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On the Properties of Sensitized Paths

ISRAEL KOREN anp ZVI KOHAVI

Abstract—In this note we investigate the conditions under which
the paths which propagate a fault in a combinational network to the
network output are not necessarily entirely sensitized,
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Fig. 2. A reconvergent fanout line.
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Fault detection by path sensitization is a well-known technique
which has been studied extensively in the literature [1}, {2]. A
sensitized path is informalty defined as a path in a digital network
leading from the site of a fault to a network output and where the
network inputs are specified in such a manner so as (o generate
the appropriate value at the site of the fault and to propagate the
{ault signal along this path to the output [1], [2]. In most cases
the faults that occur along a sensitized path will also be detected
at the network output.

In this correspondence we investigale the conditions under
which a test will propagate a fault through paths in a network
withoul sensitizing the entire paths [3]. We shall consider combin-
ational networks with single stuck-at type faults. As an example
consider the network in Fig. 1 [3]. The test x; x, x5 = 111 detects
the faults x, s-a-0 and x4 s-2-0; but does not detect any of the
faults on either line 4 or line 5, which are clearly part of the
propagating paths from line 2 to line 6. We shall subsequently

.refer to such lines, which propagate faults to the output without

being sensitized, as unsensitized propagating lines.

The detection of unsensitized propagating lines is very impor-
tant in backward tracing when specifying the faults covered by a
given test [4]. In the backward-tracing approach, once an unsen-
sitized line is reached the subnetwork feeding this line can usually
be ignored, except when the unsensitized lines are unsensitized
propagating lines. In such a case further backward tracing within
the unsensitized subnetwork must be performed. The use of back-
ward tracing for specifying the aults covered by a given test is
usually preferable to forward simulation technigues (parallet or
deductive simulation). While in the forward simulation al! patits in
the network emanating [rom the primary input lines must be
checked; in the backward tracing operation only the sensitized
paths and the unsensitized propagation lines must be checked.
Hence, the required computation time is considerably smaller.

As will be shown later, the existence of unsensitized propagat-
ing lines is closely related to the existence of reconvergent [anout
lines within the network. Let x be a fanout line and let z denote
the output of the reconvergence gate whose input lines are yy,
V2, "> ¥m, as depicted in Fig. 2. This reconvergence gate and all
other gates in the network are assumed to be conventional gates
like AND, DR, NOT, NAND, MOR. Such a gate can be uniquely
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described by a binary vector (1, Y2, ***, Vm» 8), Where vy, =+, ¥ is
the only input combination for which the output z equals & [4].
For example, a three-input NAND gate is described by (1, 1, 1, 0).
We shalt reler to such a vector as the describing vector for the gate.

Let T be a given test that covers the fault x s-g-o and initially
suppose that the fault propagates to the output z through just a
single path. Suppose also that the same test can be used to test z
for s-g-B. In this case all the lines along the path are sensitized.
Clearly, if the number of inversions along the path is even (odd),
then a = B (x = B). If, however, for a given test T the fault propa-
gates through two or more paths leading from x to z, we have two
possible cases. If the inversion parity of the propagating paths is
not the sarme, the fault wiil not propagate to z and thus will not be
detected by the test [1]. On the other hand, if the inversion parity
of the propagating paths is the same, the fault will propagate to z.

Thus, equality of the inversion parities along the propagating .

paths is a necessary condition for the detection of x s-g-a.

Theorem 1: A sensitized subnetwork corresponding to a test T
contains unsensitized propagating lines iff: ’

1} The test T covers a fault s-a-« at a fanout point x and this
fault propagates to the output of a reconvergence gate through at
least two paths, all having the same inversion parity; and

2) the test T covers a fault s-a-§ at the output z of the reconver-
gence gate, such that f = 3. ’

Proof: Suppose the two conditions above are satisfied. f T
covers the fault z s-a-f and since g =4, the output z for the
fault-free network is z = 3. Hence, by the definition of the describ-
ing vector, at least one of the input lines to the reconvergence gate
must satisfy y; # v;. Clearly, for each line y; to be a propagating
line, y; # y;. (For example, if the reconvergence gate is a four-
input aND gate whose describing vector is (1 1 1 1 1), the fault
covered by test T is z s-a-1 and for the fault-free output we have
z =3 = 0. Clearly, a fault can propagate from x to z only through
the input lines satisfying y; = 0 # y;.) Now, by condition 1, there
are at least two input lines to the reconvergence gate for which
¥; # v; and a single favlt in one of them will not propagate to the
output z. Thus, it follows that neither of these lines is sensitized.

To prove that the above conditions are also necessary, suppose
that the test T covers a fault s-o-8 at the output line z of a gate in
the network. There are two cases to be considered: 1) The output
z for the lault-free network is z = 4, ie., f=3. Hence, y, -
¥Ym=7¥i """ Tm, and consequently each of the input lines y, -+ y, is
also sensitized; and 2) z = 3 and § = 4. In this case at least one of
the inputs to the gate satisfies y; # y;. Clearly, if only one line
satisfies y; # y,, this line is sensitized. If, on the other hand, there
are two or more input lines for which y; # y,, a single fault in one
of them will not propagate to the output. Hence, these lines are
not sensitized. However, these unsensitized lines may propagate a
fault s-a-a from a preceding line x. In fact, such a fault will propa-
gate from x to z iff it changes simultaneously all the y; for which
¥; ¥ v; but does not affect the remaining y’s. Such a situation
occurs only if all the y;'s for which y; # y; are on paths emanating
from a fanout point x and all these propagating paths have the
same inversion parity. Q.E.D.
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Revision of the Buffer Length Derivation for a Modified
E,/D/1 Systems by Maritsas and Hartley

J. S. HILL

Abstract—The problem of loss of items arriving at & queue of
limited length is relevant to the design of computers with real-time
inputs and of similar equipments where only a limited input buffer
size is possible. The length of buffer required to reduce the overflow
loss to an acceptably low level is an important design parameter,

This problem has been considered by Dor [1] for a random
(Poisson) arrival rate and by Maritsas and Hartley 2] for an Erlang
arrival rate. A discrepancy between the two models for an Erlang
input of degree 1 led to a re-examination of the latter model.

This paper introduces a revised model for Erlang input. It gives the
same results as Dor’s model for degree 1, and substantially afTects
the results for degrees 2 and higher.

Index Terms—Buffer _m-.n:_.. Erlang input/constant removal rate,
fractional loss, queue length distribution.

INTRODUCTION

Items arriving at a queue of limited length are lost by overfiow
if the queue is already full EJ«.: an item arrives. In many equip-
ments, items arrive at random and are placed in a buffer of limited
size from which they are removed in the order of arrival at regular
sampling intervals. I the input buffer is too small, the fractional
loss of input items may be unacceptable.

A model for this situation was developed by Dor [1] for random
(Poisson) arrivals, and subsequently Maritsas and Hartley [2]
published a model for Erlang input. These models will be referred
to as the Dor model and the Maritsas model in this paper, which
will use the notation of (and assume a knowledge of) reference [2].

The derivation of [2, eq. (8)] shows that it is in fact a transfor-
mation which, acting on an arbitrary set of probabilities. g(W)
existing at a sampling instant, generates the set of probabilities
g'(W) at the next sampling instant. The equilibrium condition is
the special case of g'(W) = g(W).

The transformation equation is therefore

W . min (W, K= 1)
LaWw+K=—mp()+ % qb)p(W ),

i —Lt = .

dug O<W<KL+K-—1I:
0, W= KL+ K.

(1)

Solutions for the fractional loss R, of items were obtained by
the author by successive application of (1) from an arbitrary ini-
tial set of g(W), normalizing ¢'{W) so that

KEL+K-1

2. dw)=1

WZo
after each application, until equilibrium was reached, and then
using equation {2, eq. (11)} to find R;. The results obtained agreed
with those of reference [2] for K = 2, 3, 4, and 5, but were some
three times greater for K = ! than those of reference [1]. This gave
rise to suspicion that there was an error in one of the models, and
the fact that the sum of all ¢'(W) was always less than ! before
normalization indicated that some of the transition probabilities
in the Maritsas model were incorrect.

“To investigate this, a single application of (1) was performed for
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