T Proc. of the 1lth International Symposium on Fault .H,on.umaﬂ Computing ,

June 1981.

A MODULE REPLACEMENT FOLICY FOR DYNAMIC

REDUNDANCY

Israel Koren

Department of Electrical Engineering
Technion-lsrael Institute of Technolopy
Haifa, lsrael

Abstract

Fault-tolerant computing systems are designed
to provide an error-free operation in the presence
of faults. The system recovers from the effects of
a faulc by employing certain recovery procedures
iike program rollback, reload and restart, etc.
These recovery procedures, as efficlent as they may
be, result in interruptions in the system's opera-
tien., Interruptions which reduce the computational
gvailability of the eystem and may have an intoler-
able impact on the performance of a critical real-
time control system. Fault-tolerant systems for
cricical applications include standby spares that
are ready to replace active modules which fail to
recover from the effects of a fault. 4 standby
epare may also be uged to replace a module suffer-—
ing from frequent fault occurrences resulting in
too many applications of the recovery process, in
order to increase the computational availability.
In this case a module replacememt policy is needed.
This policy will indicate upon occuiTence of a
module fallure whether to retry the module or replace
it considering mission time, probability of a system
craeh and computational availability. A module
replacement policy for dynamic redundancy systems
is presented in this paper and che improvement in
computational availability due to irs application
ig illustrated.

I. Intrecduction

The ultimate goal when incorporating fault-
tolerance into a computing system is to have an
operational system throughout the mission time (in
the presence of faults) with as few interruptions
as poseible. An operational computing gystem is not
just & system producing error-free ourputs but use-
ful error-free outputs. Any time the system is
performing tasks which are not directly related to
its operational objectives, this time period is
considered wasted, Examples of guch tasks are error
detection procedures, recoveries from failures,
restoring of dacta or programs, reconfigurations of
the syetem, ipirialization and synchroniztion

mnonnnamn. Consequently, the computational avail-
ability” yather than system avallabilicy should be
maximized. The difference between the two measures

may be quite subsatantial, e.g5., & frequently cccur-
ring failure in an active module of a computing
systen may result in a large number of time-consuming
error-recoveries and resynchronizing processes. A
situation like this might have an intolerable impact
on the performance of & critical real-time control
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system (e.g., in aerpspace applications like vehicle
guidance systems). In these cases it might be
beneficial to replace such a module with a spare one
if available, in order to achieve higher computational
availability. To study these phenomena we have to
consider the possible failure modes and the approp-
riate recovery procedures. Fallures occurring in
digital systems come from a variety of sources, e.§.,
defective components, design deficiencies and
environmental causes. Each of these sources generates
faults in a different way and of different types.
However, the faults may be roughly classified into
three types, permanent faults {ntermictent faults
and transient mwcwnww.n.wo.wnan.wm. Permanent
faults are solid hardware failures, intermittenk
faults are due to physical defects in the hardware
that manifest themselves intermittently in an un-
predictable manner (in this class we may include
data sensitive design errors or “software failures
Transient faults are due to temporary environmental
conditions (such as temperature, humidity, vibration,
power fluctuation, electromagnetic fields, mnn.w which
may persist for an unpredictable peried of timel4.
Although intermittent and tramsient faults disappear
after a short duration, their damage to the informa-
nwomumwwcmmcnm of the system is in many cases perman~
ent s¢l " gince the exact nature of the fault

and its effects are usually unknown upon QCCUTTENCE,
recovering from the fault is one of the sysrem's

most complex and difficult functions .m.m..m.mo.

1f the system suffers a permanent fault then the
failing module must be identified and replaced.
However, it is known that non-permanent faulrs (i.e.,
intermittent and transient faults) constitute the
shuonwnm mm the faults occurring in computing
systems®'"’. Hence, Tecovery capabilicies for non-
permanent faults which do not require giving up hard-
ware Tesources prematurely are usually built inco
these systems. Various recovery techniques are used
nowadays in fault-tolerant computing systems like
instruction umnum program roll-back, reload and
restart, mnn.pm. u. None of these techniques can be
effective against all possible faulrs. Hence, several
recovery steps are employed uw support of one another
to increase mmmmnn»<m=mmmwm 17 Due to the complex-
ity of the recovery problem each recovery procedure
has its deficiencies and may fail and cause a systed
crashl?+20, In some systems Tecovery deficiencles
account for as much as 35% of the uotdnwsmuo. 1f the
recovery procedure is successful an overhead time is
involved.  First there iz a detection rime berween
fault occurrence and fault detection, then there 1is
the recovery time including initialization and

..uv.



synchronization of the failing nodule’ ~8:15-16
Usually, the information processing performed by the
system during the detectiomn time (and even before
that if a reload and restart operation is needed)

is contaminated and must be repeated. Thus, a cost
to the system 1s assoclated with every recovery
procedure activated. The cost of a single applica-
tion of a recovery procedure might be low however,
a frequently occcurring mon-permanent fault will
congiderably reduce the computational availability
of the system. Moreover, the rate of some inter-
mittent faults like those caused by deteriorating
or aging components, gradually increases until they
become permanent., Their transition into solid
faults may take from a few minutes to several
months during which the frequency of their oocurrence
increases intolerably. Such a situation should be
avolded on time.

In addition, too many applications of a
‘recovery procedure will undoubtedly increase the
probability of an unsuccessful recovery leading to
a system failure. Consequently, in sowme cases it
may be worthwhile to switch out the module which is
subject to non-permanent fault occurrences and ve-
configure the system. On the other hand, replac-
ing an active module by & spare whenever a few non—
permanent faults occur 1s not recommended since the
premature retiring of a module which might still have
a ugeful life service will unnecessarily reduce the
system's mission time. The posaibility of a system
failure during reconfiguration due to imperfect
coverage (e.g., a switching failure) and the over—
head time assoclated with reconfiguration must also
be conseidered. :

What is needed is & module replacement policy
that will indicate the kind of operation to be taken
by the aystem whenever a module fails, i.e., should
we retry the module that has failed or maybe switch
it out and replace it by a spare considering comput-
ational availability, mission time and the probabil-
ity of a system failure. Clearly, the optimal modwule
replacement policies for various structures of fault-
tolerant computing systems are not necessarily the
game. In the following we introduce a replacement
pelicy for dynamic (stand-by) redundancy fault-
tolerant systems. Similar policies for other con-—
figursrions of fault-tolerant systems are now being
investigated.

I1 Dynamic Redundancy Fault-Tolerant Systems

Consider & computing system, one of whose
modules has ®m standby spares ready to be switched
in upon failure of the active module. The active
module is subject to fault occurrences and we adopt
here the viewpojnt that faull occurrences obey a
Poisson uunnmmuwum.mlwm.HW|wm. Although the failure
rate is treated as a constant in most related works,
it 1s recognized that it may be a fumction of time
and other module parameters. It is apparent, in
particular, thet as time goes on certain types of
faults are more likely to ocecur and the status of
the module may be deteriorating. One way to model
the deteriorating status of the module is to assume
that the failure rate increases with every fault
occurrence. Thus, when a non-permanent fault occurs
frequently the increasing failure rate will reflect
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with the replacement is Cj = C-By where

the true status of the module. Another way 1s to
assume that the failure rate increases only when

the time between two successive occurrences is less
than some prespecified time period.- We adopt in the
following the first alternative due to its relative
simplicity. Thus, a series of non-decreasing fail-
ure rates results, i.e., »oA»HA...Awr. It is

further assumed that st some point, say after K
failures the failure rate does not increase any
more.

Suppose a module which was subject to repetitive
non-permanent fault occurrences has failed, the
decision whether to retry it or replace it depends
among other factors, upon the module’s failure rate
and system factors like the mumber of yet available
spares and the remaining time to completion of the
prespecified mission. If the failure rate 1s high
it would be desirable to replace the module in order
to reduce the probability of a future failure., This
however, should be weighed against the risk of spare
exhaustion before the mission 18 over. For a given
mission time t, number of spare modules m and
module failure rate ) we will calculate a time
instant Ly Until we reach this time instant we
keep on ~retrying the module whenever it fajls as
long as its fallure does not become permanent. Once
we reach t; we will replace the module upon fail-
ure since we have enough spares for the remaining
mission time and the risk of spare exhaustion is
low. To find t3 we derive an expression for the
cost of the computational down time periods that the
system will suffer throughout its mission time. In
computational down time we include also time periods
through which the system is operatiomal but is not
doing any useful computation directly related to its
mission. This module replacement policy is deplcted
in Fig. 1 vhere some arcs are marked with probabil-
ities which are defined in the following.

According to our policy, if the active module
with & fallure rate »w fails at time u>t; then
it is replaced without™ retrying it. Let 8y denote
the time needed to switch out the falled module,
switch in a good spare, initialize the spare (restart
the program) and synchronize it. The cost associated
C is the
cost of system down time per time unit. While re-
placing the failing module by a good spare the
system might craseh and we denote the probability of
a system failure by

r=Pr {the system fails due to unsuccessful
replacement/a module failed}.

With probability (1-r) the replacement will be success—
ful, the new active module will have a lower failure
rate Ay, & smaller number of spares, i.e., m-1 and
residual mission time t-u.

If the failure occurs before t; we try to
recover from the effects of the fault and resume
normal operation without replacing the module.
Various fault recovery techniques like instruction
retry, program rollback, anamww opy, Bystem restart
and others are used nowadays =17, They differ
widely in their effectiveness against specific fault
types and in the amount of time needed for the
recovery process. Some faults may be recovered from
by merely instruction retry while others require more



time consuming recovery techniques. Since the sever-
ity of the occurring fault is unknown the most
appropriate recovery technique cannot be selected.
Hence, & mulci-phased recovery process should be
_.Hnnumm“_.alwq. In the first phases of such a process
pimple and high-speed recovery techniques are
employed while complex and time-consuming recovery
techniques are left for the last phases. Consequent—
ly, the actual time used for recovery is a random
variable and we are interested in ite expected
value denoted by

a. = E{totsl computation time lost due to

2

recoveryl.

When executing the recovery process there are
three possible outcomes. The first -~ the failing

module has fully recovered and is now operational.
The second - all recovery techniquee employed fail-

ed, the fault is consldered permanent and & Te-
placement is taking place. And the third - _the
systen 1s unable to reccver and crashes. To in-

corporate these possibilities we denote
p=Prob{the fault is permanent/a module failed}.

§ = Prob{the system fails due to inability to
.uonodmﬂnw module failed}.

4,18

(Note that 1-s is the coverage probabllity

We assoclate with the recovery process a cost
C. which accounts for the computational system dowm
t and 1s given by .

c, = n.oN.

The cost Cj ia not necesserily linear in 65. Ome
can envision s critical control application where

a brief down time period may be tolerated while a
longer one may be intolerable and hence very costly.
However, as a firet approximation we use & linear
function.

1f the system crashes at time u then t-u 18
the residual mission time, 8 cost of Cj3° (t=u) 1is
incurred where Cq 18 the cost of system down time
per time unit and C > ¢ since total system fail-
ure is more costly than a short break in the system's
operation. R

To find the optimal time instant t; we derive
an expression for the expected cost of the system's
computational down time and minimize 1t with respect
to tj-

The expected cost
vhere k is the total
osccured so far in the active module.
vwe denote

is denoted by C(k,m,t,t3)
number of faulta that have
For simplicity,

ain
OMﬂHmn

c(k,m,t) = onr.ﬂ.n.nwv.

This cost funcrion is calculated using the following
recursive relation which 1is .mmﬂ_.enu from Fig. 1.

min
omnwmn

t
1
Ck,m,t) = : mr?v_..m.nu.?ucv

0

+ ﬁplmvnn.nﬁp|vv¢.vnwnuuv
, + (1-8) (1-p)C(k+1,m, t-u)

+ Clwvvnu.nw. (t-u) + alﬂvnw

+ ﬁuuunno.stw.nucuu_nc
t
+ % mr?u:. Cy' (t-u) + C.lnunw
't + Ququnno.atw.nuuvwmcw ()]

va:
1s the failure probabilicy

where gylu) = Ape
Our assumption that yr...w ...»__n for

density function.

any k2 K results in the following relation

C(kt+l,m,t) = c(k,m,t) for k 2K . {(2)
Hence, the boundary value C(K,m,t) is caleulated

first and its calculation is straightforward. Then,
the values of the other C(k,m,t) may be nw.u.nc“_.nﬂnn

using (1).

In the special case where no standby apares are
available (m = 0), £ = ¢t and equation (1) trans-
forms into’

t ro
c(k,0,t) = % mwnchom+po?+w.c.nn:uiwlnunu. (t—-u) Tc

0 (3
a = {1-8)(1-p).

As an example we conglder a system with &

single standby spare where each wodule has one out

of two possible failure rates, i.e., X, is the initial
failure rate and i3y 18 the failure rate after the
first fault occurrence (and successful recovery),
from that time on the failure TAte etays constant,
Here we have to calculate four values of C(k,m,t),
nemely €{0,1,t), c{1,1,t), c¢(0,0,t) and c(1,0,t).
The boundary value ¢(1,0,t) is calculated directly

yielding c

3 ey

A =(l-a)i,t
Llll?-n 1 v (%)

where

c(1,0,t) ..nu.n -1

Substituting (4) in (3) we obtain
At |C.lnu»Hn
c(0,0,t) = nwn+m,hw|m V|Aw|n u (%)

where
ww..»o

P - @]

C
M AH..d_w »Iu- = ﬂn-

) -

is again calculated directly ylelding

n.»o ﬁnw

a= .Stevmy.ul:lavku .m.w.. -

c{1,1,t)
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c{1,1,t} = min nnw.u.n.nwv

Ost,st
1AH|QU»HnH
= min *nw.n+>. ~e v
Ostyst R L A
+Be +Dse HAHlm v
=i t, —(1-a)i.t =3 t, =(l-a)X. t
+Ee 12, 3 171
|a~|puyun
+ G-e W {6)
where
A= 1 B(C,+C,+P Y+iaC .m..w..
1-a) 1¥Cp*P-Qr+ac, - X
m.»p.w nu
B = Tr ==Y ; D= ﬁnHlﬂuﬁn +P-Q) - I..;
»o (1 QV»H 1 »H
A A, B (1-r)x
1 1 1 1
NIC...N; - wulL“ mn— + T
»H »o a wouﬁwlnvww vwlwo

OI_”»Hm.nH+H|M_.H~O ; B=p(1-5)(1-r) and ﬂNl.ﬂlnw.

€{0,1,t) was calculated numerically using a
programnable calculator and {8 not reproduced here.
The values of the four cost functions were computed
for various values of the system's parameters and
some of the results are illustrated in Figs. 2, 3
and 4, In Fig. 2 the dependence of C(0,1,t,t3) and
€(1,1,t,t3) on the policy perameter ty 1s depicted
in three cases for a mission time »onl 4, Both cost

functions are minimized for €3=0, Apty;=2.7=

0.6750,t &nd ty=t in cases (a), (b) and (c},
respectively. The reason for having the same optim-
al value of t; for both functions being the fact

that the failure rate changes from 3, to A; upon
the first fault occurrence, Note that in case (a)}
the optimal value of t; is zero and the correspond-
ing cost C(0,1,4) is 1506, If instead of applying
the optimal policy which calls for module replace-
mDent upon failure, we keep on retrying the module
until it either faills permanently or causes a system
failure; the expected cost increases by 1l4.6% to
1726.

In Fig. 3 the four cost functions are plotted
for two different cases (1) and (i1i). By comparing
€({0,1,t) to C(0,0,t) or in general C(0,m,t) to
C{0,m+1,t) we obtain the cost gain due to an addition-
al spare module. Thus, by comparing the gain
C(0,m+1,t} -C(0,m,t} to the cost of a spare module
ve may determine the benefit of adding a spare.

To analyze the effectiveness of the module
switching policy we have calculated the improvement
in the cost function due to the optimal selection

of t3 1in the two cases shown In Fig. 3. The
results are i{llustrated in Fig.4. 1In case (1) the
selection of the right switching instant t; is

crucial for relatively short migsion times in
contrast to case (1i). Such a result is expected
since in (i) where the optimal policy calls for
early replacemant it is beneficial for a short
mission time when we still have a standby spare.

For longer mission times it is less beneficial since
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‘higher.

the probability that we still have a spare is very

low. In case (i11) the percentage of improvement is
highest for mission times sround A, t=4 because by
retrying the active module and not replacing it too
soon we increase the probability of system survival.

111 Conclusicns

The idea of a module replacement policy has been
introduced and one such policy has been developed
for dynamic redundancy fault-tolerant systems. We
have illustrated that the application of a module
replacement policy might improve substantially the
computational availability of a faulc-tolerant
system, However, further research steps have to be
carried out before the importance of module switch-
ing policies and the feasibility of their practical
implementation can be established. Furthermore,
separate module replacement policies have to be
developed for other fault-tolerant structures like
hybrid redundancy systems and gracefully degrading
systems., Hybrid systems provide a faster and more
reliable fault diagnosis and have & short term fault
masking capability. Consequently, the overhead
associated with recovery and replacement procedures
in hybrid systems is less than in dymamic systems
however, it is not eliminated since resynchronization
1s still required. The need for module switching
policies in gracefully degrading systems is even
These systems are designed to provide a
high grade of service by reconfiguring the system
whenever a module faile permanently. Here, if a
module 1s subject to frequent non-permanent fault
occurrences we have to decide whether to switch
it out and degrade the system capacity or keep on
retrying it. In addition to the already mentioned
system parameters we have in this case to take into
account also the degraded computational capacity
of the system,
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