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ABSTRACT 

Multi-processing systems consisting of a large number of 
components (e.g., processors, memory modules and inter- 
connection switches) are now being designed and imple- 
mented. Improvements in technology have reduced the fail- 
ure rates of all system components. However, the large in- 
crease in the number of components per system has more 
than offset the increase in reliability of a single component. 
Therefore, we must expect some of the hundreds (or even 
thousands) of system components to become faulty while 
the system is in operation. 

In many cases, the continued operation of a system in the 
presence of faulty components, even with some degrada- 
tion in performance, is desirable. The decision whether to 
support such graceful degradation should depend on the es- 
timated reduction in system performance. In this paper we 
analyze the performance of multi-processor systems with 
a multi-stage interconnection network in the presence of 
faulty components. We present two models, providing lower 
and upper estimates for the bandwidth of these systems. We 
then compare the expected degradation in the performance 
of the multi-processor in the presence of faulty components 
for these two models through some numerical examples. 

1. I n t r o d u c t i o n  

Advances in VLSI technology and development of new com- 
puter-aided design tools, enable the design and implemen- 
tation of multi-processing systems consisting of a very large 
number of components. One important class of these multi- 
processing systems includes the shared-memory multi-pro- 
cessors where all processors can access a set of memory 
modules through an unbuffered multi-stage interconnection 
network. 

When implementing a complex multi-processor, some of its 
components (like processors, memory modules or intercon- 
nection links) are expected to become faulty. In many cases 
the faulty components can not be immediately repaired or 
replaced and we would still like to use the system at a de- 
graded rate of performance until a repair and/or replace- 

'Supported ill part by NSF under contract DCR-85-09423 
'On leave froill the Tecliiiion, Haifa 32000, Israel 

ment can take place. An example might be a real-time 
computing system where even a relatively short down-time 
period may be intolerable. 

The decision whether to support a graceful degradation of 
the system should clearly depend upon its expected perfor- 
mance in the presence of faults. This is especially important 
in the case of multi-processors with multi-stage interconnec- 
tion networks which are inherently very sensitive to failures 
of any kind. These networks usually provide a unique path 
between any processor and any memory module and there- 
fore, a single fault in any internal switch or link will render 
some memories unreachable from certain processors. 

In this paper we analyze the performance (over time) of 
multi-stage multi-processors in the presence of faults. A 
commonly used measure for the performance of an intercon- 
nection network is the bandwidth. The bandwidth BW(t)  
is defined as the expected number, a t  time t ,  of requests 
for the shared memory which are accepted per cycle. The 
bandwidth measures the effect of blocking which results ei- 
ther from requests being directed to the same memory, from 
the sharing of paths by two or more processor-memory pairs 
(even when the memories involved are distinct), or, as in 
our case, from the presence of some faulty components. 

We present two models for calculating the bandwidth of 
the multi-stage network. These models generalize previ- 
ously suggested models (141 and [SI) to allow the presence 
of faulty links, faulty processors and faulty memories. The 
first model is computationally simple but too pessimistic 
since it assumes that  a memory request blocked by the net- 
work is lost. The second model msumes that any processor 
whose memory request is blocked, re-issues its request in 
the consecutive network cycle. This model which is com- 
putationally more complex, provides an upper estimate for 
the network bandwidth. 

The second model also allows the calculation of other mea- 
sures for the system's performance. For example, the pro- 
cessing power, defined as the average number of non-faulty 
processors which are computing, i.e., operational proces- 
sors which are neither communicating with the memory nor 
waiting for such a communication to be established. The 
processing power a t  time t will be denoted by C(t) .  
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The rest of the paper is organized as follows. In the next 
section we introduce several assumptions and notations. In 
Section 3 the first and simpler model is presented. The 
more complex model is introduced and analyzed in Section 
4.  These models are then compared through some nurneri- 
cal examples in Section 5. Final conclusions are presented 
in Section 6. 

2.  Preliminaries 

Consider a multi-stage interconnection network constructed 
of 2 x 2 unbuffered switches which connects N processors 
(where N = 2'") to N memories. Our analysis can be gen- 
eralized to the case where the number of processors is not 
necessarily a power of 2, the number of memories is different 
from the number of processors and finally, the network is 
built of a x  b switches [I] .  For the sake of clarity and brevity 
however, we restrict our discussion here to the above men- 
tioned simpler case. 

A n  N x N interconnection network is constructed of k = 
1o<g N stages, each containing N/2 switches as illustrated 
in Fig. 1 'The performance of multi-stage interconnection 
networks has been previously analyzed (e.g., 141, 151, [1] and 
[Cl), but  in most previous studies it has been assumed that 
eithrr the networks are fault-free, or that faults can occur 
i n  the interconnection network only, while the processors 
and memories were assumed to be fault-free. In our anal- 
ysis we allow processors and memories to become faulty 
i n  addition to faults occurring in the interconnection net- 
work. Moreover, we study the behavior of these systems 
over time. 

I,et t be some given time instant, let q V ( t )  denote the prob- 
ability that a processor is faulty a t  time 2 and let p, ( t )  = 
1 - qr(t)  denote the probability that the processor is fault- 
free a t  time t .  The functional form of p , ( t )  depends upon 
the statistical model assumed for the faults occurring in 
the network. The widely used model is the Poisson model, 
according to which the probability of a fault-free processor 
at  time t is, 

where the failure rate ,Ar is the average number of faults 
occurring in a processor per time unit. 

Siniilarly, we denote by q,(t) ( p , ( t ) )  the probability of a 
faulty (fault-free) memory and by q1(t) ( p l ( t ) )  the probabil- 
ity of a faulty (fault-free) link, all a t  time t .  When Poisson 
distribution is assumed, similar expressions to (2.1) are ob- 
tained for p,(t) and p [ ( t )  , with failure rates A, and XI, 
respectively. 

Although we use the Poisson model for our numerical ex- 
amples, our analysis applies for any other statistical fault 
process, including models where the different components 
(namely, processors, links and memories) follow different 
distribution laws and even models that allow repair of faulty 
components. The only requirement is that the probabilities 
pl( t ) ,  p , ( t )  and p l ( t )  can be calculated. 

p , ( t )  = e-''' (2.1) 

We consider a syst,em which operates in a synchronous 
circuit-switching fashion, i.e., time is divided into network 
cycles  of equal length. Any request for memory access is 
issued a t  the beginning of a network cycle and all success- 
f u l  communications terminate a t  the end of the cycle. The 
length of a network cycle is equal to the memory access 
t,inie plus the network delay (twice the propagation delay 
of a signal through the k stages). For analysis purposes 
we assume that the mean time between component failures 
is very large compared to the length of the network cycle, 
implying that once a component fails, the next failure will 
occur after a very long period of time. This enables us to 
study the system's behavior under a statistical steady-state, 
resulting from its having a fixed combination of faulty and 
non-faulty components for a relatively long time. 

3. Model I 

In this section we present a simplified model for study- 
ing the degradation over time of the bandwidth B W ( t )  of 
a niulti-stage interconnection network in the presence of 
faults. This model generalizes the analysis in [4] where 
tlir bandwidth of a fault-free interconnection network was 
calculated. The analysis has been generalized in [2] to an  
environment in which faults may occur and is briefly sum- 
marized here for the sake of completeness. 

0 
U 
T 
P 
U 
T 

f 

i 

i 
i 
i 
i 

I 
I I 

STAGE ._--.--.......... 2 .._..__.ll__l. 1 ___-_____. 0 

Figure 1: An 8 x 8 multi-stage interconnection network. 
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The time-dependency of BW(t)  is the result of the time- 
dependency of the probabilities that  the system compo- 
nents are fault-free, i.e., p , ( t ) ,  p i ( t )  and p , ( t ) .  Since the 
duration of a single network cycle is (according to our as- 
suniption) substantially smaller than the mean time be- 
tween component failures, we can perform a steady-state 
analysis of the bandwidth. The system is observed a t  some 
arbitrary time instant t ,  which can be viewed as a constant 
throughout the analysis, and will therefore be omitted from 
the notations for the sake of simplicity. However, the reader 
should bear in mind that all the probabilities and the re- 
sulting bandwidth ( B W )  are functions of t .  

We adopt here the common assumption that the destina- 
tions of the memory requests are independent and uni- 
formly distributed among the N memories. Therefore, the 
network bandwidth can be obtained by multiplying the 
number of memories N by the probability that a given 
memory module is non-faulty and has a request at its in- 
put .  This last probability is calculated iteratively, following 
a path leading to this memory, i.e., the probability of a re- 
quest on an output link of a switch is calculated from the 
probabilily that such a request has been accepted at the 
input links to the same switch. 

To simplify our discussion we say that a link is in state 1 (0) 
i f  it has (has not) a request for the memory. A faulty link 
is considered to be in state 0. The probability of a request 
on a link is thus the probability that this link is in state 1. 
We assign numbers to the k = logN stages in a descending 
order so that stage 0 is the last stage and its output links 
are connected to the memories, stage (k - 1) is the first 
one and its inputs are connected to the processors (see Fig. 
I ) .  Consider a switch in stage z and denote its outputs 
X ( ' ) ,  Y( ' ) .  Its input links are the outputs of (two different) 
switches in stage ( z  + 1) and are denoted by X('+') and 
Y('+'l. Based on our assumption that memory requests are 
iiniformly distributed among the memories, the probability 
that, an incoming request will be routed to any output link 
is the same. Hence, it is sufficient to consider only a single 
output l ink and derive an expression for the probability 
that it is at state 1, i.e., P{x( ' )  = I}. 

Since a request for a memory module can reach the output 
link of a switch through any of the two input links, the state 
probability P { X ( ' )  = 1) of the given output link has to  be 
calculated from the joint probabilities of these input links, 
I.e., 

P{(X(i+1),Y(i+')) = (u ,w) } ;  u,w = 0 , l .  

This calculation is performed using transition probabilities 
which take into account the status (faulty or fault-free) of 
the (physical) input links and the destinations of the in- 
coming requests. Since memory modules are assumed to 
be equivalent, the incoming requests are routed to any of 
the two output links with probability 0.5. Consequently, 
the transition probabilities between the two inputs and the 
output of a switch are, 

p { x ( 4  = 1 / (X( '+1) ,y(*+l))  = (0,o)) = 0 
p { x ( 4  = 1 / (Xb+I) ,  Y( '+l))  = (0,l)) = f p1 
P { X ( * )  = 1 / (X(S+l),Y('+Q) = (1,O)) = ; p1 
p { x ( 4  = 1 / (X( '+l ) ,  Y(S+l)) = ( 1 , l ) )  = pi - 5 p;  

(3.1) 

Note that only input link faults are taken into account. 
Faults a t  the output links are considered as input link faults 
at the next stage. 

The state probability P { X ( ' )  = 1) of the output link is 
given by, 

P{X(I )  = 1) = 1 p [  [P{(X( '+l ) ,Y( '+l ) )  = (0 , l ) )  

+ P { ( X ( ' f ' ) ,  Y('+')) = ( L O ) } ]  
1 
4 

+pi(1 - - p i )  x P{(X(*+') ,  Y('+')) = ( 1 , l ) )  (3.2) 

For a non-redundant network (as in Fig. 1) the inputs into 
each switch are independent. Hence, 

p {  (X(*+ll ,  Y(1+11) = (U, w ) )  = P{X('+') = U) XP{Y('+') = w )  

U, w = 0 , l  (3.3) 

Using (3.3) and the following equation 

p{y( '+Q = 0 )  = p{X( '+ ' )  = 0 )  = 1 - p{X( '+ ' )  = 1) 

we obtain from (3.2) after some algebraic manipulations, 

1 P{X('I 1) = p i x p { x ( ' + ' )  = p ; x ( p { x ( ' + ' )  = 1 ) ) Z  

(3.4) 
This expression reduces to the one derived in (41 if fault-free 
(i.e., pi = 1) 2 x 2 switches are assumed. 

This simple recursion formula enables us to calculate the 
successive state probabilities, starting from the processors 
outputs up to the memory inputs. 
For the processors output links we have 

P { X ( k )  = 1) = p ,  pr (3.5) 

where pa is the probability that a processor generates a 
memory request. Recursively, we calculate P{X( ' )  = 1). 
To compute the bandwidth note that the memory and its 
input link can be faulty as well, hence, 

4. Model I1 

The model described in the previous section provided a 
lower estimate for the bandwidth of the system. The model 
presented in this section is more realistic, still it provides 
only an upper estimate for the bandwidth due to  some ap- 
proximations whose aim is to  facilitate the analysis. This 
second model generalizes the analysis in 151 to the case 
where faulty components can be present in the system. 
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As in the previous section, a steady-state analysis will be 
performed, relying on the assumption of a large mean time 
between components failures. Again, the system is observed 
at some arbitrary yet fixed time instant t ,  which will be 
omitted from all notations for simplicity. 

Since the operation of the system is synchronous, a discrete- 
time, discrete-space stochastic process can be used to de- 
scribe the state of the system. In our case, an exact state 
description should include the state of each processor, each 
link and each memory resulting in a prohibitively large 
number of multi-dimensional states. We chose as an ap- 
proximation for the state of the system a one-dimensional 
random variable Z ,  denoting the number of processors whi- 
ch are operational yet idle. These are the processors which 
are not computing because they are either communicating 
with some memory or waiting for such a communication to 
be established. This choice, as opposed to approximations 
in which the state of a single processor is considered, cap- 
tures the dependence among the processors which is one 
of the main characteristics of a multi-stage interconnection 
matrix. 

The random variable Z is observed at the beginning of each 
network cycle, i.e., Z(n)  (n=0,1,2, ...) is the number of idle. 
processors at the beginning of cycle n. In order for Z ( n )  to 
be a Markov chain, we must add the following assumption: 
At the beginning of each cycle, all the existing requests 
(including both the new requests and the re-issued ones) 
arc randomly redistributed among all memories, regardless 
o l  their original destination. This “independence assump- 
tion”, whose aim is to make the analysis tractable, causes 
t.hr calculated bandwidth to be slightly higher than its ac- 
tual value, thus yielding an upper estimate for the system’s 
bandwidth. In what follows we show how Z ( n )  can be used 
to calculate the network’s bandwidth and processing power. 

Denote by R the number, at time t ,  of operational proces- 
sors (0 5 R s N )  and thus, N - R is the number of faulty 
processors. For a given value of R,  Z ( n )  can assume the 
values 0,1, ..., R. We denote by P(R)  the one-step transition 
probability matrix whose ( i , j ) - t h  element is 

P;;) = P{  Z ( n  + 1) = j I Z ( n )  = i } 

i.e., the probability that j processors request memory access 
at, the beginning of cycle n + 1, given that i processors 
requested i t  a t  the beginning of cycle n. Z(n) = i means 
that i processors are requesting memory access while R - 
i are computing. Out of the i requests, only d (d  5 i) 
reach their destination and complete their communication. 
The d corresponding processors become active again a t  the 
beginning of the n + 1 cycle, thus increasing the number 
of active processors to R - i + d. These R - i + d active 
processors will generate g new requests, which will join the 
i - d resubmitted ones. Hence, j = i + g - d. 

The transition from Z ( n )  = t to Z ( n  + 1) = j involves two 

random variables: The number d of requests reaching their 
destinations, and the number g of newly generated requests. 
The calculation of the transition probability matrix P ( R )  re- 
quires, therefore, the calculation of the following two prob- 
ability matrices: D,  whose ( i , d )  element is 

D,,ci = P { d  requests accepted 1 i requests submitted} 

and G, whose ( r , g )  element is 

Gr,g = P{g requests generated I r processors are active} 

Both matrices do not depend upon the actual value of R. 
Therefore, we define them as ( N  + 1) x ( N  + 1) matrices 
and use proper sub-matrices for any given value of R. 

The calculation of Gr,g, the probability that r active pro- 
cessors will generate g requests, is straightforward. The r 
processors generate their memory requests independently, 
with a probability of pa each. Hence, 

r , g = O  ,..., N (4.1) 

To find D,,d, the probability that d out of i requests will 
reach their final destinations, we repeat the calculation for 
a single stage of switches k times. To this end, we denote by 
a’,,“ the probability that U out of U requests at the inputs 
to the switches of any given stage will reach the inputs of 
the next stage. The elements a’,,” form an ( N  + 1) x ( N  + 1) 
transition probability matrix denoted by @. To find a’,,, we 
denote by a the number of switches in the observed stage 
which have one incoming request and by 6 the number of 
switchee with two such requests. Clearly, a + 26 = U and 
the probability of the pair (a, b) is 

Each of the a “single request” switches will propagate the 
incoming request depending on whether the appropriate 
l ink  is fault-free or not. The probability of propagating the 
request, denoted by a l ,  is hence, a1 = p i .  The probability 
of no output, denoted by aor is eo = 1 - p l .  

Denote by w the number of these “single request” switches 
propagating their incoming request and thus, ( a -  w )  switc- 
hes produce no output. Then, 

P{wla}  = (;) Crl“(1 - a p ” )  (4.3) 

Each of the b “double request” switches will propagate 2, 
1 or 0 requests depending both on the destinations of the 
two incoming requests and on the status of the links (faulty 
or fault-free). Denote by Pz ,  PI,  Po, the respective proba- 
bilities and by y,  z ,  and 6 - y - z the number of “double 
request” switches propagating 2, 1 and 0 requests, respec- 
t ivel y, then, 
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where, 
/32 = 0.5 . pf 

Pi  = PI . (1 - PI)  + 0.5 . PI 

Po = 1 - Pi - P 2  

Rased on the probabilities in (4.2), (4.3) and (4.4) we ob- 
tain, 

e"," = P{a,bJu} . P { w J a } .  P{y,zJb} (4.5) 
a+2D=u 

w+2y+z=u 

Having calculated '9, the one-stage transition probability 
rriatrix, the k-stage transition probabilities can be obtained 
sirriply by raising '9 to the k-th power. The ( z , u )  element 
of the resulting matrix, is the probability that w out 
of t original processors' requests will reach the memories. 
However, since the memories themselves may be faulty, an 
additional probability matrix is required. Denote by B the 
( N  + I )  x ( N  + 1 )  matrix whose ( w , d )  element is the prob- 
ability that out of v memories, exactly d will be fault-free, 
then, 

B",d = (1) Pmd (1 - Pm)"-d (4.6) 

D = '9 ' .B (4.7) 

And finally, the matrix D can be obtained by 

The matrices G (defined in 4.1) and D enable us to  find 
P ( R ) ,  the transition probability matrix of the Markov pro- 
cess 2, for every given number R of operational processors, 

p? = Dr.d . GR-r+d,q 1 ,3  = 0, ..., R (4.8) 

The matrix P ( R )  can now be used to  calculate n(R),  the 
( R  + 1)-dimensional vector of the steady-state probabilities, 
by solving the set of linear equations 

j = i t g - d  

On the basis of the above steady-state probabilities the 
bandwidth BW and processing power C can be calculated. 
There is however, no need to calculate both measures since 
thpy  are functionally related in the currently presented mo- 
del as shown in the following lemma. 

Lemma: In a synchronous interconnection network where 
each blocked memory request is resubmitted, 

BW = C . (for pa < 1) (4.10) 
(1 - Pa) 

Proof At the beginning of a network cycle, an average 
number of C processors are active, joined by an average 
number of BW processors which have completed their mem- 
ory access in the previous cycle and are now active too. 

Each of these C + BW processors has a probability pa of is- 
suing a request, hence an average of (C+ B W )  x pa requests 
are issued each cycle. Since the system must be in equilib- 
rium, the expected number of generated requests per cycle 
must be equal to the expected number of accepted requests 
per cycle, B W .  Hence, BW = (C + B W )  x pa and (4.10) 

C ( R ) ,  the conditional processing power for a given value of 
R ,  can now be obtained using II(R) , 

follows. 1 

C ( R )  = F(R - z )  . JIjR) (4.11) 
i = O  

Averaging over all values of R using the appropriate prob- 
abilities yields, 

BW can be obtained using (4.10).  An alternative way of 
calculating B W ,  which must be used if pa = 1, (since (4.10) 
does not hold in this case), is the following. Define B W ( R )  
as the conditional bandwidth for a given value of R .  Then, 

B W ( R )  = 5 2 d .  Di,d (4.13) 
i = O  d=O 

And, 

BW = R=O 2 (:) (prpl)R(l - p , p ~ ) ~ - ~  . B W ( R )  (4.14) 

5. Numerical Results 

In this section we present some numerical comparisons be- 
tween the values calculated for the bandwidth according 
to the two previously presented models. We expect the 
precise value of the bandwidth to be closer to the upper 
estimate than to the lower estimate which is calculated us- 
ing the first (and simpler) model. Still, it is difficult to  
predict how different will the bandwidth be from its two 
estimates, without, resorting to  lengthy simulations. Our 
goal in this section is to  analyze the difference betweer? the 
two estimates, since a small difference will indicate that the 
cornputationally simpler model (model I) can be employed 
to estimate the bandwidth rather than the more complex 
niodel (Model 11). Clearly, we expect the difference between 
the two values to be dependent on the time t ,  the size of 
the network N and the request probability pa. 

Figure 2 demonstrates the difference between the two val- 
ues calculated for the bandwidth, for a system with N = 16 
processors and 16 memories. Time is measured in 1/X, 
units. The other failure rates were chosen as Am/& = 0.7 
and Xl/X, = 0.2. The bandwidth according to  the two 
models has been calculated as a function of time, for dif- 
ferent values of pa and the results for two values of pa (i.e., 
p,, = 0.2 and pa = 0.8) are shown in Figure 2. A very im- 
portant conclusion that  can be drawn from this comparison 
is that the difference between the two estimates is highly 
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dependent on the traffic as measured by p ,  

Figure 3 was plotted to study the dependence of the dif- 
ference between the two calculated values on pa, for two 
system sizes ( N  = 16 and N = 32) and two time instances 
( t  = 0 and t = 0.3). For these four cases, the bandwidth 
ratio (defined as the model I1 value divided by the model 
I value) was plotted as a function of p a .  As is evident 
from Figure 3, the two are very close for high values of 
pn. The reason for this being that when processors issue 
riew requests a t  a high rate, the loss of blocked requests is 
negligible. Consequently, for high values of pa, the compu- 
tationally simpler model (Model I) can be used to estimate 
the bandwidth. Other conclusions that can be derived from 
Figure 3 are that the relative difference between the lower 
and upper estimates is high for low values of p , ,  and that 
the value of pa for which the bandwidth ratio is maximal is 
highly dependent on t ,  but is insensitive to the size of the 
network N .  
To test this last observation more accurately, we have plot- 
ted i n  Figure 4 the bandwidth ratio as a function of N ,  
for two values of p a  ( p ,  = 0.2, pa = 0.6), and for two time 
instances ( t  = 0, t = 0.3). For a low value of pa (pa = 0.2) 
the bandwidth ratio is highly dependent on t and changes 
very slowly with N ,  while for a higher value of pn (pa = 0.6) 
the bandwidth ratio is almost independent of N .  
One of the advantages of the second model is that it enables 
us lo calculate the processing power of the multi-processor 
system. Figure 5 depicts the processing power of an N x N 
system as a function of time, for N = 16 and N = 64. To 
meaningfully compare systems of different sizes, we have 
plotted the ratio C ( t ) / N ,  i.e., the percentage of fault-free 
processors which are not idle. A very interesting (but still 
expected) conclusion that can be drawn from this figure 
is that larger systems have a lower percentage of active 
processors. This was observed for other values of N as well. 
Figure 5 also demonstrates the fact that only a moderate 
rrdrlctiori in performance is expected when the system is 
allowed to continue its operation in the presence of faults, 
making the support of a graceful degradation a worthwhile 
endeavor. 

6. Conclusions 

Two models for calculating the bandwidth of multi-proces- 
sor systems with a multi-stage interconnection network in 
the presence of faulty components have been presented in 
tliis paper. Being able to estimate the bandwidth and the 
expected reduction in its value due to the occurrence of 
faults will allow designers to decide whether to support a 
graceful degradation of the system. 

The first model is t,oo pessimistic and provides an upper 
estimate for the bandwidth. The second model is compu- 
tationally more complex than the first one but still provides 
only a lower estimate for the bandwidth. 

The difference between these two estimates has been nu- 
merically analyzed in this paper and its dependence on the 
request probability pa, the size of the network N and the 
tSir1ie t has been studied. 
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Figure 2: The bandwidth of a 16 x 16 network as a func- 
tion of time for Model I and Model I1 and 
(i) pa = 0.2 and ( 2 2 )  pa = 0.8. 
(Failure rates: X,/Xr = 0.7 and XI/& = 0.2.) 
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Figure 4: Bandwidth ratio (Model I1 BW / Model I B W )  
for two values of pa and two values of t as a 
function of N .  
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Figure 3: Bandwidth ratio (Model I1 BW / Model I B W )  
for two multi-stage networks as a function of .pa 
for two different values of t .  
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Figure 5: The processing power of two N x N networks 
as a function of time for 
(i) pa = 0.2 and (ii) pa = 0.4. 
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