, = 0.75. The 
processing power for p,, = 0.25 is higher since the pro- 
cessors are less busy communicating with the memories. 
Figure 4 can be used to determine the interval of schedul- 
ed maintenance so that the processing power of the system 
will not fall below some predetermined value. 

Figure 5 can be helpful (combined with an adequate 
cost function) in determining a cost-effective repair rate 
for unscheduled maintenance. This figure depicts the in- 
crease in system connectivity (as measured by N, and N,) 
and processing power when the repair rate is increased. 

Similar results were obtained for other sets of failure 
rates, e.g., XJX, = 2 and X,/X, = 0.05, indicating that the 
same qualitative conclusions can be reached for a wide 
range of system parameters. 
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Fig. 5 The processing power of a repaired 16 x 16 system as a 
function of p (pr = p, = p, = p) for (a) pa = 0.25 and (b) pa = 
0.75. (c) The average number of processors connected to an ac- 

Fig. 3 (a) The average number of accessible memories, A,, for 
the same two systems. (b) The average number of memories con- 
nected to an accessible processor, N,, for the same two systems. 
(c) The average number of fully connected memories for the 
gracefully degrading system-results of simulation. 

cessible memory, N,, as a function of 
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