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ABSTRACT 

In this paper we analyze the performance of multi-processor 
systems with a multi-stage interconnection network in the 
presence of faulty components. Models for estimating the 
system performance, as measured by its bandwidth and pro- 
cessing power, are developed for two different modes of op- 
eration. In the first mode, the operation of the system is 
fully synchronized and all processors which need memory 
access issue their requests simultaneously. In the second, 
each processor is allowed to issue its request a t  any time 
instant. 

For each of the two modes of operation, two models are pre- 
sented providing lower and upper estimates for the band- 
width of multi-stage systems. The expected degradation in 
the performance of the system (in the presence of faulty 
components) predicted by these two models is then com- 
pared' to simulation results. 

1. Introduction 

Advances in VLSI technology and development of new com- 
puter-aided design tools, enable the design and implemen- 
tation of multiprocessing systems consisting of hundreds 
or even thousands of components. One important class of 
these multiprocessing systems includes the shared-memory 
multiprocessors where all processors can access a set of 
memory modules through a circuit-switching multistage in- 
terconnection network. 

When implementing a complex multiprocessor, some of its 
components (like processors, memory modules or intercon- 
nection switches) are expected to become faulty. In many 
cases the faulty components can not be immediately re- 
paired or replaced, yet the remaining units can be reconfig- 
ured into a functioning network of smaller dimensions and 
a reduced rate of performance. An example might be a 
real-time computing system where even a relatively short 
down-time period may be intolerable. We would still like 
to use the system at  the degraded rate of performance until 
a repair and/or replacement can take place. 

'This work wils supported in part by NSF under contract MIP- 
8805586. 

The decision whether to  support such a graceful degrada- 
tion of the system should clearly depend upon its expected 
performance in the presence of faults. This is especially 
important in the case of multiprocessors with multistage 
interconnection networks which provide a unique path be- 
tween any processor and any memory module. These sys- 
tems are inherently very sensitive to failures of any kind, 
since a single fault in any internal switch or link will render 
some memories unreachable from certain processors. 

In this paper we analyze the performance (over time) of 
multistage multiprocessors in the presence of faults. A com- 
monly used measure for the performance of an intercon- 
nection network is its bandwidth. The bandwidth B W ( t )  
is defined as the expected number, a t  time t ,  of requests 
for the shared memory which are accepted per time unit. 
The bandwidth measures the effect of blocking which re- 
sults either from memory conflicts (i.e., two or more re- 
quests directed to the same memory), from the sharing of 
paths by two or more processor-memory pairs (even when 
the memories involved are distinct), or, as in our case, from 
the presence of some faulty components. Another measure 
for system performance that we employ is the processing 
power which is defined as the average number of non-faulty 
processors which are computing, i.e., operational proces- 
sors which are neither communicating with the memory nor 
waiting for such a communication to be established. The 
processing power at  time t is denoted by C ( t ) .  
Two different types of models for analyzing the performance 
of multistage networks can be developed. The first one in- 
cludes discrete models which assume a fully synchronized 
mode ofoperation. Here, time is divided into network cy- 
cles of fixed length, which equals the memory access time 
plus the network delay (twice the propagation delay of a 
signal through the network). Requests for memory access 
are issued at  the beginning of a network cycle and all suc- 
cessful communications terminate at the end of the same 
cycle. The second type of models includes continuous mod- 
els which assume an asynchronous mode of operation, i.e., 
each processor can issue a memory request a t  any time 
instant and the communication period can last for an arbi- 
trary length of time. 
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Two discrete models are presented in Section 3 generalizing 
previously suggested models ([5] and 181) to allow the pres- 
ence of faulty links, faulty processors and faulty memories. 
The first model is computationally simple, but too pes- 
simistic for low rates of request. It assumes that a memory 
request blocked by the network is lost, an assumption that 
for low traffic could result in a loss of bandwidth. For very 
high request rates, this first model coincides with the second 
model, which assumes that any processor whose memory 
request is blocked, re-issues its request in the consecutive 
network cycle. Although it seems more accurate than the 
first model, this second model is however, computationally 
more complex and provides only an upper estimate for the 
network bandwidth due to an additional assumption which 
will be explained later. These two discrete models are then 
compared to simulation results in Section 4. 

In Section 5 two similar models for the asynchronous mode 
of operation are presented based on the assumption that 
a blocked request is either lost or re-issued, respectively. 
They too provide, for low request rates, lower and upper 
estimates for the bandwidth of the system but are computa- 
tionally less complex than their discrete counterparts. The 
two continuous models are compared to simulation results 
in Section 6. Final conclusions are presented in Section 7. 

2. Preliminaries 

Consider a multistage circuit-switching interconnection net- 
work constructed of 2 x 2 switches which connects N 
processors (where N = 2 k )  to N memories. 

The performance of unbuffered multistage interconnection 
networks has been previously analyzed. In 181, 151, (41 and 
[I] it has been assumed that the networks are fault-free. 
Faults are considered in (71 and [6], however, the analysis 
in 171 can not be extended to large values of N ,  while the 
analysis in [6] assumes independence among the processors, 
which is clearly unrealistic and is omitted in our analysis. 

This N x N interconnection network consists of k = logN 
stages, each containing N / 2  switches as illustrated in Fig. 
1. We assign numbers to the k stages in a descending order 
so that stage 0 is the last stage and its output links are 
connected to the memories, stage (k - 1) is the first stage 
and its input links are connected to the processors. 

Let t be some given time instant, let q r ( t )  denote the prob- 
ability that a processor is faulty a t  time t and let p , ( t )  = 
1 - q,(t) denote the probability that the processor is fault- 
free a t  time t .  The functional form of qr(t) depends upon 
the statistical model assumed for the faults occurring in 
the network. The widely used model is the Poisson model, 
according to which the probability of a fault-free processor 
at time t is, 

p , ( t )  = (2 .1)  

where the failure rate A, is the average number of faults 
occurring in a processor per time unit. 

Similarly, we denote by q,(t) ( p , ( t ) )  the probability of a 
faulty (fault-free) memory and by qI(t) ( p l ( t ) )  the probabil- 
ity of a faulty (fault-free) link, all a t  time t .  When Poisson 
distribution is assumed, similar expressions to (2.1) are ob- 
tained for p , ( t )  and pl(t) , with failure rates A, and Al, 

respectively. 

Although we use the Poisson model for the numerical ex- 
amples, our analysis applies for any other statistical fault 
process, including models where the different components 
(namely, processors, links and memories) follow different 
distribution laws and even models that allow repair of faulty 
components. The only requirement is that the probabilities 
p , ( t ) ,  p , ( t )  and p ~ ( t )  can be calculated. 
For the purpose of our analysis we assume that the mean 
time between component failures is very large compared to 
the average length of the communication period (for both 
modes of operation, the synchronous and the asynchronous 
one). This implies that the status of the system components 
(i.e., faulty or fault-free) is constant for a large enough pe- 
riod of time allowing us to study the system’s behavior un- 
der a statistical steady-state. We can therefore, construct 
a Markovian process based on which the processing power 
and the bandwidth will be calculated. For the synchronous 
mode of operation we obtain a discrete Markov chain, while 
for the asynchronous mode we obtain a continuous Markov 
process. In both cases we will view, for the purpose of the 
analysis, the probabilities that the system components are 
fault-free as constants (for a fixed time instant t )  and use 
for convenience the notation p , ,  pm and pl.  

STAGE 2 1 0 

Piglire 1: An 8 x 8 multi-stage interconnection network. 
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3. Discrete Models 

In this section we present two discrete models for studying 
the degradation over time of the performance of a mul- 
tistage interconnection network in the presence of faults. 
Both models assume a fully synchronous mode of opera- 
tion, i.e., processors may issue a memory request only at 
the beginning of a network cycle. The first model further 
assumes that blocked requests are discarded while the sec- 
ond one assumes that processors re-issue their blocked re- 
quests in the next network cycle. We call these two models 
non-persistent and persistent, respectively. The analysis of 
these two models appears in 121 and [3], and is summarized 
here for the sake of completeness. 

The Non-Persistent Model: The non-persistent model 
generalizes a similar model [5 ]  where the bandwidth has 
been calculated for a fault-free interconnection network. 

Since in the non-persistent model any blocked request is 
discarded, the system (observed at the beginning of net- 
work cycles) can be described by a memoryless stochas- 
tic process. Adopting the common assumption that the 
destinations of the memory requests are independent and 
uniformly distributed among the N memories, the network 
bandwidth can be obtained by multiplying the number of 
memories N by the probability that a given memory mod- 
ule has a request a t  its input. This last probability is calcu- 
lated iteratively, following a path leading to this memory, 
i.e., the probability of a request on an output link of a 
switch is calculated from the probability that such a re- 
quest has been accepted at the input links to the same 
switch. The probability that a processor generates a re- 
quest is denoted by pa. 

Let X( ' )  denote the event that there is a request for the 
memory on an output link of any switch in stage i (see Fig. 
1). The probability of this event, denoted by P { X ( ' ) } ,  was 
shown in [2] to satisfy the following recurrence relation, 

This recursion reduces to the one presented in [5] if fault- 
free (i.e., pI = 1) 2 x 2 switches are assumed. 

Equation (3.1) enables us to calculate the successive prob- 
abilities P { X ( ' ) } ,  starting from the processors outputs for 
which we have, 

P{x('))  = Pa PI ( 3 4  
up to the memory inputs yielding P{X( ' ) } .  Finally, to cal- 
culate the bandwidth for the non-persistent model, denoted 
by BW{"P>, we note that the memory and its input link can 
be faulty as well, hence, 

(3.3) 

The non-persistent model is, for low request rates, too pes- 
simistic with regard to the bandwidth, providing only a 
lower estimate for this measure. However, since the proces- 
sors, after having discarded their memory access requests, 
are free for computing, this model is overly optimistic with 
regard to the processing power as will be illustrated in Sec- 
tion 4. The persistent model to be presented next, is more 
realistic than the previous one and provides an upper esti- 
mate for the bandwidth and a reasonably accurate estimate 
for the processing power. 

The Persistent Model: In the persistent model, a blocked 
request is not discarded. Instead, the corresponding pro- 
cessor re-issues its request in the next network cycle. This 
model generalizes a similar model [8] which was restricted 
to the case of fault-free components. The stochastic pro- 
cess required for describing the system's behavior in the 
persistent model is more complex than that for the non- 
persistent one. An exact description of the system's state 
should include the state of each processor, each link and 
each memory resulting in a prohibitively large number of 
multi-dimensional states. We chose as an approximation for 
the state of the system a one-dimensional random variable 
Z, denoting the number of processors which are operational 
yet idle. These are the processors which are not computing 
because they are either communicating with some memory 
or waiting for such a communication to be established. This 
choice, as opposed to approximations in which the state of 
a single processor is considered, captures the dependence 
among the processors which is one of the main characteris- 
tics of a multistage interconnection network. 

The random variable Z is observed at the beginning of each 
network cycle, i.e., Z ( n )  (n=0,1,2, ...) is the number of idle 
processors a t  the beginning of cycle n. In order for Z(n) to 
be a Markov chain, we must add the following assumption: 
At the beginning of each cycle, all the existing requests 
(including both the new requests and the re-issued ones) are 
randomly redistributed among a11 memories, regardless of 
their original destination. This "independence assumption" 
is made in [8] and in (61, and although it is not completely 
accurate (as demonstrated in [9]) it is necessary in order 
to make the analysis tractable. However, models based 
on this assumption can be utilized for obtaining an upper 
estimate for the system's bandwidth, since it clearly tends 
to render the calculated bandwidth slightly higher than its 
actual value. In what follows we show how Z(n) can be 
used to calculate the network's bandwidth and processing 
power. 

Denote by R the number, a t  time t ,  of operational proces- 
sors (0 5 R 5 N) and thus, N - R is the number of faulty 
processors. For a given value of R, Z(n) can assume the 
values 0,1, ..., R. We denote by P@) the one-step transition 
probability matrix whose (i, j)- th element is 



This is the probability that j processors request memory 
access a t  the beginning of cycle n + l ,  given that i processors 
requested it at the beginning of cycle n. Z ( n )  = i means 
that i processors are idle requesting memory access while 
R - i are active performing internal processing. Out of the 
i requests, only d (d  5 d) reach their destinations and are 
accepted. The d corresponding processors become active 
again at  the beginning of the n + 1 cycle, thus increasing 
the number of active processors to R - i+ d .  These R - i+ d 
active processors will generate g new requests, which will 
join the i - d resubmitted ones. Consequently, j = i+  g - d. 

The transition from Z ( n )  = i to Z(n + 1) = j involves 
two random variables: The number d of requests reaching 
their destinations, and the number g of newly generated re- 
quests. The calculation of the transition probability matrix 
P ( R )  requires therefore, the calculation of the following two 
probability matrices: D ,  whose (d, d )  element is 

D,,(i = P{d requests accepted 1 i requests submitted} 

and G, whose (r,g) element is 

Gr,g = P{g requests generated I r processors are active} 

Both matrices do not depend upon the actual value of R. 
Therefore, we define them as (N + 1) x (N + 1) matrices 
and use proper sub-matrices for any given value of R. 
The calculation of Gr,g, the probability that r active pro- 
cessors will generate g requests, is straightforward. The r 
processors are independent, each having a probability pa of 
generating a memory request, hence, 

r,g = 0, ..., N (3.4) 

To calculate Dt,d, the probability that d out of d requests 
will reach their final destinations, we repeat k times the 
calculation for a single stage of switches. To this end, we 
denote by the probability that U out of U requests a t  
the inputs to the switches of any given stage will reach 
the inputs of the next stage. The elements form an 
(N  + 1) x (N + 1) transition probability matrix denoted by 
Cp. To fipd e,,, we denote by a the number of switches in 
the observed stage which have one incoming request and by 
6 the number of switches with two such requests. Clearly, 
a + 26 = U and the probability of the pair (a, b) is 

(3.5) 

Each of the a "single request" switches will propagate the 
incoming request depending on whether the appropriate 
link is fault-free or not. The probability of propagating 
the single request, denoted by al, is hence, a1 = PI. The 
probability of not propagating the request, denoted by CYO, 

is a0 = 1 - pi. 

Denote by w the number of these "single requestn switches 
propagating their incoming request and thus, (a - w )  swit- 
ches produce no output. Then, 

Each of the 6 "double request" switches will propagate 2, 1 
or 0 requests depending both on the destinations of the two 
incoming requests and on the status of the links (faulty or 
not). Denote by PZ, P1 and Po, the respective probabilities 
and by y, z ,  and (6 - y - z )  the number of "double requestn 
switches propagating 2, 1 and 0 requests, respectively, then, 

where, = 0.5 . p: 

PI = PI . (1 - PI) + 0.5 * PI 

Po = 1 - P1 - Pz 
Based on the probabilities in (3.5), (3.6) and (3.7) we ob- 
tain, 

ell," = c P{a,blu) . P { w l a } .  P{y,zlb) (3.8) 
a iZb=u 

w i Z y + r = u  

Having calculated @, the one-stage transition probability 
matrix, the k-stage transition probabilities can be obtained 
simply by raising @ to the k-th power. The ( i ,u )  element 
of the resulting matrix, is the probability that U out 
of i original processors' requests will reach the memories. 
Finally, to calculate D,,d note that some of the U memo- 
ries accessed may be faulty. The probability that out of U 

memories, exactly d will be fault-free is, 

(3.9) 

and consequently, 

Di,d = u=d 2 . (i) Pmd (1 - pm)u-d (3.10) 

The matrices G and D enable us to find P ( R ) ,  the transition 
probability matrix of the Markov process 2, for every giver 
number R of operational processors, 

p!!) = D,,d .  GR-i+d,g i, j = 0 ,..., R (3.11) ' , I  
j = i + g - d  

The matrix dR) can now be used to calculate n(R),  the 
(R + 1)-dimensional vector of the steady-state probabilities 
of the Markov chain, by solving the set of linear equations 

i=O 

On the basis of the above steady-state probabilities the 
bandwidth BW{P} and the processing power C{p} for the 
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persistent model can be calculated. There is however, no 
need to calculate both measures since they are functionally 
related in the currently presented model as shown in the 
following lemma. 

Lemma: The bandwidth and processing power of a syn- 
chronous multistage interconnection network for the persis- 
tent model satisfy, 

Proof: At the beginning of a network cycle, an average 
number of C{P) processors are active, joined by an aver- 
age number of BW{P) processors which have completed 
their memory access in the previous cycle and are now ac- 
tive too. Each of these C{p) + BW{P} processors has a 
probability pa of issuing a request, hence an average of 
(C{P} + BW{P}) . pa requests are issued each cycle. Since 
the system must be in equilibrium, the expected number of 
generated requests per cycle must be equal to the expected 
number of accepted requests per cycle, BWIP). Hence, 
BW{p) = (CtP} + BWIP}) . pa and (3.13) follows. I 
The conditional processing power for a given value of R,  
C{P}(R),  can now be obtained using rI(R) , 

(3.14) 

Averaging over all values of R using the appropriate prob- 
abilities yields, 

BWtP) can be obtained using (3.13). An alternative way 
of calculating BWIP}, which must be used if pa = 1 (since 
(3.13) does not hold in this case), is the following. Define 
BW{P)(R) as the conditional bandwidth for a given value 
of R .  Then, 

R t 

B W t P ) ( R )  = c njR) d .  D,,d (3.16) 
:=o d=O 

And similarly to (3.15), 

4. Simulation Results 

In this section we present some numerical comparisons be- 
tween the two previously presented models and results of 
simulation runs. Our goal was to verify that the non- 
persistent and persistent models provide lower and upper 
estimates, respectively, for the bandwidth, and to find out 
how close they are to the actual value. These comparisons 
clearly depend upon the time t ,  the size of the network N 
and the request probability pa. 

Figure 2 compares the values calculated for the bandwidth 
using the non-persistent and persistent models to the value 
obtained through simulation, as a function of time, for a 
system with N = 16 processors and 16 memories. Time is 
measured in this figure in 1/X, units. The values chosen for 
the other failure rates are X,/X, = 0.7 and XI/& = 0.2. 
The bandwidth has been calculated as a function of time, 
for different values of pa and the results for two values of pa 
(i.e., p a  = 0.2 and pa = 0.6) are shown in Figure 2. In the 
simulation we have introduced a timeout mechanism which 
is required to avoid the situation where a processor re-issues 
indefinitely its request to access either a faulty memory or 
an inaccessible one (due to some link faults). Without such 
a timeout mechanism, the value obtained for the bandwidth 
through simulation decreases very rapidly with increasing 
time t .  
As is evident from Figure 2, the results of the simulation 
lie between the two estimated values for the bandwidth, for 
“reasonable” values of t and pa. For large values of t and 
pa (pa close to 1) the simulation results were lower than 
both estimated values. Large values of t and pa are how- 
ever, impractical. Regarding t as the time since the last 
maintenance, a large value of t indicates that the system 
is operating for large periods of time without any mainte- 
nance. On the other hand, a value of pa which is close to 1 
indicates that the processors access the memory very often 
and do very little internal processing. 

Another important conclusion that can be drawn from Fig- 
ure 2 is that the upper estimate for the bandwidth, calcu- 
lated using the persistent model, is closer to the simulations 
results for relatively smaller values of t ,  while for larger 
values of t the lower estimate calculated using the simpler 
(non-persistent) model is closer. A similar phenomenon is 
observed in Figure 3 with regard to p , .  Figure 3 depicts 
the two estimates and the simulation results for the band- 
width, as a function of pa, for two time instances ( t  = 0 and 
t = 0.1). As can be seen from Figure 3, the upper estimate 
(using the persistent model) is closer to the simulation re- 
sults for small values of pa, while the lower estimate is closer 
for high values of pa. 

For high values of p n  the two estimates are getting relatively 
closer to each other; the loss of blocked requests is negligible 
when processors issue new requests at a high rate. Conse- 
quently, for high values of pa, the computationally simpler 
model (the non-persistent one) can be used for estimating 
the bandwidth. 

We have then compared the estimated processing power of 
the synchronous system to its value obtained through sim- 
ulation. Figure 4 depicts the processing power of a 16 x 16 
synchronous system as a function of time, for (;)pa = 0.2 
and ( i i )pn = 0.4. In case (i) we compare the simulation 
results to the results obtained from both models. As ex- 
pected, the non-persistent model is too optimistic; the per- 
sistent model provides a better estimate for the processing 
power. We therefore omitted the non-persistent model in 
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case (ii). An important conclusion that can be drawn from 
Figure 4 is that the persistent model yields a reasonably 
good estimate for the processing power of the system. 

Finally, Figure 4 also demonstrates the fact that only a 
moderate reduction in performance is expected when the 
system is allowed to continue its operation in the presence 
of faults, making the support of a graceful degradation a 
worthwhile endeavor. 

-- -- -- -- -- -- I --- -- 

5. Continuous Models 

In this section we present two continuous models for study- 
ing the degradation over time of the performance of a mul- 
tistage interconnection network in the presence of faults. In 
both models the operation of the network is asynchronous, 
i.e., each processor can issue a memory request a t  any time, 
and the duration of the communication period between the 
processor and the memory is of arbitrary length. Similarly 
to the discrete models presented in Section 3, the first con- 
tinuous model is non-persistent assuming that a blocked 
request is discarded, while the second one is a persistent 
model, in which a blocked request is re-issued. These mod- 
els will provide lower and upper estimates for the band- 
width of the asynchronous system, and the persistent model 
will be used for estimating its processing power. 

Non-persistent model --- Persistent model - - - - -  Simulation 

6.0 

4.0 
Q 
2 

2.0 

.2 .4 .6 .e 
PROB. OF REQUEST 

Figure 3: The bandwidth of a 16 x 16 synchronous network 
as a function of pa for (2) t = 0 and (ii) t = 0.1. 
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1 0 -  

w Non-perdrtrnt model --- - - - - -  Simulation 8 
LT 

-025 .050 .075 -1  00 
TIME 

.025 .os0 .075 .loo 
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Figure 2: Comparing the bandwidth BW(t)  of a 16 x 16 
synchronous network to its estimates using the 
persistent and non-persistent models for 
(i) p ,  = 0.2 and (iz) pa = 0.6. 
(Failure rates: X,/X, = 0.7 and XI/& = 0.2.) 

Figure 4: The processing power of a 16 x 16 synchronous 
network as a function of time for 
(i) pa = 0.2 and ( i i )  pa = 0.4. 
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The stochastic process which is needed to study the behav- 
ior of the system is a continuous one, and in order to make 
it tractable, we approximate (as we have done in Section 3) 
the state of the system by a one-dimensional random vari- 
able Z( t ) .  Z ( t )  denotes the number at t imet,  of operational 
yet idle processors, i.e., processors which are either commu- 
nicating with some memory or waiting for such a communi- 
cation to be established. Since fault rates are significantly 
smaller than the rate of memory requests, Z ( t )  can reach 
a steady state for a fixed combination of faulty and non- 
faulty components. We therefore, omit t and denote by 2 
the state of the system. The steady-state probability distri- 
bution of Z still depends on t via the probabilities of faulty 
components. 

For 2 to be a birth and death Markovian process, the fol- 
lowing assumptions have to be made. Each active (non- 
idle) processor generates a new request after a time which 
is exponentially distributed with a mean of :. The du- 
ration of each successful communication is exponentially 
distributed with a mean of b. We also assume (as in Sec- 
tion 3) that whenever a change in the state of the system 
occurs (whether it is a generation of a new request or the 
termination of a communication), all existing requests are 
randomly redistributed among all memories, regardless of 
their original destination. 

As in Section 3, the performance measures will first be cal- 
culated for a given value of R which denotes the number 
(at time t)  of operational processors. For a given R,  2 
can assume the values 0,1, ..., R, and 2 = i implies that 
i processors are requesting memory access while R - i are 
computing. Let p i  denote the “birth” rate at state Z = i 
(the rate of transition from i to i+ l), and let v, denote the 
“death” rate at state Z = i (the rate of transition from i 
to i - 1). The conditional (on R) steady-state probabilities 
H i R )  (i = 0, ..., R) are obtained by solving the following set 
of equations, 

and 
n p  + ny) + ... + n p  = 1 ( 5 . 4  

The preceding discussion applies to both continuous mod- 
els. The two models however, have different transition 
rates, which will be calculated next. 

The Non-Persistent Model: To find the transition rates 
for this model, note that a t  state Z = i all i idle processors 
are actually communicating with some memory. Hence, 
the “death” rate for the non-persistent model, denoted by 
v:”~’ ,  is given by 

(5.3) = i .  p 

For a transition from i to i + 1 to take place, an active 
processor must generate a new request and this request 
must reach its destination (or it would be discarded). The 
“birth” rate for the non-persistent model is therefore, 

p ! ” ~ }  = ( R  - i) . A .  ri (5.4) 

where is the probability that a new request will reach 
its destination, given that i processors are already com- 
municating with i memories. The latter is equal to the 
probability that all links on the route to  the destination 
and. the requested memory are operational and not busy, 
given that i memories are busy. Combinatorial arguments 
yield, 

i 
ri = [ (1 - 0 . 5 ~ )  ( N  - 1) pi] *pm (5.5) 

The Persistent Model: For the persistent model, the 
rate p!” at  which a new request is generated at state 2 = i 
is, 

p p  = ( R  - i ) X  (5.6) 

The rate U,!” at which a communication ends, for 2 = i, 
depends on the number d of requests out of i, which reach 
their destination. The probability matrix D, whose ( i , d )  
element is 

D,,d = P{d requests accepted I i requests submitted} 

has been calculated in Section 3, equations (3.5) through 
(3.10). The “death” rate can be obtained from, 

(5.7) 
d=O 

The rest of the analysis is again common to both continu- 
ous models. The transition rates (from (5.3) and (5.4) for 
the non-persistent model or from (5.6) and (5.7) for the 
persistent model) are now substituted into (5.1) to obtain 
the steady-state probabilities H i R ) ;  (i = 0, ..., R) .  Based on 
these probabilities the conditional processing power C ( R )  
and the conditional bandwidth BW(R)  can be calculated. 
Since the expressions for C ( R )  and BW(R)  are the same 
for both continuous models, the superscripts {p} and {np} 
are omitted. 

Similarly to (3.14), the (conditional) processing power is 
given by, 

W 

i=O 

and thus, as in (3.15), 

To obtain BW(R) ,  note that at state 2 = i the rate of new 
arrivals is p, (p:”” from (5.4) or pjp’ from (5.6)).  Since the 
rate of new requests in the steady-state must be equal to 
the rate of communication completions, we have 

i = O  

(5.10) 
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Hence, as in (3.17), 

-\ 

--- 1 
--- --I 

- --1 

--- 
---. 

BW = 2 (:) ( p r p t ) R ( l  - p r p t ) N - R .  B W ( R )  (5.11) 
R=O 

6. Numerical Results 

In this section we present some numerical comparisons be- 
tween the two continuous models and results of simulation 
runs. Our first goal is to test whether the non-persistent 
and persistent models provide lower and upper estimates, 
respectively, for the bandwidth. In addition, we want to 
investigate how close these two estimates are to the simu- 
lation results, as a function o f t  and the ratio between the 
request rate X and the “service” rate p. 

Figure 5 compares the bandwidth calculated using the non- 
persistent and persistent models to that obtained through 
simulation, as a function of time, for a 16 x 16 system, and 
for two values of X (i.e., X = 0.2 and X = 0.5). As before, 
time is measured in l / X r  units and the values chosen for 
the other failure rates are X,/X, = 0.7 and XI /&  = 0.2. 
We again had to introduce a timeout mechanism into the 
simulator to avoid the situation where a processor re-issues 
indefinitely its request to access either a faulty memory or 
an inaccessible one (due to some link faults). 

Figure 6 depicts the bandwidth as a function of the memory 
request rate X for two time instances ( t  = 0 and t = 0.1). 
As is evident from Figures 5 and 6, the simulation results 
lie between the two estimated values for the bandwidth, for 
“reasonable” values of t and A. For large values of t and 
X the simulation results were lower than both estimated 
values. An important conclusion that can be drawn from 
these two figures is that the upper estimate (obtained using 
the persistent model) is closer to the results of the simula- 
tion for small values of X and t ,  while the lower estimate is 
closer for high values of X and t .  
Figure 7 compares the estimated value of the processing 
power of a 16 x 16 asynchronous system to its value ob- 
tained through simulation, as a function of time, for two 
values of the request rate: ( i ) X  = 0.2 and (ii)X = 0.5. 
As for synchronous systems, the non-persistent model was 
found to be too optimistic; the persistent model provides 
a better estimate for the processing power. The processing 
power obtained using the non-persistent model is shown 
therefore, only for case (i) and is omitted in case (it). An 
important conclusion that can be drawn from Figure 7 is 
that the estimated processing power calculated for the per- 
sistent model is close to the simulation results only for small 
values of X and t .  

Perslstent model --- Non-parslatant model - _ _ _ _  Simulation 

= t  

-025 .050 .075 .loo 
TIME 

Figure 5: Comparing the bandwidth BW ( t )  of a 16 x 16 
asynchronous network to its estimates using the 
persistent and non-persistent models for 
p = 1 and (i) X = 0.2 or (ii) X = 0.5. 
(Failure rates: X,/X, = 0.7 and XI/& = 0.2.) 
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Figure 0: The bandwidth of a 16 x 16 asynchronous net- 
work as a function of X for 
p = 1 and ( 2 )  t = 0 or (ti) t = 0.1. 
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7. Conclusions 

L--\ . -- -1 
----- 

The performance of multistage multiprocessor systems in 
the presence of faulty components has been analyzed in 
this paper. Two modes of operation have been studied 
namely, the fully synchronous mode and the asynchronous 
mode. For each mode of operation we have developed two 
models allowing us to calculate the bandwidth and process- 
ing power of the multistage multiprocessor. The two mod- 
els differ in the way blocked requests are treated. In the 
first one these requests are discared while in the second, 
the corresponding processors re-issue their requests. The 
two models are therefore, called non-persistent and persis- 
tent model, respectively. The two discrete (non-persistent 
and persistent) models presented in Section 3 generalize 
previously presented models which have assumed fault-free 
components, while the two continuous models presented in 
Section 5 are novel onqs. 

The operation of 16x 16 synchronous and asynchronous sys- 
tems has been simulated and the bandwidth and processing 
power have been calculated. These values were than com- 
pared to the estimated values using the non-persistent and 
persistent models. For both modes of operation the non- 
persistent and persistent models provide lower and upper 
estimates for the bandwidth, respectively, for “practical” 
values of t and the request rate (or probability). Only the 
persistent model is useful when estimating the processing 
power of a multistage system; it provides a better (upper) 
estimate than the non-persistent model does. 

To determine which set of models to  use, the discrete mod- 
els or the continuous models, one should take into account 
both the protocol employed by the interconnection net- 
work and the computational complexity of the models. The 
continuous models which are based on a birth and death 
Markov process are computationally simpler than the per- 
sistent discrete model which is based on a discrete Markov 
chain. 
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